# **A Tour of Polyadic Approximations**

**Damiano Mazza** CNRS, LIPN, Université Paris 13

> Rencontre Chocola Lyon, 12 October 2017

### **Appetizer**

- How are the following things related?
  - polyadic approximations;
  - intersection type systems;
  - Boolean circuits;
  - the Cook-Levin theorem.



### **Appetizer**

- How are the following things related?
  - polyadic approximations;
  - intersection type systems;
  - Boolean circuits;
  - the Cook-Levin theorem.



• There is an intersection type system for "Turing machines" whose derivations are Boolean circuits, which approximate the machine they type. This may be used to give a type-theoretic proof of the Cook-Levin theorem.

#### Girard's Approximation Theorem (1987)

[T]he approximation theorem [...] is just the mathematical contents of our slogan: *usual logic is obtained from linear logic* (without modalities) by a passage to the limit.

**5.1. Definition** (approximants). The connectives ! and ? are approximated by the connectives  $!_n$  and  $?_n$  ( $n \neq 0$ ):

$$!_n A = (1 \& A) \otimes \dots \otimes (1 \& A) \qquad (n \text{ times})$$
$$?_n A = (\bot \oplus A) ?? \dots ?? (\bot \oplus A) \qquad (n \text{ times})$$

**5.2. Theorem** (Approximation Theorem). Let A be a theorem of linear logic; with each occurrence of ! in A, assign an integer  $\neq 0$ ; then it is possible to assign integers  $\neq 0$  to all occurrences of ? in such a way that if B denotes the result of replacing each occurrence of ! (respectively ?) by !<sub>n</sub> (respectively ?<sub>n</sub>) where n is the integer assigned to it, then B is still a theorem of linear logic.

# The dimensional ladder

- 0. formulas/types
- 1. proofs/programs
- 2. cut-elimination/execution
- 3. standardization
- 4. residual equivalence
- 5. . . .



### The $\lambda$ -calculus, 2-dimensionally

$$\begin{split} M, N &::= x \mid \lambda x.M \mid MN & \text{terms} \\ \beta &::= M(\!\! \{x \leftarrow N \!\! \}) & \text{basic steps} \\ \rho, \tau &::= \mathsf{C}\{\beta_1, \dots, \beta_n\} \mid \rho; \tau & \text{reduction terms} \end{split}$$

C is a multi-hole context, n may be 0.

$$\begin{split} \overline{M(x \leftarrow N)} &: (\lambda x.M)N \rightarrow^* M\{N/x\} \stackrel{\beta}{\longrightarrow} \\ \frac{\beta_1 : M_1 \rightarrow^* M'_1 \quad \dots \quad \beta_n : M_n \rightarrow^* M'_n}{\mathsf{C}\{\beta_1, \dots, \beta_n\} : \mathsf{C}\{M_1, \dots, M_n\} \rightarrow^* \mathsf{C}\{M'_1, \dots, M'_n\}} \overset{\text{ctxt}}{\longrightarrow} \\ \frac{\rho : M \rightarrow^* P \qquad \tau : P \rightarrow^* N}{\rho; \tau : M \rightarrow^* N} \underset{\text{comp}}{\longrightarrow} \end{split}$$

### **Basic equivalences**

Structural equivalence:

$$\begin{split} \frac{\rho: M \to^* N \quad \tau: N \to^* P \quad \varphi: P \to^* Q}{(\rho; \tau); \varphi \equiv \rho; (\tau; \varphi)} \text{ assoc} \\ \frac{\rho: M \to^* M'}{M; \rho \equiv \rho} \text{ lunit } \qquad \quad \frac{\rho: M' \to^* M}{\rho; M \equiv \rho} \text{ runit} \end{split}$$

Permutation equivalence:

$$\begin{split} &\frac{\alpha: M \to^* M' \qquad \beta: N \to^* N'}{\mathsf{C}\{M,\beta\}; \mathsf{C}\{\alpha,N'\} \sim \mathsf{C}\{\alpha,\beta\} \sim \mathsf{C}\{\alpha,N\}; \mathsf{C}\{M',\beta\}} \text{ par } \\ &\frac{\alpha: \mathsf{C}\{x\} \to^* M' \qquad \beta: N \to^* N'}{\mathsf{C}\{\beta\}; \alpha\{N'/x\} \sim \alpha\{N/x\}; M'\{\beta/x\}} \text{ unnest } \end{split}$$

#### An operadic take on syntax

- The  $\lambda$ -calculus with  $\beta$ -reduction may be presented as a 2-operad  $\Lambda$ :
  - 0. one color;
  - 1. multimorphisms of  $\Lambda(n)$ : terms M with  $fv(M) \subseteq \{x_1, \ldots, x_n\}$ ;
  - 2. 2-arrows  $M \Rightarrow N$ : reduction terms  $\rho: M \rightarrow^* N$  modulo  $\sim$ ;

operadic composition is substitution.

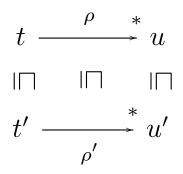
- Church-style (simple) types = more than one color.
- Curry-style types = 2-operad morphism  $\mathcal{E} \to \Lambda$  (Melliès-Zeilberger).
- This generalizes to linear logic terms  $\Lambda_{!}$ , polyadic affine terms  $\Lambda_{a}^{p}$ ...

#### **Approximation order**

- Polyadic affine reduction terms are endowed with an *approximation order*.
- The definition is inductive; the key case is

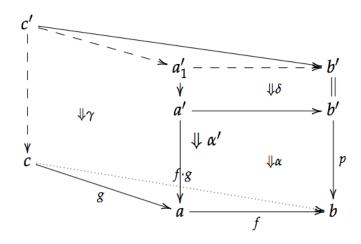
$$\frac{\rho_1 \sqsubseteq \rho'_1 \dots \rho_n \sqsubseteq \rho'_n \quad n \le m}{\langle \rho_1, \dots, \rho_n \rangle \sqsubseteq \langle \rho'_1, \dots, \rho'_m \rangle} \operatorname{box}$$

• This defines a *posetal double category*:



#### **Ideal completion**

- The forgetful functor  $Cat(Dcpo) \rightarrow Cat(Pos)$  has no left adjoint.
- Cartesian liftings in double categories:



- A posetal dbl. cat.  $\mathcal{D}$  is monotonic if  $\mathcal{D}^{tcoop}$  has cartesian liftings.
- $\bullet~$  The forgetful functor  $\mathbf{MntDblDcpo} \to \mathbf{MntDblPos}$  has a left adjoint.

# **Recovering linear logic**

• Let 
$$\Lambda_{\mathsf{a}}^{\infty} := \operatorname{Hor}(\widehat{\Lambda_{\mathsf{a}}^{\sqsubseteq}}).$$

**Theorem (Girard's approximation theorem, computational version)** There is an isomorphism of 2-operads

$$\Lambda_{\mathsf{a}}^{\infty \mathsf{fu}} \approx \cong \Lambda_{!},$$

where  $\Lambda_{\rm a}^{\infty {\rm fu}}/\!\!\approx$  is a suitable quotient of the finitary, uniform sub-operad of  $\Lambda_{\rm a}^\infty.$ 

• This yields (affine) polyadic approximations.

#### **Modulus of continuity**

• Reduction enjoys a continuity property: if  $M \rightarrow^* N$ , then

$$\forall u \sqsubset N, \exists t \sqsubset N \text{ such that } t \rightarrow^* u.$$

- What's the dependency of |t| on the length of the reduction?
- We informally call this the "modulus of continuity".
- Bad news: the modulus of continuity is exponential!

### A polynomial modulus of continuity?

- Why is exponential bad?
  - 1. It is morally wrong (cf. abstract machines).
  - 2. We would like to be able to use the equation

| affine $\lambda$ -terms | _ | Boolean circuits |
|-------------------------|---|------------------|
| $\lambda$ -terms        | — | Turing machines  |

**Theorem.** Polytime TMs induce polysize Boolean circuits.

3. No  $\lambda$ -calculus approach to non-uniform computation.

### **Parsimonious logic**

- A logic/calculus with a polynomial modulus of continuity.
- Categorically:
  - a SMCC C with terminal unit;
  - a lax monoidal functor  $!: \mathcal{C} \rightarrow \mathcal{C}$ ;
  - a natural isomorphism  $!A \cong A \otimes !A$  (*Milner's law*).
- Good complexity properties (alternative to "light" logics):
  - simple types = L (deterministic logspace);
  - linear polymorphism = P (deterministic polytime).
- Extends to non-uniformity (L/poly, P/poly).

#### **The Cook-Levin Theorem**

**Theorem.** SAT is NP-complete.

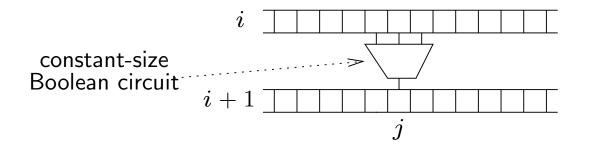
Implied by

**Theorem.** CIRCUIT SAT *is* NP-*complete*.

Essentially implied by

**Theorem.** Polytime TMs induce polysize Boolean circuits.

Key to the proof: "computation is local".



#### A more essential proof?

- Everyone believes that a circuit can encode the transition of a TM, but nobody wants to actually do it: textbooks sketch the idea, no-one wants to see the full details (they are irrelevant for the essence of the proof).
- Maybe there is a proof in which those details are simply not needed?
- Also, maybe the essence of the Cook-Levin theorem (computation is local) can take a more precise mathematical form?
- Can we prove the Cook-Levin theorem in "theory B" style?

# A first-order while language (Mowl)

- Types: Bool, Str.
- Programs:

$$\begin{array}{ll} M,N,P,Q::=x \mid M[x \leftarrow N] & \text{vars and let} \\ & \mid 0 \mid 1 \mid \text{if } M \text{ then } N \text{ else } P & \text{booleans} \\ & \mid \varepsilon \mid 0M \mid 1M \mid \text{case } M \text{ of } \varepsilon.N \mid 0x.P \mid 1x.Q \text{ binary strings} \\ & \mid \text{while } M \text{ do } N \text{ to } x := P & \text{while loop} \end{array}$$

• Typing and evaluation rules are as expected.

#### The class NP

**Definition/Proposition.** NP is the class of decision problems  $L \subseteq \{0, 1\}^*$  such that there exists a Mowl program

 $x: \mathsf{Str}, y: \mathsf{Str} \vdash M: \mathsf{Bool}$ 

and two polynomials p,q such that, for all  $w,w' \in \{0,1\}^*$ 

$$M[x \leftarrow \underline{w}][y \leftarrow \underline{w}'] \rightarrow^{l(w,w')} \mathsf{b}_{w,w'}$$

with  $l(w, w') \leq p(|w| + |w'|)$  and, moreover, there exists  $m \leq q(|w|)$  and  $w' \in \{0, 1\}^m$  such that  $b_{w,w'} = 1$  iff  $w \in L$ .

### **Boolean circuits**

- Types: Bool.
- Programs:

$$\begin{array}{ll} t, u, v ::= x \mid t[x \leftarrow u] \mid \bullet & \text{vars, let, undef} \\ & \mid 0 \mid 1 \mid \text{if } M \text{ then } N \text{ else } P & \text{booleans} \\ & \mid \langle t_1, \dots, t_n \rangle \mid t[\langle x_1, \dots, x_n \rangle := u] & \text{tuples} \end{array}$$

• Typing and evaluation rules are as expected.

#### **Approximation order for Boolean circuits**

• The key rules:

$$\underbrace{ t_1 \sqsubseteq t'_1 \ \dots \ t_n \sqsubseteq t'_n}_{\langle t_1, \dots, t_n \rangle \sqsubseteq \langle t'_1, \dots, t'_m \rangle} \text{box } m \ge n$$

- The same methodology used for affine polyadic terms applies here:
  - Boolean circuits form a monotonic posetal double category C;
  - Mowl programs embed in the ideal completion of  $\mathcal{C}$ ;
  - hence we may approximate Mowl programs by Boolean circuits;
  - hence we have an approximation presheaf  $Mowl \rightarrow \mathfrak{Rel}$ ;
  - by the Grothendieck construction, this is a type system for Mowl.

Intersection types for Mowl

See my HdR thesis.

# **Key properties: monotonicity**

**Lemma.** If  $t \to u$  and  $t \sqsubseteq t'$ , then  $t' \to u'$  such that  $u \sqsubseteq u'$ .

#### Key properties: quantitative subject expansion

**Lemma.** Let  $\delta$  be an intersection types derivation of  $\Gamma \vdash M : A$  and let

 $M' \to M.$ 

Then, there exists a derivation  $\delta'$  of  $\Gamma \vdash M' : A$  such that

 $(\delta')^- \to^* \delta^-.$ 

Moreover,  $rk(\delta') \leq rk(\delta) + 1$  and  $tw(\delta') \leq tw(\delta) + 1$ .

#### Key properties: uniform typings

There is a notion of *uniform typing*  $\lfloor M \rfloor_{k,m}^{\Gamma}$  such that

**Lemma.** For a fixed Mowl program M, the Boolean circuit  $(\lfloor M \rfloor_{k,m}^{\Gamma})^{-}$  may be computed in polynomial time in k and m.

**Lemma.** Let  $\delta$  be an intersection types derivation of the judgment  $\Gamma \vdash M : A$ , with M containing c binary successors. Then, for all  $k \ge \operatorname{rk}(\delta)$  and  $m \ge \operatorname{tw}(\delta) + c$ , we have

 $\delta^{-} \sqsubseteq (\lfloor M \rfloor_{k,m}^{\Gamma'})^{-},$ 

where  $\Gamma'$  is  $\Gamma$  in which every type is replaced by  $Str_m$ .