Higher-order Arities, Signatures and Equations via Modules

Ambroise Lafont

joint work with
Benedikt Ahrens, André Hirschowitz, Marco Maggesi
Keywords associated with syntax

Induction/Recursion

Substitution

Syntax

Operation/Construction

Model

Arity/Signature

This talk: give a discipline for specifying syntaxes
Motivating example: dLC

Syntax of dLC = **differential λ-calculus** [Ehrhard-Regnier 2003].

- explicitly involves **equations** e.g. $s+t = t+s$
- specifically taylored: (not an instance of a general framework/scheme)
 inductive definition of a set $+$ ad-hoc structure
e.g. **unary substitution**

Our proposal = a discipline for presenting syntaxes

- signature = operations $+$ equations
- [Fiore-Hure 2010]: alternative approach, for simply typed syntaxes
 ⇒ our approach explicitly relies on monads and modules (untyped case).
Syntax of dLC: [Ehrhard-Regnier 2003]

Let be given a denumerable set of variables. We define by induction on k an increasing family of sets (Δ_k). We set $\Delta_0 = \emptyset$ and Δ_{k+1} is defined as follows.

Monotonicity: if t belongs to Δ_k then t belongs to Δ_{k+1}.

Variable: if $n \in \mathbb{N}$, x is a variable, $i_1, \ldots, i_n \in \mathbb{N}^+ = \mathbb{N} \setminus \{0\}$ and $u_1, \ldots, u_n \in \Delta_k$, then

$$D_{i_1, \ldots, i_n}x \cdot (u_1, \ldots, u_n)$$

belongs to Δ_{k+1}. This term is identified with all the terms of the shape $D_{i_{\sigma(1)}, \ldots, i_{\sigma(n)}}x \cdot (u_{\sigma(1)}, \ldots, u_{\sigma(n)}) \in \Delta_{k+1}$ where σ is a permutation on $\{1, \ldots, n\}$.

Abstraction: if $n \in \mathbb{N}$, x is a variable, $u_1, \ldots, u_n \in \Delta_k$ and $t \in \Delta_k$, then

$$D^u_1 \lambda x t \cdot (u_1, \ldots, u_n)$$

belongs to Δ_{k+1}. This term is identified with all the terms of the shape $D^u_1 \lambda x t \cdot (u_{\sigma(1)}, \ldots, u_{\sigma(n)}) \in \Delta_{k+1}$ where σ is a permutation on $\{1, \ldots, n\}$.

Application: if $s \in \Delta_k$ and $t \in R(\Delta_k)$, then

$$(s)t$$

belongs to Δ_{k+1}.

Setting $n = 0$ in the first two clauses, and restricting application by the constraint that $t \in \Delta_k \subseteq R(\Delta_k)$, one retrieves the usual definition of lambda-terms which shows that differential terms are a superset of ordinary lambda-terms.

The permutative identification mentioned above will be called *equality up to differential permutation*. We also work up to α-conversion.
Let be given a denumerable set of variables. We define by induction on \(k \) an increasing family of sets \((\Delta_k) \). We set \(\Delta_0 = \emptyset \) and \(\Delta_{k+1} \) is defined as follows.

Monotonicity: if \(t \) belongs to \(\Delta_k \) then \(t \) belongs to \(\Delta_{k+1} \).

Variable: if \(n \in \mathbb{N} \), \(x \) is a variable, \(i_1, \ldots, i_n \in \mathbb{N}^+ = \mathbb{N} \setminus \{0\} \) and \(u_1, \ldots, u_n \in \Delta_k \), then

\[
D_{i_1, \ldots, i_n} x \cdot (u_1, \ldots, u_n)
\]

belongs to \(\Delta_{k+1} \). This term is identified with all the terms of the shape \(D_{i_{\sigma(1)}, \ldots, i_{\sigma(n)}} x \cdot (u_{\sigma(1)}, \ldots, u_{\sigma(n)}) \in \Delta_{k+1} \) where \(\sigma \) is a permutation on \(\{1, \ldots, n\} \).

Abstraction: if \(n \in \mathbb{N} \), \(x \) is a variable, \(u_1, \ldots, u_n \in \Delta_k \) and \(t \in \Delta_k \), then

\[
D^n_1 \lambda x t \cdot (u_1, \ldots, u_n)
\]

belongs to \(\Delta_{k+1} \). This term is identified with all the terms of the shape \(D^n_1 \lambda x t \cdot (u_{\sigma(1)}, \ldots, u_{\sigma(n)}) \in \Delta_{k+1} \) where \(\sigma \) is a permutation on \(\{1, \ldots, n\} \).

Application: if \(s \in \Delta_k \) and \(t \in R(\Lambda_k) \), then

\[
(s)t \quad \text{as an operation: } \Lambda \times \text{FreeCommutativeMonoid}(\Lambda) \to \Lambda
\]

belongs to \(\Delta_{k+1} \).

Setting \(n = 0 \) in the first two clauses, and restricting application by the constraint that \(t \in \Delta_k \subseteq R(\Lambda_k) \), one retrieves the usual definition of lambda-terms which shows that differential terms are a superset of ordinary lambda-terms.

The permutative identification mentioned above will be called *equality up to differential permutation*. We also work up to \(\alpha \)-conversion.
Syntax of dLC: [BEM 2010]

A syntax for the differential λ-calculus by mutual induction:
[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

$$\Lambda^s : s, t ::= x \mid \lambda x. s \mid sT \mid Ds \cdot t$$

Differential λ-terms:

$$\Lambda^d : T ::= 0 \mid s \mid s + T$$
Syntax of dLC: [BEM 2010]

A syntax for the **differential λ-calculus** by **mutual induction:**
[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

\[\Lambda^s : \quad s, t \quad ::= \quad x \mid \lambda x.s \mid sT \mid D\ s\cdot t \]

Differential λ-terms:

\[\Lambda^d : \quad T \quad ::= \quad 0 \mid s \mid s + T \]

- **variable**
- **modulo α-renaming of** \(x \)
- **neutral element for** +
- **modulo commutativity**
Syntax of dLC: [BEM 2010]

A syntax for the differential λ-calculus by mutual induction:
[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:
\[\Lambda^s : \quad s, t \quad ::= \quad x \mid \lambda x.s \mid sT \mid Ds \cdot t \]

Differential λ-terms:
\[\Lambda^d : \quad T \quad ::= \quad 0 \mid s \mid s + T \]

\(\Lambda^d = \text{FreeCommutativeMonoid}(\Lambda^s) \)
Syntax of dLC: [BEM 2010]

A syntax for the differential λ-calculus by mutual induction:
[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

$$\Lambda^s : \ s, t \quad ::= \quad x \mid \lambda x.s \mid sT \mid Ds \cdot t$$

Differential λ-terms:

$$\Lambda^d : \ T \quad ::= \quad 0 \mid s \mid s + T$$

$$\Lambda^d = \text{FreeCommutativeMonoid}(\Lambda^s)$$

Syntax: specified by operations and equations.
A syntax for the differential λ-calculus by mutual induction:
[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

\[\Lambda^s : \quad s, t \quad ::= \quad x \mid \lambda x. s \mid sT \mid D_s \cdot t \]

Differential λ-terms:

\[\Lambda^d : \quad T \quad ::= \quad 0 \mid s \mid s + T \]

\[\Lambda^d = \text{FreeCommutativeMonoid}(\Lambda^s) \]

Syntax: specified by operations and equations.

But which ones are allowed? What is the limit?
Syntax of dLC: Our version

Which operations/equations are allowed to specify a syntax?

A stand-alone presentation of differential \(\lambda\)-terms:

Allow sums everywhere (not only in the right arg of application)

\(\text{Differential } \lambda\text{-terms:} \)

\[
\Lambda^d : \quad S, T \quad ::= \quad x \mid \lambda x. S \mid S \cdot T \mid DS \cdot T \\
| 0 \mid S + T
\]

neutral element for +

modulo commutativity and associativity

Macros in [BEM 2010]:

\[
\lambda x. \Sigma_i t_i := \Sigma_i \lambda x. t_i \\
(\Sigma_i t_i)u := \Sigma_i t_i u \\
D(\Sigma_i t_i) \cdot (\Sigma_j u_j) := \Sigma_i \Sigma_j Dt_i \cdot u_j
\]
How can we compare these different versions?
In which sense are they syntaxes?
Which operations/equations are we allowed to specify in a syntax?
Syntax of dLC: Conclusion

How can we compare these different versions?
In which sense are they syntaxes?
Which operations/equations are we allowed to specify in a syntax?

What is a syntax?
What is a syntax?

Syntax = operations + equations

Signature

Category of Models

Recursion

Substitution

generates a syntax = existence of the initial model
Table of contents

1. Signatures and models based on monads and modules

2. Equations

3. Recursion
1. 1-Signatures and models based on monads and modules
 • Substitution and monads
 • 1-Signatures and their models

2. Equations

3. Recursion
Example: differential λ-calculus

$$\Lambda^d : \quad S, T \quad ::= \quad x \mid \lambda x. S \mid S \cdot T \mid DS \cdot T \mid 0 \mid S + T$$

Free variable indexing:

$$dLC : X \mapsto \{\text{terms taking free variables in } X\}$$

$$dLC(\emptyset) = \{0, \lambda z. z, \ldots\}$$

$$dLC(\{x, y\}) = \{0, \lambda z. z, \ldots, x, y, x + y, \ldots\}$$
Example: differential λ-calculus

\[
\Lambda^d : \quad S, T \quad ::= \quad x \mid \lambda x. S \mid S \cdot T \mid DS \cdot T \\
\quad \mid 0 \mid S + T
\]

Free variable indexing:

\[dLC : X \mapsto \{ \text{terms taking free variables in } X \}\]

\[dLC(\emptyset) = \{0, \lambda z.z, \ldots\}\]

\[dLC(\{x, y\}) = \{0, \lambda z.z, \ldots, x, y, x + y, \ldots\}\]

Parallel substitution:

\[t \mapsto t[x \mapsto f(x)]\]
Example: differential λ-calculus

\[
\Lambda^d : \quad S, T \quad ::= \quad x \mid \lambda x. S \mid S \cdot T \mid DS \cdot T \\
\mid 0 \mid S + T
\]

Free variable indexing:

\[
dLC : X \mapsto \{ \text{terms taking free variables in } X \} \]

\[
dLC(\emptyset) = \{0, \lambda z.z, \ldots\} \\
dLC(\{x, y\}) = \{0, \lambda z.z, \ldots, x, y, x + y, \ldots\}
\]

Parallel substitution:

\[
\text{bind}_f : dLC(X) \to dLC(Y) \quad \text{where} \quad f : X \to dLC(Y)
\]

\[
t \mapsto t[x \mapsto f(x)]
\]

\[
\Rightarrow (dLC, \text{var}_X : X \subset dLC(X), \text{bind}) = \text{monad on } \text{Set}
\]
Substitution and monads

Example: differential λ-calculus

\[\Lambda^d : S, T \quad ::= \quad x \mid \lambda x. S \mid S \cdot T \mid D S \cdot T \mid 0 \mid S + T \]

Free variable indexing:

\[dLC : X \mapsto \{ \text{terms taking free variables in } X \} \]

\[dLC(\emptyset) = \{0, \lambda z.z, \ldots\} \]
\[dLC(\{x,y\}) = \{0, \lambda z.z, \ldots, x, y, x + y, \ldots\} \]

Parallel substitution:

\[\text{bind}_f : dLC(X) \rightarrow dLC(Y) \quad \text{where} \quad f : X \rightarrow dLC(Y) \]

\[t \quad \mapsto \quad t[x \mapsto f(x)] \]

⇒ \((dLC, \text{var}_X : X \subset dLC(X), \text{bind}) = \textbf{monad on Set}\)

Monad morphism = mapping preserving variables and substitutions.
Operations are module morphisms

+ commutes with substitution

\[(t + u)[x \mapsto v_x] = t[x \mapsto v_x] + u[x \mapsto v_x]\]

Categorical formulation

\(dLC \times dLC\) supports \(dLC\)-substitution

+ commutes with substitution

\(dLC \times dLC\) is a module over \(dLC\)

\(+: dLC \times dLC \rightarrow dLC\) is a module morphism
Building blocks for specifying operations

Essential constructions of modules over a monad R:

- R itself

- $M \times N$ for any modules M and N

 e.g. $R \times R$:

 $f : X \rightarrow R(Y)$

 $(t,u)[x \mapsto f(x)] := (t[x \mapsto f(x)], u[x \mapsto f(x)])$

- $M' = \text{derivative of a module } M$:

 $M'(X) = M(X \uplus \{ \diamond \})$.

 used to model an operation binding a variable (Cf next slide).
operations = module morphisms = maps commuting with substitution.

\[
\begin{align*}
0 &: \ 1 \to dLC \\
 &\text{app} : dLC \times dLC \to dLC \\
+ &: dLC \times dLC \to dLC \\
 &\text{abs} : dLC' \to dLC \\
\text{abs}_X &: dLC(X \coprod \{\Box\}) \to dLC(X) \\
\end{align*}
\]

\[
t \mapsto \lambda\Box.t
\]
Syntactic operations are module morphisms

\[
\text{operations} = \text{module morphisms} = \text{maps commuting with substitution.}
\]

\[
\begin{align*}
0 & : 1 \rightarrow \text{dLC} & \text{app} & : \text{dLC} \times \text{dLC} \rightarrow \text{dLC} \\
+ & : \text{dLC} \times \text{dLC} \rightarrow \text{dLC} & \text{abs} & : \text{dLC}' \rightarrow \text{dLC} \\
\end{align*}
\]

\[
\text{abs}_x : \text{dLC}(X \sqcup \{\diamond\}) \rightarrow \text{dLC}(X) \\
\quad t \mapsto \lambda\diamond.t
\]

Combining operations into a single one using disjoint union

\[
\begin{align*}
[0, +] & : 1 \sqcup (\text{dLC} \times \text{dLC}) \rightarrow \text{dLC} \\
[\text{app}, \text{abs}] & : (\text{dLC} \times \text{dLC}) \sqcup \text{dLC}' \rightarrow \text{dLC}
\end{align*}
\]
Syntactic operations are module morphisms

operations = module morphisms = maps commuting with substitution.

\[0 : \ 1 \rightarrow dLC \]

\[\text{app} : dLC \times dLC \rightarrow dLC \]

\[+ : dLC \times dLC \rightarrow dLC \]

\[\text{abs} : dLC' \rightarrow dLC \]

\[\text{abs}_x : dLC(X \coprod \{\diamond\}) \rightarrow dLC(X) \]

\[t \mapsto \lambda\diamond.t \]

Combining operations into a single one using disjoint union

\[[0, +] : 1 \coprod (dLC \times dLC) \rightarrow dLC \]

\[[\text{app}, \text{abs}] : (dLC \times dLC) \coprod dLC' \rightarrow dLC \]

\[[\text{app}, \text{abs}, 0, +] : (dLC \times dLC) \coprod dLC' \coprod 1 \coprod (dLC \times dLC) \rightarrow dLC \]
1-signatures and their models

A **1-signature** $\Sigma = \text{functorial assignment:}$

$$R \mapsto \Sigma(R)$$

A **model of** Σ is a pair:

$$\left(R, \rho : \Sigma(R) \to R \right)$$

Example: $(0, +)$

$$\Sigma_{0,+}(R) = 1 \bigsqcup (R \times R)$$

dLC = model of $\Sigma_{0,+}$

$$[0, +] : 1 \bigsqcup (dLC \times dLC) \to dLC$$

A **model morphism** $m : (R, \rho) \to (S, \sigma) = \text{monad morphism commuting}$

with the module morphism:

$$\Sigma(m) \quad \rho \quad R$$

$$\Sigma(S) \quad \sigma \quad S$$

$$R$$

$$m$$
1-signatures and their models

A **1-signature** $\Sigma = \text{functorial assignment}:$

$$R \mapsto \Sigma(R)$$

A **model of** Σ is a pair:

$$(R, \rho : \Sigma(R) \to R)$$

Example: $(0, +)$

$$\Sigma_{0, +}(R) = 1 \coprod (R \times R)$$

$dLC = \text{model of } \Sigma_{0, +}$

$$[0, +] : 1 \coprod (dLC \times dLC) \to dLC$$

A **model morphism** $m : (R, \rho) \to (S, \sigma) = \text{monad morphism commuting with the module morphism:}$

$$\Sigma(R) \xrightarrow{\rho} R$$

$$\Sigma(m) \downarrow \quad m \downarrow$$

$$\Sigma(S) \xrightarrow{\sigma} S$$
A **1-signature** $\Sigma = \text{functorial assignment}:

$$R \mapsto \Sigma(R)$$

monad module over R

A **model of** Σ is a pair:

$$(R, \rho : \Sigma(R) \to R)$$

Example: $(0,+)$

$$\Sigma_{0,+}(R) = 1 \bigsqcup (R \times R)$$

dLC = model of $\Sigma_{0,+}$

$$[0,+] : 1 \bigsqcup (\text{dLC} \times \text{dLC}) \to \text{dLC}$$

A **model morphism** $m : (R,\rho) \to (S,\sigma) = \text{Monad morphism commuting with the module morphism}:

\[
\begin{align*}
\Sigma(R) & \xrightarrow{\rho} R \\
\Sigma(m) & \downarrow \\
\Sigma(S) & \xrightarrow{\sigma} S \\
\end{align*}
\]

\[
\begin{align*}
\Sigma(R) & \xrightarrow{\rho} R \\
\downarrow & \\
\Sigma(S) & \xrightarrow{\sigma} S \\
\downarrow & \\
m & \\
\end{align*}
\]
A **1-signature** Σ is a functorial assignment:

$$R \mapsto \Sigma(R)$$

A **model** of Σ is a pair:

$$(R, \rho : \Sigma(R) \to R)$$

A **model morphism** $m : (R, \rho) \to (S, \sigma) = \text{monad morphism commuting with the module morphism:}$

$$
\begin{array}{ccc}
\Sigma(R) & \xrightarrow{\rho} & R \\
\downarrow{\Sigma(m)} & & \downarrow{m} \\
\Sigma(S) & \xrightarrow{\sigma} & S
\end{array}
$$

Example: $(0, +)$

$$\Sigma_{0,+}(R) = 1 \coprod (R \times R)$$

$dLC = \text{model of } \Sigma_{0,+}$

$$[0, +] : 1 \coprod (dLC \times dLC) \to dLC$$
1-signatures and their models

A **1-signature** \(\Sigma = \text{functorial assignment} \):
\[
R \mapsto \Sigma(R)
\]

monad
module over \(\mathbb{R} \)

A **model of** \(\Sigma \) is a pair:
\[
(R, \quad \rho : \Sigma(R) \to R)
\]

monad
module morphism

A **model morphism** \(m : (R, \rho) \to (S, \sigma) = \text{monad morphism commuting} \)
with the module morphism:

\[
\begin{array}{ccc}
\Sigma(R) & \xrightarrow{\rho} & R \\
\downarrow{\Sigma(m)} & & \downarrow{m} \\
\Sigma(S) & \xrightarrow{\sigma} & S
\end{array}
\]

Example: \((0,+))
\[
\Sigma_{0,+}(R) = 1 \coprod (R \times R)
\]

\(dLC = \text{model of } \Sigma_{0,+} \)
\[
[0, +] : 1 \coprod (dLC \times dLC) \to dLC
\]
Definition

Given a 1-signature Σ, its syntax is an initial object in its category of models.

Question: Does the syntax exist for every 1-signature?

Answer: No.
Given a 1-signature Σ, its syntax is an initial object in its category of models.

Question: Does the syntax exist for every 1-signature?

Answer: No.

Counter-example: the 1-signature $R \mapsto \mathcal{P} \circ R$.

powerset endofunctor on Set
Examples of 1-signatures generating syntax

- **(0,+)** language:
 - Signature: \(R \mapsto 1 \amalg (R \times R) \)
 - Model: \((R, \ 0 : 1 \to R, \ + : R \times R \to R)\)
 - Syntax: \((B, \ 0 : 1 \to B, \ + : B \times B \to B)\)

- **lambda calculus**:
 - Signature: \(R \mapsto R' \amalg (R \times R) \)
 - Model: \((R, \ abs : R' \to R, \ app : R \times R \to R)\)
 - Syntax: \((\Lambda, \ abs : \Lambda' \to \Lambda, \ app : \Lambda \times \Lambda \to \Lambda)\)

Can we generalize this pattern?
Initial semantics for algebraic 1-signatures

Theorem [Hirschowitz & Maggesi 2007]

Syntax exists for any **algebraic 1-signature**, i.e. 1-signature built out of derivatives, products, disjoint unions, and the 1-signature $R \mapsto R$.

Algebraic 1-signatures correspond to the binding signatures described in [Fiore-Plotkin-Turi 1999]

(binding signature = lists of natural numbers specify n-ary operations, possibly binding variables)

Question: Can we enforce some equations in the syntax?

- e.g. **associativity** and **commutativity** of $+$ for the differential λ-calculus.
Quotients of algebraic 1-signatures

[AHLM CSL 2018]: notion of *quotients* of 1-signatures.

Theorem [AHLM CSL 2018]

Syntax exists for any "*quotient*" of algebraic 1-signature.

Examples:

- a *commutative* binary operation
- application of the differential λ-calculus (original variant)

 \[\text{app} : \text{dLC} \times \text{FreeCommutativeMonoid(dLC)} \rightarrow \text{dLC}\]
Quotients of algebraic 1-signatures

[AHLM CSL 2018]: notion of \textit{quotients} of 1-signatures.

\begin{itemize}
 \item associativity of \(\text{+}\)
 \item linearity of the operations
\end{itemize}

\begin{quote}
\textbf{Theorem [AHLM CSL 2018]} \hspace{1cm}
Syntax exists for any \textit{quotient} of algebraic 1-signature.
\end{quote}

\textbf{Examples:}

\begin{itemize}
 \item a \textbf{commutative} binary operation
 \item application of the differential \(\lambda\)-calculus (original variant)

 \hspace{1cm} \textbf{app} : \textit{dLC} \times \textit{FreeCommutativeMonoid(dLC)} \to \textit{dLC}
\end{itemize}

... but not enough for the differential \(\lambda\)-calculus:

\begin{itemize}
 \item \textbf{associativity} of \(\text{+}\)
 \item \textbf{linearity} of the operations
\end{itemize}
1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion
Example: a commutative binary operation

Specification of a binary operation

1-Signature: \(R \mapsto R \times R \)

Model: \((R, +: R \times R \rightarrow R)\)

What is an appropriate notion of model for a commutative binary operation?
Example: a commutative binary operation

Specification of a **commutative** binary operation

1-Signature: \(R \mapsto R \times R \)
Model: \((R, \ + : R \times R \to R) \) \quad s.t. \quad t + u = u + t \quad (1)

What is an appropriate notion of model for a commutative binary operation?

Answer: a monad equipped with a **commutative** binary operation
Example: a commutative binary operation

Specification of a **commutative** binary operation

1-Signature: \(R \mapsto R \times R \)
Model: \((R, + : R \times R \to R)\) s.t. \(t + u = u + t \) (1)

What is an appropriate notion of model for a commutative binary operation?
Answer: a monad equipped with a **commutative** binary operation

Equation (1) states an equality between R-module morphisms:

\[
\begin{array}{ccc}
R \times R & \xrightarrow{\text{swap}} & R \times R \\
& \text{+} & \\
& \text{+} & \\
& \xrightarrow{\text{+}} & R
\end{array}
\]
Given a 1-signature Σ, (e.g. binary operation: $\Sigma(R) = R \times R$)

a Σ-equation $A \Rightarrow B$ is a functorial assignment: e.g. commutativity:

$$R \mapsto \left(\begin{array}{c}
A(R) \rightarrowtail B(R)
\end{array} \right)$$

model of Σ

parallel pair of module morphisms over R

A 2-signature is a pair

$$(\Sigma, E)$$

1-signature set of Σ-equations

model of a 2-signature (Σ, E):

- a model R of Σ
- s.t. $\forall (A \Rightarrow B) \in E$, the two morphisms $A(R) \Rightarrow B(R)$ are equal
Initial semantics for algebraic 2-signatures

Algebraic 2-signature:

\[(\Sigma, E)\]

algebraic 1-signature

set of **elementary** \(\Sigma\)-equations

Theorem

Syntax exists for any algebraic 2-signature.

Main instances of **elementary** \(\Sigma\)-equations \(A \Rightarrow B\):

- \(A = \text{algebraic 1-signature}\) e.g. \(A(R) = R \times R\)
- \(B(R) = R\)
Initial semantics for algebraic 2-signatures

Algebraic 2-signature:

$$(\Sigma, E)$$

algebraic 1-signature

Main instances of **elementary** Σ-equations $A \Rightarrow B$:

- $A = \text{algebraic 1-signature}$ e.g. $A(R) = R \times R$
- $B(R) = R$

Theorem

Syntax exists for any algebraic 2-signature.

Sketch of the construction of the syntax:

Quotient the initial model R of Σ by the following relation:

$x \sim y \text{ in } R(X) \iff \text{ for any model } S \text{ of } (\Sigma, E), i(x) = i(y)$

initial Σ-model morphism $i : R \to S$
Example: λ-calculus modulo $\beta\eta$

The algebraic 2-signature $(\Sigma_{\text{LC}\beta\eta}, E_{\text{LC}\beta\eta})$ of λ-calculus modulo $\beta\eta$:

$$\Sigma_{\text{LC}\beta\eta}(R) := \Sigma_{\text{LC}}(R) = (R \times R) \coprod R'$$

model of Σ_{LC} = monad R with module morphisms:

$$\text{app} : R \times R \rightarrow R \quad \text{abs} : R' \rightarrow R$$

β-equation: $(\lambda x.t) u = t[x \mapsto u]$

$$\eta$$-equation: $t = \lambda x.(t \ x)$

$$E_{\text{LC}\beta\eta} = \{ \beta\text{-equation}, \eta\text{-equation} \}$$
Example: λ-calculus modulo $\beta\eta$

The algebraic 2-signature $(\Sigma_{LC\beta\eta}, E_{LC\beta\eta})$ of λ-calculus modulo $\beta\eta$:

$$\Sigma_{LC\beta\eta}(R) := \Sigma_{LC}(R) = (R \times R) \sqcup R'$$

model of $\Sigma_{LC} = \text{monad } R$ with module morphisms:

- $\text{app} : R \times R \to R$
- $\text{abs} : R' \to R$

β-equation: $(\lambda x.t) \ u = t[x \mapsto u]

η-equation: $t = \lambda x. (t \ x)$

$$E_{LC\beta\eta} = \{ \text{β-equation, η-equation} \}$$
Example: fixpoint operator

Definition [AHLM CSL 2018]

A **fixpoint operator** in a monad \mathcal{R} is a module morphism $\text{fix}: \mathcal{R}' \to \mathcal{R}$ s.t. for any term $t \in \mathcal{R}(X \sqcup \{ \diamond \})$, $\text{fix}(t) = t[\diamond \mapsto f(t)]$

Intuition:

- $\text{fix}(t) := \text{let rec } \diamond = t \text{ in } \diamond$
- [AHLM CSL 2018] Fixpoint operator in $\text{LC}_{\beta \eta} \simeq \text{fixpoint combinators}$
A **fixpoint operator** in a monad R is a module morphism $\text{fix}: R' \to R$ s.t. for any term $t \in R(X \coprod \{\diamond\})$, $\text{fix}(t) = t[\diamond \mapsto f(t)]$

Intuition:

- $\text{fix}(t) := \texttt{let rec } \diamond = t \texttt{ in } \diamond$
- [AHLM CSL 2018] Fixpoint operator in $\text{LC}_{\beta\eta} \simeq$ fixpoint combinators

Algebraic 2-signature $(\Sigma_{\text{fix}}, E_{\text{fix}})$ of a fixpoint operator:

$$\Sigma_{\text{fix}}(R) := R' \quad E_{\text{fix}} = \begin{cases} \text{fix}(t) \quad R' \to R \\ t \quad R \to R' \\ t[\diamond \mapsto \text{fix}(t)] \end{cases}$$
Combining algebraic 2-signatures

Algebraic 2-signatures can be combined:

\[(\Sigma_{\text{fix}}, E_{\text{fix}}) \oplus (\Sigma_{\text{LC} \beta \eta}, E_{\text{LC} \beta \eta}) = (\Sigma_{\text{fix}} \uplus \Sigma_{\text{LC} \beta \eta}, E_{\text{fix}} \cup E_{\text{LC} \beta \eta}) \]

\[\lambda\text{-calculus modulo } \beta \eta \text{ with an explicit fixpoint operator} \]
Example: free commutative monoid

Algebraic 2-signature \((\Sigma_{\text{mon}}, E_{\text{mon}})\) for the free commutative monoid monad:

\[
\Sigma_{\text{mon}}(R) := 1 \coprod (R \times R)
\]

model of \(\Sigma_{\text{mon}} = \text{monad } R\) with module morphisms:

\[
0 : 1 \to R \quad + : R \times R \to R
\]
Example: free commutative monoid

Algebraic 2-signature \((\Sigma_{\text{mon}}, E_{\text{mon}})\) for the free commutative monoid monad:

\[
\Sigma_{\text{mon}}(R) := 1 \coprod (R \times R)
\]

model of \(\Sigma_{\text{mon}} = \text{monad } R\) with module morphisms:

\[
0 : 1 \to R \quad + : R \times R \to R
\]

3 elementary \(\Sigma\)-equations:

\[
\begin{align*}
R \times R \times R & \xrightarrow{(s+t)+u} R \\
R \times R & \xrightarrow{s+(t+u)} R \\
R \times R & \xrightarrow{s+t} R \\
R & \xrightarrow{0+t} R \\
R & \xrightarrow{t+s} R
\end{align*}
\]
Our target: dLC

Syntax of the differential λ-calculus:

Differential λ-terms

\[
s, t ::= x \\
\quad | \lambda x.t \\
\quad | st \\
\quad | Ds \cdot t \\
\quad | s + t \\
\quad | 0
\]

\[
\} \quad \lambda$-calculus
\]

\[
\} \quad \text{free commutative monoid}
\]

and (bi)linearity of operations with respect to $+$:

\[
\lambda x. (s + t) = \lambda x.s + \lambda x.t
\]

\[
\ldots
\]
Syntax of the differential λ-calculus:

Differential λ-terms

\[
s, t ::= x \\
\quad | \lambda x . t \\
\quad | s \cdot t \\
\quad | Ds \cdot t \\
\quad | s + t \\
\quad | 0
\]

(variables \(\subset R\) for any monad \(R\))

Corresponding 1-signature

\[
\Sigma_{LC}(R) = R' \uplus (R \times R)
\]

\[
\Sigma_{\text{mon}}(R) = 1 \uplus (R \times R)
\]
Algebraic 1-signature for dLC

Syntax of the differential λ-calculus:

Differential λ-terms

\[
s, t ::= x \\
| \lambda x.t \\
| s \cdot t \\
| Ds \cdot t \\
| s + t \\
| 0
\]

Corresponding 1-signature

\[
\Sigma_{\text{LC}}(R) = R' \coprod (R \times R)
\]

\[
R \mapsto R \times R
\]

\[
\Sigma_{\text{mon}}(R) = 1 \coprod (R \times R)
\]

Resulting algebraic 1-signature:

\[
\Sigma_{\text{dLC}}(R) = \Sigma_{\text{LC}}(R) \coprod (R \times R) \coprod \Sigma_{\text{mon}}(R)
\]
Elementary equations for dLC

Commutative monoidal structure:

\[E_{\text{mon}} \left\{ \begin{array}{ll}
 s + t = t + s & R \times R \implies R \\
 s + (t + u) = (s + t) + u & R \times R \times R \implies R \\
 0 + t = t & R \implies R
\end{array} \right. \]

Linearity:

\[\lambda x. (s + t) = \lambda x.s + \lambda x.t & R \times R \implies R \\
 D(s + t) \cdot u = Ds \cdot u + Dt \cdot u & R \times R \times R \implies R \\
 Ds \cdot (t + u) = Ds \cdot t + Ds \cdot u & R \times R \times R \implies R \]

\ldots \]
n-ary fixpoint operator

Reminder: unary fixpoint operator in a monad \(R \)

\[
R(X \coprod \{\diamond\}) \quad \mapsto \quad R(X) \quad \text{s.t.} \quad t[\diamond \mapsto \overline{t}] = \overline{t}
\]

Intuition: \(\overline{t} := \text{let rec } \diamond = t \text{ in } \diamond \)

n-ary fixpoint operator:

\[
\forall i \in \{1, \ldots, n\}, \quad R(X \coprod \{\diamond_1, \ldots, \diamond_n\})^n \quad \mapsto \quad R(X) \quad \text{s.t.} \quad \forall i, t_i \left[\begin{array}{c} \diamond_1 \mapsto \overline{t_1} \\ \vdots \\ \diamond_n \mapsto \overline{t_n} \end{array} \right] = \overline{t_i}
\]

Intuition: \(\overline{t_i} := \text{let rec } \diamond_1 = t_1 \text{ and } \ldots \text{ and } \diamond_n = t_n \text{ in } \diamond_i \)
Reminder: unary fixpoint operator in a monad R

$$R(X \sqcup \{\diamond\}) \to R(X) \quad \text{s.t.} \quad t[\diamond \mapsto \bar{t}] = \bar{t}$$

Intuition: \(\bar{t} := \text{let rec } \diamond = t \text{ in } \diamond\)

n-ary fixpoint operator:

$$\forall i \in \{1,..,n\}, \quad R(X \sqcup \{\diamond_1,\ldots,\diamond_n\})^n \to R(X) \quad \text{s.t.} \quad \forall i, t_i \quad \begin{bmatrix} \diamond_1 \mapsto \bar{t}_1 \\ \cdots \\ \diamond_n \mapsto \bar{t}_n \end{bmatrix} = \bar{t}_i$$

Intuition: \(\bar{t}_i := \text{let rec } \diamond_1 = t_1 \text{ and } \ldots \text{ and } \diamond_n = t_n \text{ in } \diamond_i\)

\(\Rightarrow\) specifiable as an algebraic 2-signature
Fixpoint operators

Syntax with fixpoint operators:

- for each n, a n-ary operator:

  ```
  let rec $\diamond_1 = t_1$ and .. and $\diamond_n = t_n$ in $\diamond_i$
  ```

- compatibility between these operators [AHLM CSL 2018]
Syntax with fixpoint operators:

• for each n, a n-ary operator:
 \[
 \text{let rec } \diamond_1 = t_1 \text{ and } \ldots \text{ and } \diamond_n = t_n \text{ in } \diamond_i
 \]

• compatibility between these operators [AHLM CSL 2018]
 ◦ invariance under **permutation**:

 \[
 \text{let rec } \diamond_1 = t_1 \text{ and } \diamond_2 = t_2 \text{ in } \diamond_1 \equiv \text{let rec } \diamond_1 = t_2[\diamond_1 \leftrightarrow \diamond_2] \text{ and } \diamond_2 = t_1[\diamond_1 \leftrightarrow \diamond_2] \text{ in } \diamond_2
 \]
Fixpoint operators

Syntax with fixpoint operators:

- for each n, a n-ary operator:

$$
\text{let rec } \diamond_1 = t_1 \text{ and } \ldots \text{ and } \diamond_n = t_n \text{ in } \diamond_i
$$

- compatibility between these operators [AHLM CSL 2018]

 - invariance under permutation:

 $$
 \begin{align*}
 \text{let rec } \diamond_1 &= t_1 \\
 \text{and } \diamond_2 &= t_2 \\
 \text{in } \diamond_1
 \end{align*}
 \quad \Rightarrow \quad
 \begin{align*}
 \text{let rec } \diamond_1 &= t_2[\diamond_1 \leftrightarrow \diamond_2] \\
 \text{and } \diamond_2 &= t_1[\diamond_1 \leftrightarrow \diamond_2] \\
 \text{in } \diamond_2
 \end{align*}
 $$

 - invariance under repetition:

 $$
 \begin{align*}
 \text{let rec } \diamond_1 &= t \\
 \text{and } \diamond_2 &= t \\
 \text{in } \diamond_1
 \end{align*}
 \quad \Rightarrow \quad
 \begin{align*}
 \text{let rec } \diamond_1 &= t[\diamond_2 \leftrightarrow \diamond_1] \\
 \text{in } \diamond_1
 \end{align*}
 $$
Syntax with fixpoint operators:

• for each n, a n-ary operator:

\[
\text{let rec } \diamond_1 = t_1 \text{ and } \ldots \text{ and } \diamond_n = t_n \text{ in } \diamond_i
\]

• compatibility between these operators [AHLM CSL 2018]

general form:

\[
\begin{align*}
\text{let rec } \diamond_1 &= t_1[\diamond_i \mapsto \diamond_{u(i)}] \\
&\quad \ldots \\
\text{and } \diamond_q &= t_q[\diamond_i \mapsto \diamond_{u(i)}] \\
\text{in } \diamond_{u(j)}
\end{align*}
\]

\[
\begin{align*}
\text{let rec } \diamond_1 &= t_{u(1)} \\
&\quad \ldots \\
\text{and } \diamond_p &= t_{u(p)} \\
\text{in } \diamond_j
\end{align*}
\]

where \(u : \{1, \ldots, p\} \to \{1, \ldots, q\} \)

\[t_1, \ldots, t_q \in R(X \bigsqcup \{\diamond_1, \ldots, \diamond_p\}) \]
Fixpoint operators

Syntax with fixpoint operators:

• for each n, a n-ary operator:

 \[
 \text{let rec } \diamond_1 = t_1 \text{ and .. and } \diamond_n = t_n \text{ in } \diamond_i
 \]

• compatibility between these operators [AHLM CSL 2018]

 general form:

 \[
 \begin{align*}
 \text{let rec } \diamond_1 &= t_1[\diamond_i \mapsto \diamond_{u(i)}] \\
 & \quad \ldots \\
 & \quad \text{and } \diamond_q = t_q[\diamond_i \mapsto \diamond_{u(i)}] \\
 \text{in } \diamond_{u(j)}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{let rec } \diamond_1 &= t_{u(1)} \\
 & \quad \ldots \\
 & \quad \text{and } \diamond_p = t_{u(p)} \\
 \text{in } \diamond_{j}
 \end{align*}
 \]

 where \(u : \{1, \ldots, p\} \rightarrow \{1, \ldots, q\} \)
 \(t_1, \ldots, t_q \in R(X \coprod \{\diamond_1, \ldots, \diamond_p\}) \)
 \(\Rightarrow \) Expressible as elementary equations \((R^\ldots)^q \Rightarrow R\).
Table of contents

1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion
Principle of recursion

Recursion on the syntax = Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

\[f : R \to S \]

initial model of a 2-signature \((\Sigma, E)\)
Principle of recursion

Recursion on the syntax \simeq Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

\[f : R \rightarrow S \]

initial model of a 2-signature (Σ, E)

1. Give a module morphism $s : \Sigma(S) \rightarrow S$
Principle of recursion

Recursion on the syntax \simeq Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

\[
\begin{aligned}
&f : R \rightarrow S \\
\text{initial model of a 2-signature } (\Sigma, E)
\end{aligned}
\]

1. Give a module morphism $s : \Sigma(S) \rightarrow S$ \\
 \Rightarrow induces a Σ-model (S, s)
Principle of recursion

Recursion on the syntax ≈ Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

\[f : R \rightarrow S \]

initial model of a 2-signature \((\Sigma, E)\)

1. Give a module morphism \(s : \Sigma(S) \rightarrow S\)
 \(\Rightarrow\) induces a \(\Sigma\)-model \((S, s)\)

2. Show that all the equations in \(E\) are satisfied for this model
Principle of recursion

Recursion on the syntax \Rightarrow Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

1. Give a module morphism $s : \Sigma(S) \to S$
2. Show that all the equations in E are satisfied for this model

\[f : R \to S \]

initial model of a 2-signature (Σ, E)

\Rightarrow induces a Σ-model (S, s)

\Rightarrow induces a model of (Σ, E)
Principle of recursion

Recursion on the syntax \approx Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

1. Give a module morphism $s : \Sigma(S) \rightarrow S$
 \Rightarrow induces a Σ-model (S, s)

2. Show that all the equations in E are satisfied for this model
 \Rightarrow induces a model of (Σ, E)

Initiality of R \Rightarrow model morphism $R \rightarrow S$ \Rightarrow monad morphism $R \rightarrow S$
Example: Computing the set of free variables

\[\lambda \text{-calculus monad} \]

\[\text{fv}_X : \text{LC}(X) \rightarrow \mathcal{P}(X) \]

\[t \mapsto \text{(exact) set of free variables of } t \]
Example: Computing the set of free variables

\(\lambda \)-calculus monad

\[\text{fv}_X : \text{LC}(X) \rightarrow \mathcal{P}(X) \]

\(t \mapsto (\text{exact}) \text{ set of free variables of } t \)

.. as a monad morphism \(\text{fv} : \text{LC} \rightarrow \mathcal{P} \)

\(\text{LC} = \text{initial model of } (\Sigma_{\text{LC}}, \emptyset) \)

\(\Rightarrow \) make \(\mathcal{P} \) a model of \(\Sigma_{\text{LC}} \)

\[\cup : \mathcal{P} \times \mathcal{P} \rightarrow \mathcal{P} \]

\(\Sigma_{\text{LC}}(R) = (R \times R) \bigcup R' \)

\(-\{ \diamond \} : \mathcal{P}' \rightarrow \mathcal{P} \)
Example: Computing the set of free variables

\[\lambda \text{-calculus monad} \]

\[\text{fv}_X : \text{LC}(X) \to P(X) \]

\[t \mapsto \text{(exact) set of free variables of } t \]

.. as a monad morphism \(\text{fv} : \text{LC} \to P \)

\[\Sigma_{\text{LC}}(R) = (R \times R) \coprod R' \]

\(\Sigma_{\text{LC}} \) = initial model of \((\Sigma_{\text{LC}}, \emptyset) \)

\(\Rightarrow \) make \(P \) a model of \(\Sigma_{\text{LC}} \)

\[\cup : P \times P \to P \]

\[_{\setminus}\{ \diamond \} : P' \to P \]

Initiality of \(\text{LC} \) \(\Rightarrow \text{fv} : \text{LC} \to P \)
Example: Computing the set of free variables

\[\lambda \text{-calculus monad} \]

\[\text{fv}_X : \text{LC}(X) \rightarrow \mathcal{P}(X) \]

\[t \mapsto (\text{exact}) \text{ set of free variables of } t \]

.. as a monad morphism \(\text{fv} : \text{LC} \rightarrow \mathcal{P} \)

\[\text{LC} = \text{initial model of } (\Sigma_{\text{LC}}, \emptyset) \]

\[\Sigma_{\text{LC}}(R) = (R \times R) \bigsqcup R' \]

\[\Rightarrow \text{make } \mathcal{P} \text{ a model of } \Sigma_{\text{LC}} \]

\[\cup : \mathcal{P} \times \mathcal{P} \rightarrow \mathcal{P} \]

\[\setminus\{\Diamond\} : \mathcal{P}' \rightarrow \mathcal{P} \]

Initiality of \(\text{LC} \) \(\Rightarrow \) \(\text{fv} : \text{LC} \rightarrow \mathcal{P} \)

Equalities as a monad morphism:

\[\text{fv}(x) = \{x\} \]

\[\text{fv}(t[x \mapsto u(x)]) = \bigcup_{x \in \text{fv}(t)} \text{fv}(u(x)) \]

Equalities as a model morphism:

\[\text{fv}(\text{app}(t,u)) = \text{fv}(t) \cup \text{fv}(u) \]

\[\text{fv}(\text{abs}(t)) = \text{fv}(t) \setminus \{\Diamond\} \]
Example: Translating λ-calculus with fixpoint

λ-calculus modulo $\beta\eta$ + fixpoint operator fix

\[\text{compilation} \quad \mapsto \quad \lambda$-calculus modulo $\beta\eta \]

$\text{fix}(t) \mapsto ?$
Example: Translating λ-calculus with fixpoint

λ-calculus modulo $\beta\eta$ + fixpoint operator fix

\[
\begin{align*}
\text{compilation} & : \quad \lambda\text{-calculus modulo } \beta\eta \\
\text{fix}(t) & \mapsto ?
\end{align*}
\]

...as a monad morphism $\text{LC}_{\beta\eta + \text{fix}} \to \text{LC}_{\beta\eta}$

$\text{LC}_{\beta\eta + \text{fix}} = \text{initial model of } (\Sigma_{\text{LC}_{\beta\eta}}, E_{\text{LC}_{\beta\eta}}) + (\Sigma_{\text{fix}}, E_{\text{fix}})$

\Rightarrow make $\text{LC}_{\beta\eta}$ a model of $(\Sigma_{\text{LC}_{\beta\eta}}, E_{\text{LC}_{\beta\eta}}) + (\Sigma_{\text{fix}}, E_{\text{fix}})$:
Example: Translating λ-calculus with fixpoint

λ-calculus modulo $\beta\eta$
+ fixpoint operator fix

compilation

λ-calculus modulo $\beta\eta$

$\text{fix}(t) \mapsto ?$

...as a monad morphism

$LC_{\beta\eta+\text{fix}} \to LC_{\beta\eta}$

$LC_{\beta\eta+\text{fix}} = \text{initial model of } (\Sigma_{LC\beta\eta}, E_{LC\beta\eta}) + (\Sigma_{\text{fix}}, E_{\text{fix}})$

\Rightarrow make $LC_{\beta\eta}$ a model of $(\Sigma_{LC\beta\eta}, E_{LC\beta\eta}) + (\Sigma_{\text{fix}}, E_{\text{fix}})$:

app, abs

a fixpoint operator in $LC_{\beta\eta}$
Example: Translating λ-calculus with fixpoint

λ-calculus modulo $\beta\eta$

+ fixpoint operator fix

\[
\begin{align*}
\text{compilation} & \quad \longrightarrow \\
\text{fix}(t) & \quad \mapsto \quad ?
\end{align*}
\]

...as a monad morphism

\[
\begin{align*}
\text{LC}_{\beta\eta+\text{fix}} & \quad \rightarrow \\
\text{LC}_{\beta\eta}
\end{align*}
\]

$\text{LC}_{\beta\eta+\text{fix}} = \text{initial model of } (\Sigma_{\text{LC}_{\beta\eta}}, E_{\text{LC}_{\beta\eta}}) + (\Sigma_{\text{fix}}, E_{\text{fix}})$

\[\Rightarrow \text{make } \text{LC}_{\beta\eta} \text{ a model of } (\Sigma_{\text{LC}_{\beta\eta}}, E_{\text{LC}_{\beta\eta}}) + (\Sigma_{\text{fix}}, E_{\text{fix}}):\]

- app, abs
- a fixpoint operator in $\text{LC}_{\beta\eta}$

Proposition [AHLM CSL 2018]

Fixpoint operators in $\text{LC}_{\beta\eta}$ are in one to one correspondance with fixpoint combinators (i.e. λ-terms Y s.t. $t \ (Yt) = Yt$ for any t).
Example: Translating \(\lambda \)-calculus with fixpoint

\(\lambda \)-calculus modulo \(\beta \eta \) + fixpoint operator \(\text{fix} \)

\[
\text{compilation} \quad \quad \quad \quad \lambda \text{-calculus modulo } \beta \eta \\
\text{fix}(t) \mapsto \text{app}(Y, \text{abs}(t))
\]

...as a monad morphism

\[
\mathbf{LC}_{\beta \eta + \text{fix}} \rightarrow \mathbf{LC}_{\beta \eta}
\]

\[
\mathbf{LC}_{\beta \eta + \text{fix}} = \text{initial model of } (\Sigma_{\mathbf{LC}_{\beta \eta}}, E_{\mathbf{LC}_{\beta \eta}}) + (\Sigma_{\text{fix}}, E_{\text{fix}})
\]

\Rightarrow \text{make } \mathbf{LC}_{\beta \eta} \text{ a model of } (\Sigma_{\mathbf{LC}_{\beta \eta}}, E_{\mathbf{LC}_{\beta \eta}}) + (\Sigma_{\text{fix}}, E_{\text{fix}}):

\[
\text{app, abs}
\]

\[
\hat{\text{Y}} : t \mapsto \text{app}(Y, \text{abs}(t))
\]

Proposition [AHLM CSL 2018]

Fixpoint operators in \(\mathbf{LC}_{\beta \eta} \) are in one to one correspondance with fixpoint combinators (i.e. \(\lambda \)-terms \(Y \) s.t. \(t \ (Yt) = Yt \) for any \(t \)).
Example: Translating λ-calculus with fixpoint

λ-calculus modulo $\beta\eta$

+ fixpoint operator fix

\[\text{compilation} \quad \overset{\Rightarrow}{\longrightarrow} \quad \lambda$-calculus modulo $\beta\eta \]

\[\text{fix}(t) \mapsto \text{app}(Y, \text{abs}(t)) \]

...as a monad morphism

\[\text{LC}_{\beta\eta+fix} \rightarrow \text{LC}_{\beta\eta} \]

\[\text{LC}_{\beta\eta+fix} = \text{initial model of } (\Sigma_{\text{LC}_{\beta\eta}}, E_{\text{LC}_{\beta\eta}}) + (\Sigma_{\text{fix}}, E_{\text{fix}}) \]

\Rightarrow make $\text{LC}_{\beta\eta}$ a model of $(\Sigma_{\text{LC}_{\beta\eta}}, E_{\text{LC}_{\beta\eta}}) + (\Sigma_{\text{fix}}, E_{\text{fix}})$:

\[\text{app, abs} \]

\[\text{a fixpoint operator in } \text{LC}_{\beta\eta} \]

\[\hat{Y} : t \mapsto \text{app}(Y, \text{abs}(t)) \]

Proposition [AHLM CSL 2018]

Fixpoint operators in $\text{LC}_{\beta\eta}$ are in one to one correspondance with fixpoint combinators (i.e. λ-terms Y s.t. $t (Y t) = Y t$ for any t).

Initiability of $\text{LC}_{\beta\eta+fix} \Rightarrow$ monad morphism $\text{LC}_{\beta\eta+fix} \rightarrow \text{LC}_{\beta\eta}$
Example: Computing the size of a term

\(\lambda \)-calculus monad

\[
\begin{align*}
\mathsf{s}_x & : \mathsf{LC}(X) \to \mathbb{N} \\
t & \mapsto \text{number of constructors in } t
\end{align*}
\]

.. as a monad morphism \(s : \mathsf{LC} \to \mathbb{N} \)

\[
\begin{align*}
\mathsf{s}(x) &= 0 \\
\mathsf{s}(\lambda x.x) &= 1 \\
\mathsf{s}((\lambda x.x) \ y) &= 2
\end{align*}
\]
Example: Computing the size of a term

\begin{itemize}
 \item \(s(x) = 0 \)
 \item \(s(\lambda x. x) = 1 \)
 \item \(s((\lambda x. x) \ y) = 2 \)
\end{itemize}

\(s_X : \text{LC}(X) \rightarrow \mathbb{N} \)

\(\text{number of constructors in } t \)

\(\textbf{\text{\textcolor{red}{as a monad morphism}} } s : \text{LC} \rightarrow \mathbb{N} \)

\(\mathbb{N} \text{ is not a monad} ! \)
Example: Computing the size of a term

\(\lambda \)-calculus monad

\[
s_x : \text{LC}(X) \to \mathbb{N} \\
\text{number of constructors in } t
\]

.. as a monad morphism \(s : \text{LC} \to \mathbb{N} \)

\(\mathbb{N} \) is not a monad!

Solution [CSL AHLM 2018]:

1. define \(f : \text{LC} \to \text{C} \) by recursion
2. deduce \(s : \text{LC} \to \mathbb{N} \)

continuation monad \(\text{C}(X) = \mathbb{N}^{(\mathbb{N}^X)} \)
Example: Computing the size of a term

λ-calculus monad

\[s_X : \text{LC}(X) \rightarrow \mathbb{N} \]

\[t \mapsto \text{number of constructors in } t \]

as a monad morphism \(s : \text{LC} \rightarrow \mathbb{N} \)

\(\mathbb{N} \) is not a monad!

Solution [CSL AHLM 2018]:

1. define \(f : \text{LC} \rightarrow C \) by recursion
2. deduce \(s : \text{LC} \rightarrow \mathbb{N} \)

Intuition: \(f_X : \text{LC}(X) \rightarrow \mathbb{N}^{(\mathbb{N}^X)} \)

\[\text{uncurry} \]

\(g : \text{LC}(X) \times \mathbb{N}^X \rightarrow \mathbb{N} \)

\[g(x, u) = u(x) \]
Example: Computing the size of a term

\(\lambda \text{-calculus monad} \)

\[
\begin{align*}
 s_X & : \text{LC}(X) \to \mathbb{N} \\
 t & \mapsto \text{number of constructors in } t
\end{align*}
\]

\(\text{.. as a monad morphism } s : \text{LC} \to \mathbb{N} \)

\(\mathbb{N} \text{ is not a monad!} \)

Solution [CSL AHLM 2018]:

1. define \(f : \text{LC} \to \text{C} \) by recursion
2. deduce \(s : \text{LC} \to \mathbb{N} \)

Intuition: \(f_X : \text{LC}(X) \to \mathbb{N}^{(\mathbb{N}^X)} \) \(\text{uncurry} \Rightarrow g : \text{LC}(X) \times \mathbb{N}^X \to \mathbb{N} \)

\[
g(x, u) = u(x)
\]

\[
s(t) = g(t, (x \mapsto 0))
\]

\(\text{variables are of size 0} \)
Conclusion

Summary of the talk:

- notion of 1-signature and models based on monads and modules
- 2-signature = 1-signature + set of equations
- *algebraic* 2-signatures generate a syntax, e.g. differential λ-calculus.

Main theorems formalized in Coq using the UniMath library.

Future work:

- add the notion of reductions;
- extend our work to simply typed syntaxes.
Conclusion

Summary of the talk:

- notion of 1-signature and models based on monads and modules
- 2-signature = 1-signature + set of equations
- algebraic 2-signatures generate a syntax, e.g. differential λ-calculus.

Main theorems formalized in Coq using the UniMath library.

Future work:

- add the notion of reductions;
- extend our work to simply typed syntaxes.

Thank you!