
A Tour of Polyadic Approximations

Damiano Mazza
CNRS, LIPN, Université Paris 13

Rencontre Chocola
Lyon, 12 October 2017

Appetizer

• How are the following things related?

– polyadic approximations;
– intersection type systems;
– Boolean circuits;
– the Cook-Levin theorem.

Appetizer

• How are the following things related?

– polyadic approximations;
– intersection type systems;
– Boolean circuits;
– the Cook-Levin theorem.

• There is an intersection type system for “Turing machines” whose
derivations are Boolean circuits, which approximate the machine they
type. This may be used to give a type-theoretic proof of the Cook-Levin
theorem.

Girard’s Approximation Theorem (1987)

[T]he approximation theorem [. . .] is just the mathematical contents of our slogan: usual logic
is obtained from linear logic (without modalities) by a passage to the limit.

5.1. Definition (approximants). The connectives ! and ? are approximated by the
connectives !n and ?n (n 6= 0):

!nA = (1 & A)⊗ · · · ⊗ (1 & A) (n times)

?nA = (⊥⊕ A) ` · · · ` (⊥⊕ A) (n times)

5.2. Theorem (Approximation Theorem). Let A be a theorem of linear logic; with each
occurrence of ! in A, assign an integer 6= 0; then it is possible to assign integers 6= 0 to all
occurrences of ? in such a way that if B denotes the result of replacing each occurrence of !

(respectively ?) by !n (respectively ?n) where n is the integer assigned to it, then B is still a
theorem of linear logic.

The dimensional ladder

0. formulas/types

1. proofs/programs

2. cut-elimination/execution

3. standardization

4. residual equivalence

5. . . .

The λ-calculus, 2-dimensionally

M,N ::= x
∣∣ λx.M ∣∣MN terms

β ::= MLx← NM basic steps

ρ, τ ::= C{β1, . . . , βn}
∣∣ ρ; τ reduction terms

C is a multi-hole context, n may be 0.

MLx← NM : (λx.M)N →∗ M{N/x} β

β1 : M1 →∗ M ′1 . . . βn : Mn →∗ M ′n
C{β1, . . . , βn} : C{M1, . . . ,Mn} →∗ C{M ′1, . . . ,M ′n}

ctxt

ρ : M →∗ P τ : P →∗ N
ρ; τ : M →∗ N

comp

Basic equivalences

Structural equivalence:

ρ : M →∗ N τ : N →∗ P ϕ : P →∗ Q
(ρ; τ);ϕ ≡ ρ; (τ ;ϕ)

assoc

ρ : M →∗ M ′
M ; ρ ≡ ρ lunit

ρ : M ′ →∗ M
ρ;M ≡ ρ runit

Permutation equivalence:

α : M →∗ M ′ β : N →∗ N ′
C{M,β}; C{α,N ′} ∼ C{α, β} ∼ C{α,N}; C{M ′, β}

par

α : C{x} →∗ M ′ β : N →∗ N ′
C{β};α{N ′/x} ∼ α{N/x};M ′{β/x} unnest

An operadic take on syntax

• The λ-calculus with β-reduction may be presented as a 2-operad Λ:

0. one color;
1. multimorphisms of Λ(n): terms M with fv(M) ⊆ {x1, . . . , xn};
2. 2-arrows M ⇒ N : reduction terms ρ : M →∗ N modulo ∼;

operadic composition is substitution.

• Church-style (simple) types = more than one color.

• Curry-style types = 2-operad morphism E → Λ (Melliès-Zeilberger).

• This generalizes to linear logic terms Λ!, polyadic affine terms Λp
a . . .

Approximation order

• Polyadic affine reduction terms are endowed with an approximation order.

• The definition is inductive; the key case is

ρ1 v ρ′1 . . . ρn v ρ′n n ≤ m
〈ρ1, . . . , ρn〉 v 〈ρ′1, . . . , ρ′m〉

box

• This defines a posetal double category :

t
∗ρ
//

v
u

v v

t′
∗

ρ′
// u′

Ideal completion

• The forgetful functor Cat(Dcpo)→ Cat(Pos) has no left adjoint.

• Cartesian liftings in double categories:

• A posetal dbl. cat. D is monotonic if Dtcoop has cartesian liftings.

• The forgetful functor MntDblDcpo→MntDblPos has a left adjoint.

Recovering linear logic

• Let Λ∞a := Hor(Λ̂va).

Theorem (Girard’s approximation theorem, computational version)
There is an isomorphism of 2-operads

Λ∞fu
a /≈ ∼= Λ!,

where Λ∞fu
a /≈ is a suitable quotient of the finitary, uniform sub-operad

of Λ∞a .

• This yields (affine) polyadic approximations.

Modulus of continuity

• Reduction enjoys a continuity property: if M →∗ N , then

∀ u @ N, ∃ t @ N such that t→∗ u.

• What’s the dependency of |t| on the length of the reduction?

• We informally call this the “modulus of continuity”.

• Bad news: the modulus of continuity is exponential!

A polynomial modulus of continuity?

• Why is exponential bad?

1. It is morally wrong (cf. abstract machines).

2. We would like to be able to use the equation

affine λ-terms

λ-terms
=

Boolean circuits

Turing machines

Theorem. Polytime TMs induce polysize Boolean circuits.

3. No λ-calculus approach to non-uniform computation.

Parsimonious logic

• A logic/calculus with a polynomial modulus of continuity.

• Categorically:

– a SMCC C with terminal unit;
– a lax monoidal functor ! : C → C;
– a natural isomorphism !A ∼= A⊗ !A (Milner’s law).

• Good complexity properties (alternative to “light” logics):

– simple types = L (deterministic logspace);
– linear polymorphism = P (deterministic polytime).

• Extends to non-uniformity (L/poly, P/poly).

The Cook-Levin Theorem

Theorem. sat is NP-complete.

Implied by

Theorem. circuit sat is NP-complete.

Essentially implied by

Theorem. Polytime TMs induce polysize Boolean circuits.

Key to the proof: “computation is local”.

constant-size

i + 1

i

j

Boolean circuit

A more essential proof?

• Everyone believes that a circuit can encode the transition of a TM, but
nobody wants to actually do it: textbooks sketch the idea, no-one wants
to see the full details (they are irrelevant for the essence of the proof).

• Maybe there is a proof in which those details are simply not needed?

• Also, maybe the essence of the Cook-Levin theorem (computation is
local) can take a more precise mathematical form?

• Can we prove the Cook-Levin theorem in “theory B” style?

A first-order while language (Mowl)

• Types: Bool, Str.

• Programs:

M,N,P,Q ::= x
∣∣M [x← N] vars and let∣∣ 0
∣∣ 1
∣∣ if M thenN elseP booleans∣∣ ε ∣∣ 0M
∣∣ 1M

∣∣ caseM of ε.N | 0x.P | 1x.Q binary strings∣∣ whileM doN tox := P while loop

• Typing and evaluation rules are as expected.

The class NP

Definition/Proposition. NP is the class of decision problems L ⊆ {0, 1}∗
such that there exists a Mowl program

x : Str, y : Str `M : Bool

and two polynomials p, q such that, for all w,w′ ∈ {0, 1}∗

M [x← w][y ← w′]→l(w,w′) bw,w′

with l(w,w′) ≤ p(|w| + |w′|) and, moreover, there exists m ≤ q(|w|) and
w′ ∈ {0, 1}m such that bw,w′ = 1 iff w ∈ L.

Boolean circuits

• Types: Bool.

• Programs:

t, u, v ::= x
∣∣ t[x← u]

∣∣ • vars, let, undef∣∣ 0
∣∣ 1
∣∣ if M thenN elseP booleans∣∣ 〈t1, . . . , tn〉 ∣∣ t[〈x1, . . . , xn〉 := u] tuples

• Typing and evaluation rules are as expected.

Approximation order for Boolean circuits

• The key rules:

• v t undef
t1 v t′1 . . . tn v t′n
〈t1, . . . , tn〉 v 〈t′1, . . . , t′m〉

box m≥n

• The same methodology used for affine polyadic terms applies here:

– Boolean circuits form a monotonic posetal double category C;
– Mowl programs embed in the ideal completion of C;
– hence we may approximate Mowl programs by Boolean circuits;
– hence we have an approximation presheaf Mowl→ Rel;
– by the Grothendieck construction, this is a type system for Mowl.

Intersection types for Mowl

See my HdR thesis.

Key properties: monotonicity

Lemma. If t→ u and t v t′, then t′ → u′ such that u v u′.

Key properties: quantitative subject expansion

Lemma. Let δ be an intersection types derivation of Γ `M : A and let

M ′ →M.

Then, there exists a derivation δ′ of Γ `M ′ : A such that

(δ′)− →∗ δ−.

Moreover, rk(δ′) ≤ rk(δ) + 1 and tw(δ′) ≤ tw(δ) + 1.

Key properties: uniform typings

There is a notion of uniform typing bMcΓk,m such that

Lemma. For a fixed Mowl program M , the Boolean circuit (bMcΓk,m)−

may be computed in polynomial time in k and m.

Lemma. Let δ be an intersection types derivation of the judgment
Γ `M : A, with M containing c binary successors. Then, for all k ≥ rk(δ)
and m ≥ tw(δ) + c, we have

δ− v (bMcΓ
′
k,m)−,

where Γ′ is Γ in which every type is replaced by Strm.

