A Tour of Polyadic Approximations

Damiano Mazza
CNRS, LIPN, Université Paris 13

Rencontre Chocola
Lyon, 12 October 2017

Appetizer

How are the following things related?

— polyadic approximations;
— Intersection type systems;
— Boolean circuits;

— the Cook-Levin theorem.

Appetizer

e How are the following things related?

— polyadic approximations;
— Intersection type systems;
— Boolean circuits;

— the Cook-Levin theorem.

e There is an intersection type system for “Turing machines” whose
derivations are Boolean circuits, which approximate the machine they
type. This may be used to give a type-theoretic proof of the Cook-Levin
theorem.

Girard’s Approximation Theorem (1987)

[T]he approximation theorem [. ..] is just the mathematical contents of our slogan: usual logic
is obtained from linear logic (without modalities) by a passage to the limit.

5.1. Definition (approximants). The connectives ! and 7 are approximated by the
connectives !,, and 7,, (n # 0):

WA= 1&A) R - - ®(1&A) (n times)
TWA=(LPA)D--- B (LD A) (n times)

5.2. Theorem (Approximation Theorem). Let A be a theorem of linear logic; with each
occurrence of | in A, assign an integer % O; then it is possible to assign integers 7% O to all
occurrences of 7 in such a way that if B denotes the result of replacing each occurrence of !
(respectively 7) by !,, (respectively ?7,,) where n is the integer assigned to it, then B is still a

theorem of linear logic.

The dimensional ladder

. formulas/types

. proofs/programs

. cut-elimination /execution
. standardization

. residual equivalence

The \-calculus, 2-dimensionally

M,N =z | A\e.M | MN terms
B = M(x < N) basic steps
p, 7 u=C{B1,...,0n} ‘ ;T reduction terms

C is a multi-hole context, n may be O.

Mz « N) : Qe M)N —* M{N/z}"

By: My —*M{ ... Bn:M,—*M -
C{B1,...,Bn} : C{My,..., M} =" C{M{,..., M}

p: M —*P T:P—>*N
o;7: M —=*N

comp

Basic equivalences

Structural equivalence:

p:M—-*N 7:N-=>"P ¢:P—=>"Q
(057); 0 = p; (15)

assocC

p: M —*M p: M —*M
lunit runit
M;p=p piM=p
Permutation equivalence:
a: M —* M B:N —=*N'

C{M, B}; C{a, N'} ~ C{a, B} ~ C{a, N}; C{M", B}

a: C{x} =" M’ B:N —=*N
CiBL N fa} ~ o N/w}; M'{B/x}

unnest

An operadic take on syntax

e The A-calculus with -reduction may be presented as a 2-operad A:

0. one color;
1. multimorphisms of A(n): terms M with fv(M) C {x1,...,z,};
2. 2-arrows M = N: reduction terms p : M —* N modulo ~;

operadic composition is substitution.
e Church-style (simple) types = more than one color.
e Curry-style types = 2-operad morphism £ — A (Mellies-Zeilberger).

e This generalizes to linear logic terms A,, polyadic affine terms AP. . .

Approximation order

e Polyadic affine reduction terms are endowed with an approximation order.

e The definition is inductive; the key case is

pLEP .. pnCp), n<m
</017710n>g</0€[7710;n>

box

e This defines a posetal double category:

P *
t U
I[] 1N 1]
t/ S

Ideal completion

e The forgetful functor Cat(Dcpo) — Cat(Pos) has no left adjoint.

e Cartesian liftings in double categories:

¢ —
|
|
|
|
|
|
A
c

f

e A posetal dbl. cat. D is monotonic if D°°P has cartesian liftings.

e The forgetful functor MntDblDcpo — MntDblPos has a left adjoint.

Recovering linear logic

—

o Let A := Hor(AF).

Theorem (Girard’s approximation theorem, computational version)
There is an isomorphism of 2-operads

A;)OfU/% ~ Ala

where A"/~ is a suitable quotient of the finitary, uniform sub-operad
of A°.

e This yields (affine) polyadic approximations.

Modulus of continuity

Reduction enjoys a continuity property: if M —* N, then

VuC N, 3tC N such that ¢t =" wu.

What's the dependency of |t| on the length of the reduction?
We informally call this the “modulus of continuity”.

Bad news: the modulus of continuity is exponentiall

A polynomial modulus of continuity?

e Why is exponential bad?

1. It is morally wrong (cf. abstract machines).

2. We would like to be able to use the equation

affine \-terms Boolean circuits

A-terms Turing machines

Theorem. Polytime TMs induce polysize Boolean circuits.

3. No A-calculus approach to non-uniform computation.

Parsimonious logic

A logic/calculus with a polynomial modulus of continuity.

Categorically:
— a SMCC C with terminal unit;

— a lax monoidal functor ! : C — C;

— a natural isomorphism !A = A ® A (Milner's law).
Good complexity properties (alternative to “light” logics):
— simple types = L (deterministic logspace);

— linear polymorphism = P (deterministic polytime).

Extends to non-uniformity (L/poly, P/poly).

The Cook-Levin Theorem

Theorem. SAT is NP-complete.

Implied by
Theorem. CIRCUIT SAT is NP-complete.

Essentially implied by

Theorem. Polytime TMs induce polysize Boolean circuits.

Key to the proof: “computation is local”.

o J PP P T PP

constant-size ...

Boolean circuit
e+1 T TPl

J

A more essential proof?

Everyone believes that a circuit can encode the transition of a TM, but
nobody wants to actually do it: textbooks sketch the idea, no-one wants
to see the full details (they are irrelevant for the essence of the proof).

Maybe there is a proof in which those details are simply not needed?

Also, maybe the essence of the Cook-Levin theorem (computation is
local) can take a more precise mathematical form?

Can we prove the Cook-Levin theorem in “theory B” style?

A first-order while language (Mowl)

e Types: Bool, Str.

e Programs:

M,N,P,Q =z | M[z < N] vars and let
0 ‘ 1] Iif M then N else P booleans

e | OM | 1M | case M of e.N | 0z.P | 12.Q binary strings
while M doNtox := P

while loop

e Typing and evaluation rules are as expected.

The class NP

Definition /Proposition. NP is the class of decision problems L C {0,1}*
such that there exists a Mowl program

x : Str,y : Str = M : Bool
and two polynomials p, ¢ such that, for all w,w" € {0, 1}*
Mz + w]y + w'] _yH(w,w) by

with [(w,w") < p(|w| + |w’|) and, moreover, there exists m < ¢(|w|) and
w' € {0,1}™ such that by, ,v = 1 iff w € L.

Boolean circuits

e Types: Bool.

e Programs:

tu, v n=a | tx ul| e
| 0| 1] if Mthen Nelse P
(1, estn) | (@, 2 =1

e Typing and evaluation rules are as expected.

vars, let, undef
booleans

tuples

Approximation order for Boolean circuits

The key rules:

tLCty, ... t,Ct,
(t1, ooy tn) (], ..t)

box m>n

o[¢ undef

The same methodology used for affine polyadic terms applies here:

— Boolean circuits form a monotonic posetal double category C;

— Mowl programs embed in the ideal completion of C;

— hence we may approximate Mowl programs by Boolean circuits;
— hence we have an approximation presheaf Mowl — Rel;

— by the Grothendieck construction, this is a type system for Mowl.

Intersection types for Mowl

See my HdR thesis.

Key properties: monotonicity

Lemma. If t = wand t C ¢/, then ¢/ — 4’ such that v C /.

Key properties: quantitative subject expansion

Lemma. Let § be an intersection types derivation of I' = M : A and let
M'"— M.
Then, there exists a derivation 8’ of I' = M’ : A such that
(0"~ —=* 6.

Moreover, rk(d") < rk(d) + 1 and tw(d') < tw(d) + 1.

Key properties: uniform typings

There is a notion of uniform typing | M |}, ., such that

Lemma. For a fixed Mowl program M, the Boolean circuit (| M];)
may be computed in polynomial time in k& and m.

Lemma. Let § be an intersection types derivation of the judgment
I'= M : A, with M containing ¢ binary successors. Then, for all £ > rk(9)
and m > tw(d) + ¢, we have

67 E (IM]Em) ™

k.m

where I'V is I in which every type is replaced by Str,,.

