$$(\forall M \in \Lambda_+) \ M \in \mathsf{SN} \iff \mathcal{T}(M) \in \mathfrak{F}_{\mathsf{SN}}$$

Lionel Vaux* based on joint work with Christine Tasson° and Michele Pagani° (mainly our FoSSaCS 2016 paper)

* I2M, Aix-Marseille ° IRIF, Paris 7

Séminaire Chocola, January 14, 2016, Lyon

Outline

$$(\forall M \in \Lambda_+) \ M \in \mathsf{SN} \iff \mathcal{T}(M) \in \mathfrak{F}_{\mathsf{SN}}$$

Outline

$$(\forall M \in \Lambda_{+}) \ M \in \mathsf{SN} \iff \mathcal{T}(M) \in \mathfrak{F}_{\mathsf{SN}}$$

We characterize the strong normalizability (SN) of non-deterministic λ -terms (Λ_+) as a finiteness structure (\mathfrak{F}_{SN}) via Taylor expansion (\mathcal{T}).

Outline

$$(\forall M \in \Lambda_{+}) \ M \in \mathsf{SN} \iff \mathcal{T}(M) \in \mathfrak{F}_{\mathsf{SN}}$$

We characterize the strong normalizability (SN) of non-deterministic λ -terms (Λ_+) as a finiteness structure (\mathfrak{F}_{SN}) via Taylor expansion (\mathcal{T}).

The end

Thanks for your attention.

Denotational semantics

A very old idea

Terms of type $A \to B$ are functions from A to B.

Denotational semantics

An old idea

Denotational semantics

An old idea

Hopefully, we model something interesting (continuity, stability, etc.).

Quantitative semantics

A prime aged idea (Girard, '80s)

- ▶ types → particular topological vector spaces:
 - $[A] \subseteq \mathbf{k}^{|A|}$ + possibly some additional structure
- ▶ terms \rightsquigarrow analytic functions defined by power series:

$$|A \to B| \subseteq |A|^! \times |B|$$

 $((M) N)_{\beta} = \sum_{(\overline{\alpha}, \beta)} M_{(\overline{\alpha}, \beta)} N^{\overline{\alpha}}$

where

$$|A|! = \mathfrak{M}_f(|A|)$$

$$\overline{\alpha} = [\alpha_1, \dots, \alpha_n] \in |A|^!, \beta \in |B|$$

$$N^{\overline{\alpha}} = \prod_{\alpha \in |A|} N_{\alpha}^{\overline{\alpha}(a)} = \prod_i N_{\alpha_i}$$

$$N^{\overline{\alpha}} = \prod_{\alpha \in |A|} N_{\alpha}^{\overline{\alpha}(a)} = \prod_{i} N_{\alpha_{i}}$$

Quantitative semantics

A prime aged idea (Girard, '80s)

- ▶ types → particular topological vector spaces:
 - $\llbracket A \rrbracket \subseteq \mathbf{k}^{|A|}$ + possibly some additional structure
- ▶ terms → analytic functions defined by power series:

$$|A \to B| \subseteq |A|^! \times |B|$$

 $((M) N)_{\beta} = \sum_{(\overline{\alpha}, \beta)} M_{(\overline{\alpha}, \beta)} N^{\overline{\alpha}}$

where

$$|A|! = \mathfrak{M}_f(|A|)$$

$$\overline{\alpha} = [\alpha_1, \dots, \alpha_n] \in |A|^!, \beta \in |B|$$

$$\blacktriangleright \ N^{\overline{\alpha}} = \prod_{\alpha \in |A|} N_{\alpha}^{\overline{\alpha}(a)} = \prod_{i} N_{\alpha_{i}}$$

This was the origin of linear logic (via coherence spaces).

Quantitative semantics

A prime aged idea (Girard, '80s)

- ▶ types → particular topological vector spaces:
 - $\llbracket A \rrbracket \subseteq \mathbf{k}^{|A|}$ + possibly some additional structure
- ▶ terms → analytic functions defined by power series:

$$|A \to B| \subseteq |A|^! \times |B|$$

 $((M) N)_{\beta} = \sum_{(\overline{\alpha}, \beta)} M_{(\overline{\alpha}, \beta)} N^{\overline{\alpha}}$

where

- $|A|! = \mathfrak{M}_f(|A|)$
- $\overline{\alpha} = [\alpha_1, \dots, \alpha_n] \in |A|^!, \beta \in |B|$

This was the origin of linear logic (via coherence spaces).

How to ensure the convergence of the series? Originally, $\mathbf{k} = \mathsf{Sets}$.

Finiteness structures

Definition (Ehrhard, early 2000's)

- ▶ If $a, a' \subseteq A$, write $a \perp a'$ iff $a \cap a'$ is finite.
- ▶ If $\mathfrak{S} \subseteq \mathfrak{P}(A)$, let $\mathfrak{S}^{\perp} := \{a' \subseteq A; \ \forall a \in \mathfrak{S}, \ a \perp a'\}.$
- ▶ A finiteness structure is any $\mathfrak{F} = \mathfrak{S}^{\perp}$.

Then you can build a denotational model of linear logic where

$$[\![A]\!] = \left\{ a \in \mathbf{k}^{|A|}; \ |a| \in \mathfrak{Fin}(A) \right\}$$

with $\mathfrak{Fin}(A)$ a finiteness structure on |A| so that for all $a \in \mathfrak{Fin}(A)$, $\beta \in |B|$ and all $f \in \mathfrak{Fin}(A \to B)$,

$$\{\overline{\alpha}; \ (\overline{\alpha}, \beta) \in f\} \perp a!.$$

Finiteness structures

Definition (Ehrhard, early 2000's)

- ▶ If $a, a' \subseteq A$, write $a \perp a'$ iff $a \cap a'$ is finite.
- ▶ If $\mathfrak{S} \subseteq \mathfrak{P}(A)$, let $\mathfrak{S}^{\perp} := \{a' \subseteq A; \ \forall a \in \mathfrak{S}, \ a \perp a'\}.$
- ▶ A finiteness structure is any $\mathfrak{F} = \mathfrak{S}^{\perp}$.

Then you can build a denotational model of linear logic where

$$[\![A]\!] = \left\{ a \in \mathbf{k}^{|A|}; \ |a| \in \mathfrak{Fin}(A) \right\}$$

with $\mathfrak{Fin}(A)$ a finiteness structure on |A| so that for all $a \in \mathfrak{Fin}(A)$, $\beta \in |B|$ and all $f \in \mathfrak{Fin}(A \to B)$,

$$\{\overline{\alpha}; \ (\overline{\alpha}, \beta) \in f\} \perp a!.$$

Short version

The sum in the previous slide is always finite.

Finiteness structures

Definition (Ehrhard, early 2000's)

- ▶ If $a, a' \subseteq A$, write $a \perp a'$ iff $a \cap a'$ is finite.
- ▶ If $\mathfrak{S} \subseteq \mathfrak{P}(A)$, let $\mathfrak{S}^{\perp} := \{a' \subseteq A; \ \forall a \in \mathfrak{S}, \ a \perp a'\}.$
- ▶ A finiteness structure is any $\mathfrak{F} = \mathfrak{S}^{\perp}$.

Then you can build a denotational model of linear logic where

$$[\![A]\!] = \left\{ a \in \mathbf{k}^{|A|}; \ |a| \in \mathfrak{Fin}(A) \right\}$$

with $\mathfrak{Fin}(A)$ a finiteness structure on |A| so that for all $a \in \mathfrak{Fin}(A)$, $\beta \in |B|$ and all $f \in \mathfrak{Fin}(A \to B)$,

$$\{\overline{\alpha}; \ (\overline{\alpha}, \beta) \in f\} \perp a!.$$

Short version

The sum in the previous slide is always finite.

Moral

Finiteness structures enforce finite interaction/reduction/cut elimination.

λ -terms as analytic functions

So we can differentiate (typed) λ -terms, and compute their Taylor expansion!

And one can mimick that in the syntax:

- differential λ -calculus (Ehrhard-Regnier 2003)
- ▶ a finitary fragment: resource λ -calculus (Ehrhard-Regnier 2004) this is the target of Taylor expansion

Resource λ -calculus

Resource terms

$$\begin{array}{ccccc} \Delta & \ni & s,t,\dots & ::= & x \mid \lambda x.s \mid \langle s \rangle \ \overline{t} \\ \Delta^! & \ni & \overline{s},\overline{t},\dots & ::= & [s_1,\dots,s_n] \end{array}$$

Meaning:
$$\langle s \rangle$$
 $[s_1, \dots, s_n] = (Ds)_0 \cdot (s_1, \dots, s_n)$

Resource reduction

$$\langle \lambda x.s \rangle \ \bar{t} \to_{\rho} \partial_x s \cdot \bar{t} \quad \text{(anywhere)}$$

$$\partial_x s \cdot \bar{t} = \left\{ \begin{array}{cc} \sum_{f \in \mathfrak{S}_n} s \left[t_{f(1)}, \dots, t_{f(n)}/x_1, \dots, x_n \right] & \text{if } \deg_x(s) = \# \bar{t} = n \\ 0 & \text{otherwise} \end{array} \right.$$

sums
$$S, T, \ldots := \sum_{i=1}^{n} t_i$$
 with $\lambda x.0 = 0$, $\langle s \rangle [t_1 + t_2, u] = \sum_i \langle s \rangle [t_i, u], \ldots$

Resource λ -calculus

Resource terms

$$\begin{array}{ccccc} \Delta & \ni & s,t,\dots & ::= & x \mid \lambda x.s \mid \langle s \rangle \ \overline{t} \\ \Delta^! & \ni & \overline{s},\overline{t},\dots & ::= & [s_1,\dots,s_n] \end{array}$$

Meaning:
$$\langle s \rangle [s_1, \ldots, s_n] = (Ds)_0 \cdot (s_1, \ldots, s_n)$$

Resource reduction

$$\langle \lambda x.s \rangle \ \bar{t} \to_{\rho} \partial_x s \cdot \bar{t} \quad \text{(anywhere)}$$

$$\partial_x s \cdot \bar{t} = \left\{ \begin{array}{cc} \sum_{f \in \mathfrak{S}_n} s \left[t_{f(1)}, \dots, t_{f(n)}/x_1, \dots, x_n \right] & \text{if } \deg_x(s) = \# \bar{t} = n \\ 0 & \text{otherwise} \end{array} \right.$$

sums
$$S, T, \ldots := \sum_{i=1}^{n} t_i$$
 with $\lambda x.0 = 0$, $\langle s \rangle [t_1 + t_2, u] = \sum_i \langle s \rangle [t_i, u], \ldots$

▶ Resource reduction preserves free variables, is size-decreasing, strongly confluent and normalizing.

Resource λ -calculus

Resource terms

$$\begin{array}{ccccc} \Delta & \ni & s,t,\dots & ::= & x \mid \lambda x.s \mid \langle s \rangle \ \overline{t} \\ \Delta^! & \ni & \overline{s},\overline{t},\dots & ::= & [s_1,\dots,s_n] \end{array}$$

Meaning:
$$\langle s \rangle$$
 $[s_1, \ldots, s_n] = (Ds)_0 \cdot (s_1, \ldots, s_n)$

Resource reduction

$$\langle \lambda x.s \rangle \ \bar{t} \to_{\rho} \partial_x s \cdot \bar{t} \quad \text{(anywhere)}$$

$$\partial_x s \cdot \bar{t} = \left\{ \begin{array}{cc} \sum_{f \in \mathfrak{S}_n} s \left[t_{f(1)}, \dots, t_{f(n)}/x_1, \dots, x_n \right] & \text{if } \deg_x(s) = \# \bar{t} = n \\ 0 & \text{otherwise} \end{array} \right.$$

sums
$$S, T, \ldots := \sum_{i=1}^{n} t_i$$
 with $\lambda x.0 = 0$, $\langle s \rangle [t_1 + t_2, u] = \sum_i \langle s \rangle [t_i, u], \ldots$

- ▶ Resource reduction preserves free variables, is size-decreasing, strongly confluent and normalizing.
- \triangleright Normal forms \sim elements of some relational model.

Taylor expansion of λ -terms

Semantically, $(M) N = \sum_{n \in \mathbf{N}} \frac{1}{n!} \langle M \rangle N^n$ where $N^n = [N, \dots, N]$. Taylor expansion: $\vec{\mathcal{T}}(M) \in \mathbf{Q}^{+\Delta}$

$$\vec{\mathcal{T}}\left(\left(M\right)N\right) = \sum_{n \in \mathbf{N}} \frac{1}{n!} \left\langle \vec{\mathcal{T}}\left(M\right) \right\rangle \, \vec{\mathcal{T}}\left(N\right)^{n}$$

$$\vec{\mathcal{T}}\left(x\right) = x \hspace{0.5cm} \vec{\mathcal{T}}\left(\lambda x.M\right) = \lambda x.\vec{\mathcal{T}}\left(M\right)$$

Taylor expansion of λ -terms

Semantically, $(M) N = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle M \rangle N^n$ where $N^n = [N, \dots, N]$.

Taylor expansion: $\vec{\mathcal{T}}(M) \in \mathbf{Q}^{+\Delta}$

$$\vec{\mathcal{T}}\left(\left(M\right)N\right) = \sum_{n \in \mathbb{N}} \frac{1}{n!} \left\langle \vec{\mathcal{T}}\left(M\right) \right\rangle \vec{\mathcal{T}}\left(N\right)^{n}$$

$$\vec{\mathcal{T}}\left(x\right) = x \hspace{0.5cm} \vec{\mathcal{T}}\left(\lambda x.M\right) = \lambda x.\vec{\mathcal{T}}\left(M\right)$$

Theorem (Ehrhard-Regnier, TCS 2008)

If $M \in \Lambda$ has a normal form, then $\vec{\mathcal{T}}(M)$ normalizes

Taylor expansion of λ -terms

Semantically, $(M) N = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle M \rangle N^n$ where $N^n = [N, \dots, N]$.

Taylor expansion: $\vec{\mathcal{T}}(M) \in \mathbf{Q}^{+\Delta}$

$$\vec{\mathcal{T}}\left(\left(M\right)N\right) = \sum_{n \in \mathbf{N}} \frac{1}{n!} \left\langle \vec{\mathcal{T}}\left(M\right) \right\rangle \vec{\mathcal{T}}\left(N\right)^{n}$$

$$\vec{\mathcal{T}}\left(x
ight) = x \quad \vec{\mathcal{T}}\left(\lambda x.M\right) = \lambda x.\vec{\mathcal{T}}\left(M\right)$$

Theorem (Ehrhard-Regnier, TCS 2008 + CiE 2006)

If $M \in \Lambda$ has a normal form, then $\vec{\mathcal{T}}(M)$ normalizes to $\vec{\mathcal{T}}(\mathsf{NF}(M))$.

Theorem (Ehrhard-Regnier, CiE 2006)

In general $\vec{\mathcal{T}}(M)$ normalizes to $\vec{\mathcal{T}}(\mathsf{BT}(M))$.

Moral

In the uniform setting $\mathsf{BT}(M) \simeq \mathsf{NF}(\vec{\mathcal{T}}(M))$.

Normalizing Taylor expansions

But how can $\vec{\mathcal{T}}(M)$ even normalize?

Take $\vec{a} \in \mathbf{k}^{\Delta}$: we want to set

$$\mathsf{NF}\left(\vec{a}\right) = \sum_{t \in \Delta} a_t.\mathsf{NF}\left(t\right)$$

Normalizing Taylor expansions

But how can $\vec{\mathcal{T}}(M)$ even normalize?

Take $\vec{a} \in \mathbf{k}^{\Delta}$: we want to set

$$\mathsf{NF}\left(\vec{a}\right) = \sum_{t \in \Delta} a_t.\mathsf{NF}\left(t\right)$$

→ infinite sums (and in general we might consider all kinds of coefficients)

Normalizing Taylor expansions

But how can $\vec{\mathcal{T}}(M)$ even normalize?

Take $\vec{a} \in \mathbf{k}^{\Delta}$: we want to set

$$\mathsf{NF}\left(\vec{a}\right) = \sum_{t \in \Delta} a_t.\mathsf{NF}\left(t\right)$$

→ infinite sums (and in general we might consider all kinds of coefficients)

→ convergence?

Normalizing Taylor expansions: uniformity to the rescue

But how can $\vec{\mathcal{T}}(M)$ even normalize?

Take $\vec{a} \in \mathbf{k}^{\Delta}$: we want to set

$$\mathsf{NF}\left(\vec{a}
ight) = \sum_{t \in \Delta} a_t. \mathsf{NF}\left(t
ight)$$

 \leadsto infinite sums (and in general we might consider all kinds of coefficients) \leadsto convergence?

Theorem (Ehrhard-Regnier 2004)

Write $\mathcal{T}(M) = |\vec{\mathcal{T}}(M)|$. Then for all $t \in \Delta$, there is at most one $s \in \mathcal{T}(M)$ such that $\mathsf{NF}(s)_t \neq 0$.

Proof.

 λ -terms are uniform (= essentially deterministic).

Normalizing Taylor expansions: uniformity to the rescue

But how can $\vec{\mathcal{T}}(M)$ even normalize?

Take $\vec{a} \in \mathbf{k}^{\Delta}$: we want to set

$$\mathsf{NF}\left(\vec{a}\right) = \sum_{t \in \Delta} a_t.\mathsf{NF}\left(t\right)$$

→ infinite sums (and in general we might consider all kinds of coefficients)
→ convergence?

Theorem (Ehrhard-Regnier 2004)

Write $\mathcal{T}(M) = \left| \vec{\mathcal{T}}(M) \right|$. Then for all $t \in \Delta$, there is at most one $s \in \mathcal{T}(M)$ such that $\mathsf{NF}(s)_t \neq 0$.

Proof.

 λ -terms are uniform (= essentially deterministic).

This fails in general

$$\mathsf{NF}\left(\sum_{n\in\mathbf{N}}\left\langle \lambda x.x\right\rangle ^{n}\left[y\right]\right)?\qquad \left\langle \lambda x.x\right\rangle$$

$$\langle \lambda x.x \rangle^n [y] = \langle \lambda x.x \rangle [\langle \lambda x.x \rangle [\cdots [y] \cdots]]$$

What about non-deterministic λ -calculi?

$$\begin{split} \Lambda_{+} \ni M, N, \ldots &::= x \mid \lambda x.M \mid (M) \ N \mid M + N \\ & (\lambda x.M) \ N \to_{\beta} M \left[N/x \right] \quad \text{(anywhere)} \end{split}$$

$$\Lambda_{+} \ni M, N, \dots ::= x \mid \lambda x.M \mid (M) N \mid M + N$$
$$(\lambda x.M) N \to_{\beta} M [N/x] \quad \text{(anywhere)}$$

$$\left(M+N\right)P=\left(M\right)P+\left(N\right)P\quad \text{(implicitly call-by-name)}$$

$$\Lambda_{+} \ni M, N, \dots ::= x \mid \lambda x.M \mid (M) N \mid M + N$$
$$(\lambda x.M) N \to_{\beta} M [N/x] \quad \text{(anywhere)}$$

$$(M+N)P = (M)P + (N)P$$
 (implicitly call-by-name)

Example

Let
$$\delta_M = \lambda x. (M + (x) x)$$
 and $\infty_M = (\delta_M) \delta_M$:

$$\Lambda_{+} \ni M, N, \dots ::= x \mid \lambda x.M \mid (M) N \mid M + N$$

$$(\lambda x.M) N \to_{\beta} M [N/x] \quad \text{(anywhere)}$$

$$(M+N)P = (M)P + (N)P$$
 (implicitly call-by-name)

Example

Let
$$\delta_M = \lambda x. (M + (x) x)$$
 and $\infty_M = (\delta_M) \delta_M: \infty_M \to_{\beta}^* M + \infty_M!$

$$\begin{split} \Lambda_{+} \ni M, N, \ldots &::= x \mid \lambda x.M \mid (M) \; N \mid M + N \\ & (\lambda x.M) \; N \to_{\beta} M \left[N/x \right] \quad \text{(anywhere)} \end{split}$$

$$(M+N)P = (M)P + (N)P$$
 (implicitly call-by-name)

Example

Let
$$\delta_M = \lambda x. (M + (x) x)$$
 and $\infty_M = (\delta_M) \delta_M: \infty_M \to_{\beta}^* M + \infty_M!$

Taylor expansion in a non uniform setting

$$\vec{\mathcal{T}}\left(M+N\right) = \vec{\mathcal{T}}\left(M\right) + \vec{\mathcal{T}}\left(N\right)$$

We would like to set:

$$\mathsf{NF}\left(\vec{\mathcal{T}}\left(M\right)\right) = \sum_{s \in \Delta} \vec{\mathcal{T}}\left(M\right)_{s} \mathsf{NF}\left(s\right)$$

$$\begin{split} \Lambda_{+} \ni M, N, \ldots &::= x \mid \lambda x.M \mid (M) \: N \mid M + N \\ & (\lambda x.M) \: N \to_{\beta} M \: [N/x] \quad \text{(anywhere)} \end{split}$$

$$(M+N)P = (M)P + (N)P$$
 (implicitly call-by-name)

Example

Let $\delta_M = \lambda x. (M + (x) x)$ and $\infty_M = (\delta_M) \delta_M: \infty_M \to_{\beta}^* M + \infty_M!$

Taylor expansion in a non uniform setting

$$\vec{\mathcal{T}}\left(M+N\right) = \vec{\mathcal{T}}\left(M\right) + \vec{\mathcal{T}}\left(N\right)$$

We would like to set:

$$\operatorname{NF}\left(\vec{\mathcal{T}}\left(M\right)\right) = \sum_{s \in \Delta} \vec{\mathcal{T}}\left(M\right)_{s} \operatorname{NF}\left(s\right)$$

Then
$$\mathsf{NF}\left(\vec{\mathcal{T}}\left(\infty_{M}\right)\right)=?$$

Finiteness structures to the rescue

When is $NF(\vec{\mathcal{T}}(M))$ defined?

- Write $s \geq t$ if $s \to_{\rho}^{*} t + \cdots$.
- $\blacktriangleright \text{ Let } \uparrow t = \{ s \in \Delta; \ s \ge t \}.$
- ▶ We want: for all normal $t \in \Delta$, $\mathcal{T}(M) \perp \uparrow t$.

Finiteness structures to the rescue

When is $NF(\vec{\mathcal{T}}(M))$ defined?

- Write $s \geq t$ if $s \rightarrow_{\rho}^{*} t + \cdots$.
- ▶ We want: for all normal $t \in \Delta$, $\mathcal{T}(M) \perp \uparrow t$.

Let system F_+ be system F plus $\frac{\Gamma \vdash M : A \quad \Gamma \vdash N : A}{\Gamma \vdash M + N : A}.$

Theorem (Ehrhard, LICS 2010)

If $M \in \Lambda_+$ is typable in system F_+ , then $\mathcal{T}(M) \in \{\uparrow t ; t \in \Delta\}^{\perp}$.

Proof.

Manage sets of resource terms as if they were λ -terms, and follow the usual reducibility technique, associating a finiteness structure $\mathfrak{Fin}(A) \subseteq \{\uparrow t \; ; \; t \in \Delta\}^{\perp}$ with each type A.

A remark

In the previous theorem, "tests" are not restricted to normal terms. This rules out looping terms, e.g., $\Omega = (\Delta) \Delta$ with $\Delta = \lambda x. (x) x$:

- consider $\delta_n = \lambda x. \langle x \rangle [x^n];$
- ▶ then for all $n \in \mathbb{N}$, $\langle \delta_n \rangle$ $[\delta_0, \delta_0, \delta_1, \dots, \delta_{n-1}] \geq \langle \delta_0 \rangle$ $[] \rightarrow_{\rho} 0$.

Pagani-Tasson-V., FOSSACS 2016

- ightharpoonup Typability in F can be relaxed to strong normalizability.
- ▶ Then the implication

$$M \in \mathsf{SN} \Rightarrow \mathcal{T}(M) \in \{\uparrow t \; ; \; t \in \Delta\}^{\perp}$$

can be reversed...

▶ provided the finiteness $\{\uparrow t \; ; \; t \in \Delta\}^{\perp}$ is refined to a tighter one.

$$M \in \mathsf{SN} \Rightarrow \mathcal{T}(M) \in \{\uparrow t \; ; \; t \in \Delta\}^{\perp}$$

In the ordinary λ -calculus:

- ▶ $SN = \text{typability in system } D \text{ (simple types } + \cap)$
- \triangleright "any" proof by reducibility for simple types is valid for D

So we:

- ▶ introduce a system D_+ of intersection types for non uniform terms
- ▶ prove that $M \in SN$ implies $\Gamma \vdash M : A$ in D_+
- ightharpoonup adapt Ehrhard's proof to D_+

System D_+

System D uses the rules:

$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash M : B}{\Gamma \vdash M : A \cap B} \qquad \frac{\Gamma \vdash M : A \cap B}{\Gamma \vdash M : A} \qquad \frac{\Gamma \vdash M : A \cap B}{\Gamma \vdash M : B}$$

This is not sufficient here, due to constraints for typing sums:

- observe that (x + y) z = (x) z + (y) z
- $\blacktriangleright \text{ let } \Gamma = x: A \to B \cap B', y: A \to B \cap B'', z: A,$
- ▶ then $\Gamma \vdash (x+y)z : B$
- ▶ but x + y is not typable in Γ.

We need (a limited amount of) subtyping:

- $ightharpoonup A \cap B \leq A \text{ and } A \cap B \leq B;$
- $(A \to B) \cap (A \to C) \preceq A \to (B \cap C) ;$
- $ightharpoonup A o B \leq A' o B'$ as soon as $A' \leq A$ and $B \leq B'$.

$$\frac{\Gamma \vdash M : A \quad A \preceq B}{\Gamma \vdash M : B}$$

Then the proofs go almost as usual.

 $\mathcal{T}(M) \in \{\uparrow t \; ; \; t \in \Delta\}^{\perp} \Rightarrow M \in \mathsf{SN}$

$$\mathcal{T}(M) \in \{\uparrow t \; ; \; t \in \Delta\}^{\perp} \not\Rightarrow M \in \mathsf{SN}$$

Fails!

Let $\Delta_3 := \lambda x.(x) x x$ and $\Omega_3 := (\Delta_3) \Delta_3$, then $\mathcal{T}(\Omega_3) \perp \uparrow s$ for all s.

$$\mathcal{T}(M) \in \{\uparrow t \; ; \; t \in \Delta\}^{\perp} \not\Rightarrow M \in \mathsf{SN}$$

Fails!

Let $\Delta_3 := \lambda x.(x) x x$ and $\Omega_3 := (\Delta_3) \Delta_3$, then $\mathcal{T}(\Omega_3) \perp \uparrow s$ for all s.

Why?

We ruled out loops, but the divergence of Ω_3 is of another nature. A diverging λ -term either loops or reduces to terms of arbitrary height.

$$\mathcal{T}(M) \in \{\uparrow t \; ; \; t \in \Delta\}^{\perp} \not\Rightarrow M \in \mathsf{SN}$$

Fails!

Let $\Delta_3 := \lambda x.(x) x x$ and $\Omega_3 := (\Delta_3) \Delta_3$, then $\mathcal{T}(\Omega_3) \perp \uparrow s$ for all s.

Why?

We ruled out loops, but the divergence of Ω_3 is of another nature. A diverging λ -term either loops or reduces to terms of arbitrary height.

Fix: add more tests

- ► Consider a structure $\mathfrak{S} \subseteq \mathfrak{P}(\Delta)$ and let $\mathfrak{F}_{\mathfrak{S}} = \{\uparrow a \; ; \; a \in \mathfrak{S}\}^{\perp}$ with $\uparrow a = \bigcup_{s \in a} \uparrow s$.
- ▶ Of course, not all \mathfrak{S} are acceptable, otherwise we reject too many terms (consider $\mathfrak{S} = \mathfrak{P}(\Delta)$).
- ▶ We need to rule out unbounded height: it suffices to test against linear terms.

$$\mathcal{T}(M) \in \mathfrak{F}_{\mathfrak{S}} \Rightarrow M \in \mathsf{SN}$$

 \dots as soon as $\mathfrak S$ contains all sets of linear terms.

$$\mathcal{T}(M) \in \mathfrak{F}_{\mathfrak{S}} \Rightarrow M \in \mathsf{SN}$$

 \dots as soon as \mathfrak{S} contains all sets of linear terms.

We prove the contraposition: given an infinite reduction sequence from M, we find $a \in \mathfrak{S}$ such that $\mathcal{T}(M) \not\perp \uparrow a$.

Lemma

If $M \to_{\beta}^{*} N$ then for all $t \in \mathcal{T}(N)$ there is $s \in \mathcal{T}(M)$ such that $s \geq t$.

Proof that $\mathcal{T}(M) \in \mathfrak{F}_{\mathfrak{S}} \Rightarrow M \in \mathsf{SN}$.

- \triangleright if M reduces to terms of unbounded height:
 - ▶ take M_i any term of height $\geq i$ with $M \to_{\beta}^* M_i$;
 - ▶ take $a = \{s_i; i \in \mathbb{N}\}$ with $s_i \in \mathcal{T}(M_i)$ a linear resource term
- ▶ otherwise M (in fact $\mathcal{T}(M)$) loops and we can follow a looping reduction path backwards (with some care)

18 / 26

Glueing everything together

We can adapt the reducibility proof provided $\mathfrak S$ satisfies:

- ▶ for all $n \in \mathbb{N}$, for all $a \in \mathfrak{S}$, $\{s \in a; \mathbf{h}(s) \leq n\}$ is finite.
- ▶ some additional, purely technical conditions.

Example

 $\mathfrak{B} = \{a \subseteq \Delta; \ \#(a) \text{ is bounded}\}\ \text{where } \#(a) = \{\#(s); \ s \in a\} \text{ and } \#(s) \text{ is the maximum size of a bag of arguments in } s.$

Theorem (PTV, FoSSaCS 2016)

The following three properties are equivalent:

- ▶ $M \in SN$;
- \blacktriangleright M is typable in system D_+ ;
- $ightharpoonup \mathcal{T}(M) \in \mathfrak{F}_{\mathfrak{B}}.$

Conclusion

We are happy.

We have established a nice and novel characterization of SN.

Conclusion No, wait!

We are happy.

We have established a nice and novel characterization of SN.

Are we?

This is intellectually satisfying but the really useful bit is that:

the Taylor expansion of a strongly normalizable term is normalizable which is a bit frustrating (why strongly?).

- ▶ Our construction is parametrized by:
 - ▶ the sets of tests;
 - ▶ the notion of resource reduction, hence of cones.

- ▶ Our construction is parametrized by:
 - ▶ the sets of tests;
 - ▶ the notion of resource reduction, hence of cones.
- ▶ For (weak) normalizability, change the reduction order \geq :

 $s \to_l t$ if $s \to_\rho t$ by reducing "the" leftmost redex.

- ▶ Our construction is parametrized by:
 - ▶ the sets of tests;
 - ▶ the notion of resource reduction, hence of cones.
- ▶ For (weak) normalizability, change the reduction order \geq :

 $s \to_l t$ if $s \to_{\rho} t$ by reducing "the" leftmost redex.

This doesn't change normal forms, but it does change cones.

- ▶ Our construction is parametrized by:
 - ▶ the sets of tests;
 - ▶ the notion of resource reduction, hence of cones.
- ▶ For (weak) normalizability, change the reduction order \geq :

 $s \to_l t$ if $s \to_\rho t$ by reducing "the" leftmost redex.

This doesn't change normal forms, but it does change cones.

▶ We have intersection type systems for normalizability, reducibility techniques apply, . . . business as usual.

- ▶ Our construction is parametrized by:
 - ▶ the sets of tests;
 - ▶ the notion of resource reduction, hence of cones.
- ▶ For (weak) normalizability, change the reduction order \geq :

$$s \to_l t$$
 if $s \to_\rho t$ by reducing "the" leftmost redex.

This doesn't change normal forms, but it does change cones.

▶ We have intersection type systems for normalizability, reducibility techniques apply, . . . business as usual.

Theorem (PTV, early draft)

The following three properties are equivalent:

- ▶ $M \in WN$;
- M has an Ω -free type in system $D\Omega_+$;
- $\mathcal{T}(M) \in \mathfrak{F}_{\mathsf{WN}} = \{ \uparrow_l a; \ a \in \mathfrak{B} \}^{\perp}.$

- ▶ Our construction is parametrized by:
 - ▶ the sets of tests;
 - ▶ the notion of resource reduction, hence of cones.
- ▶ For (weak) normalizability, change the reduction order \geq :

$$s \to_l t$$
 if $s \to_\rho t$ by reducing "the" leftmost redex.

This doesn't change normal forms, but it does change cones.

▶ We have intersection type systems for normalizability, reducibility techniques apply, . . . business as usual.

Theorem (PTV, early draft)

The following three properties are equivalent:

- ▶ $M \in WN$;
- M has an Ω -free type in system $D\Omega_+$;
- $ightharpoonup \mathcal{T}(M) \in \mathfrak{F}_{\mathsf{WN}} = \{ \uparrow_l a; \ a \in \mathfrak{B} \}^{\perp}.$

A similar technique applies for head normalization.

Conclusion

We are happy.

We have established a nice and novel characterization of SN, WN, HN.

Conclusion

We are happy.

We have established a nice and novel characterization of SN, WN, HN.

In particular we validate the intuition that finiteness spaces = SN.

Note: WN (resp. HN) is SN for left (resp. head) reduction.

Conclusion No, wait!

We are happy.

We have established a nice and novel characterization of SN, WN, HN.

In particular we validate the intuition that finiteness spaces = SN. Note: WN (resp. HN) is SN for left (resp. head) reduction.

Where is the final theorem?

$$NF(\mathcal{T}(M)) = \mathcal{T}(NF(M))$$
?

Conclusion No, wait!

We are happy.

We have established a nice and novel characterization of SN, WN, HN.

In particular we validate the intuition that finiteness spaces = SN. Note: WN (resp. HN) is SN for left (resp. head) reduction.

Where is the final theorem?

$$NF(\mathcal{T}(M)) = \mathcal{T}(NF(M))$$
?

We need to show that $NF(\mathcal{T}(-))$ is preserved by β -reduction.

Conclusion No, wait! Conclusion

We are happy.

We have established a nice and novel characterization of SN, WN, HN.

In particular we validate the intuition that finiteness spaces = SN. Note: WN (resp. HN) is SN for left (resp. head) reduction.

Where is the final theorem?

$$NF(\mathcal{T}(M)) = \mathcal{T}(NF(M))$$
?

We need to show that $NF(\mathcal{T}(-))$ is preserved by β -reduction. But that is another story...

Conclusion No, wait! Conclusion

We are happy.

We have established a nice and novel characterization of SN, WN, HN.

In particular we validate the intuition that finiteness spaces = SN. Note: WN (resp. HN) is SN for left (resp. head) reduction.

Where is the final theorem?

$$NF(\mathcal{T}(M)) = \mathcal{T}(NF(M))$$
?

We need to show that $NF(\mathcal{T}(-))$ is preserved by β -reduction. But that is another story...

One last word

Paves the way for a unified notion of Böhm trees in various non uniform settings (quantitative non-determinism, probabilistic stuff, etc.).

The end

Thanks for your attention.

The end

Thanks for your attention.

Questions?

DRAFT IN PROGRESS

DRAFT IN PROGRESS

It is easy to follow β -reduction backwards:

Lemma

If $M \to_{\beta} N$ and $t \in \vec{\mathcal{T}}(N)$ then there exists $s \in \vec{\mathcal{T}}(M)$ s.t. $s \ge t$.

Moreover it has a nice fineteness property (which we actually used above):

Lemma

For all t, there are finitely many s s.t. $s \succ t$.

DRAFT IN PROGRESS

It is easy to follow β -reduction backwards:

Lemma

If $M \to_{\beta} N$ and $t \in \vec{\mathcal{T}}(N)$ then there exists $s \in \vec{\mathcal{T}}(M)$ s.t. $s \geq t$.

Moreover it has a nice fineteness property (which we actually used above):

Lemma

For all t, there are finitely many s s.t. $s \succ t$.

To follow β -reduction forwards, we need to perform *parallel* reductions, in infinitely many terms:

Write $\vec{a} \Rightarrow_{\rho} \vec{b}$ if $\vec{a} = \sum_{i} a_{i} s_{i}$, $\vec{b} = \sum_{i} b_{i} S'_{i}$, with $s_{i} \Rightarrow_{\rho} S'_{i}$, for all i.

DRAFT IN PROGRESS

It is easy to follow β -reduction backwards:

Lemma

If $M \to_{\beta} N$ and $t \in \vec{\mathcal{T}}(N)$ then there exists $s \in \vec{\mathcal{T}}(M)$ s.t. $s \ge t$.

Moreover it has a nice fineteness property (which we actually used above):

Lemma

For all t, there are finitely many s s.t. $s \succ t$.

To follow β -reduction forwards, we need to perform *parallel* reductions, in infinitely many terms:

Write $\vec{a} \Rightarrow_{\rho} \vec{b}$ if $\vec{a} = \sum_{i} a_{i} s_{i}$, $\vec{b} = \sum_{i} b_{i} S'_{i}$, with $s_{i} \Rightarrow_{\rho} S'_{i}$, for all i.

but this is not well behaved.

What we need

- ▶ A tamed version of \Rightarrow_{ρ}
- \triangleright sufficient for simulating β
- with a finiteness result such as the above one.

What we need

- ▶ A tamed version of \Rightarrow_{ρ}
- \triangleright sufficient for simulating β
- with a finiteness result such as the above one.

Then we should "automatically" have:

Lemma

If $|\vec{a}| \in \mathfrak{F}_{WN}$ and $\vec{a} \Rightarrow_{\rho} \vec{a}'$ then $|\vec{a}| \in \mathfrak{F}_{WN}$.

What we need

- ▶ A tamed version of \Rightarrow_{ρ}
- \triangleright sufficient for simulating β
- with a finiteness result such as the above one.

Then we should "automatically" have:

Lemma

If $|\vec{a}| \in \mathfrak{F}_{WN}$ and $\vec{a} \Rightarrow_{\rho} \vec{a}'$ then $|\vec{a}| \in \mathfrak{F}_{WN}$.

Exercise

. .

The end

Thanks for your attention.

The end

Thanks for your attention.

Questions?