OPERATOR ALGEBRAS IN CATEGORICAL QUANTUM FOUNDATIONS

Mathys Rennela

LIACS (Leiden University) May 9, 2019

Universiteit Leiden ^{The Netherlands}

Programming quantum circuits

$$\begin{array}{l} -;a,b: \mathrm{qubit} \vdash C \stackrel{\mathsf{def}}{=} x \leftarrow \mathsf{gate} \ \mathsf{meas} \ a; \\ (x,y) \leftarrow \mathsf{gate} \ (\mathsf{bit-control} \ X) \ (x,b); \\ () \leftarrow \mathsf{gate} \ \mathsf{discard} \ x; \mathsf{output} \ y \qquad : \ \mathrm{qubit} \end{array}$$

Problem: not all quantum protocols are that simple...

Concrete model for quantum circuits

- C*-algebras: algebras of physical observables.
- Intuition: Measurable quantities of a physical system
- **Example:** 2-by-2 matrices are taken to represent qubits
- Positive maps: arrows which preserve observables
- Completely positive maps: arrows which allows to run the computation on a subsystem of a bigger system
- Intuition: Communication channels which transmit quantum information

(Deustch-Jozsa algorithm)

Concrete model for quantum programs

- ► Goal: add recursive types, loops, ...
- Problem 1: Finite-dimensional algebras of physical observables aren't enough, semantically.
- Problem 2: Complete positivity is at the core of quantum computation.
- ▶ Our solution: Semantics based on categories of W*-algebras

Infinite-dimensional structures: why should we care?

- Argument 1: Benefit from the *full* power of the theory of operator algebras. (e.g. Rennela, Staton, Furber, 2015)
- Argument 2: Infinite dimensionality arise naturally in quantum field theory.
- Argument 3: The register space in a scalable photonic quantum computer arguably has an infinite dimensional aspect.
- Argument 4: Infinite dimensionality comes into play in Quantum PL (e.g. Gielerak, Sawerwain, 2007; Rennela, Staton, 2018).

Abstract language for embedded circuits

- Circuit language = first order typed language.
- ▶ Wire types, such as a type for bits and qubits, and gates.
- Host language = higher order language (like a proof assistant)

• Special host type $Circ(W_1, W_2)$

J. Paykin, R. Rand, and S. Zdancewic. QWIRE: a core language for quantum circuits. POPL'17. J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus: syntax and semantics. J. of Logic and Computation, 2012.

M. Rennela, S. Staton, Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory, LMCS, to appear.

Embedding as enrichment

 $t \stackrel{\text{def}}{=} \mathbf{box} \ (a,b) \Rightarrow C(a,b) : \mathsf{Circ}(\mathsf{qubit} \otimes \mathsf{qubit}, \mathsf{qubit})$

comp : $\operatorname{Circ}(W_1, W_2) \times \operatorname{Circ}(W_2, W_3) \rightarrow \operatorname{Circ}(W_1, W_3)$ (W_i type of the wire w_i for $i \in \{1, 2, 3\}$)

The embedding of the circuit language in the host language is an instance of enriched category theory

What is enriched category theory?

• Category: collection of objects and arrows between them.

Enriched category: category whose arrows are objects of another category

Max Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.

Semantics: associate (mathematical) meaning to programs.

Types as C*-algebras

► A type A is interpreted as a C*-algebra [[A]].

 C*-algebra = algebra of physical observables (measurable quantities of a physical system).

▶ Bool:
$$\llbracket bool \rrbracket = \mathbb{C} \oplus \mathbb{C}$$

• Qubit:
$$[[qubit]] = M_2 = \mathcal{B}(\mathbb{C}^2)$$

• Tensor:
$$\llbracket x : A, y : B \rrbracket = A \otimes B$$

► Void:
$$\llbracket () \rrbracket = \mathbb{C}$$

▶ Natural numbers:
$$[nat] = \bigoplus_{n \in \mathbb{N}} \mathbb{C}$$

Programs as completely positive maps

- $f = \llbracket x : A \vdash t : B \rrbracket : \llbracket B \rrbracket \rightarrow \llbracket A \rrbracket$ (predicate transformer)
 - unital: preserves the unit, i.e. f(1) = 1
 - sub-unital: $f(1) \leq 1$
 - positive: preserves observables
 - positive element: $a = x^*x$ for some x.
 - observables are determined by positive elements.
 - completely positive: allows to run the computation on a subsystem of a bigger system.
 - ▶ $M_{2^n}(f) : M_{2^n}(B) \to M_{2^n}(A)$ positive. $\operatorname{id}_{\llbracket qubit \rrbracket^{\otimes n} \otimes f} : \llbracket qubit \rrbracket^{\otimes n} \otimes \llbracket B \rrbracket \to \llbracket qubit \rrbracket^{\otimes n} \otimes \llbracket A \rrbracket$ positive.
- Complete positivity is at the core of quantum computation

W*-algebras

- W*-algebras: C*-algebras with nice domain-theoretic properties.
- Example: the poset of positive elements below the unit forms a dcpo.

Examples of W*-algebras

- ► Finite dimensional C*-algebras.
- Algebras of bounded operators $\mathcal{B}(H)$ on any Hilbert space H.
- Function spaces $L^{\infty}(X)$ for any standard measure space X.
- The space $\ell^{\infty}(\mathbb{N})$ of bounded sequences.

Recap on domain theory

• $\Delta \subseteq P$ directed if every pair in Δ has an upper bound in Δ .

- ▶ least upper bound (lub) $\bigvee \Delta$ of $\Delta \subseteq P$ (it it exists) is greater than or equal to all the other elements of the set Δ .
- dcpo D = poset D where every directed Δ has a lub.
- Example: [0,1]_A, subset of positive elements of below the unit of a W*-algebra.
- $f: P \rightarrow Q$ Scott-continuous if it preserves lubs.

Löwner order

- ▶ $\phi : A \to B$ is normal if ϕ is a positive between W*-algebras and its restriction $\phi : [0, 1]_A \to [0, 1]_B$ is Scott-continuous.
- ► W*-Alg_{CPSU}: category of W*-algebras together with normal CPSU-maps
- ► Löwner partial order: For positive maps f, g : A → B between W*-algebras A and B: ⊑: f ⊑ g if and only if g − f is positive, i.e. ∀x ∈ A⁺, (g − f)(x) ∈ B⁺.

Theorem (Rennela, 2013; Rennela, 2018)

For W*-algebras A and B, the poset $(\mathbf{W}^*-\mathbf{Alg}_{CPSU}(A, B), \sqsubseteq)$ is directed-complete.

W*-algebras are order-enriched

Recall: a category whose hom-sets are posets is called $\mathbf{Dcpo}_{\perp !}$ -enriched if:

- 1. its hom-sets are dcpos with bottom
- 2. pre-composition and post-composition of morphisms are strict and Scott-continuous.

Theorem (Rennela, 2014)

The category \mathbf{W}^* -Alg_{PSU} is a Dcpo_{\perp !}-enriched category.

Theorem

W^{*}-**Alg**_{CPSU}, category of W^{*}-algebras together with NCPSU-maps, is **D**cpo_{\perp !}-enriched with the following order on maps: $f \sqsubseteq_{cP} g$ if and only if g - f is completely positive.

Von Neumann functors

Definition

An endofunctor F on a $\mathbf{Dcpo}_{\perp!}$ -enriched category \mathbf{C} is locally continuous if $F_{X,Y} : \mathbf{C}(X,Y) \to \mathbf{C}(FX,FY)$ is Scott-continuous.

Definition

A von Neumann functor is a locally continuous endofunctor on W^* -Alg_{CPSU} which preserves multiplication-preserving maps.

Theorem

The category W^* -Alg_{CPSU} is algebraically compact for the class of von Neumann functors, i.e. every von Neumann functor F admits a canonical fixpoint and there is an isomorphism between the initial F-algebra and the inverse of the final F-coalgebra.

Recipe: how to construct a fixpoint for such functors

- Consider a sequence of the form $\Delta = D_0 \xrightarrow{\alpha_0} D_1 \xrightarrow{\alpha_1} \cdots$ where $D_0 = 0$, $D_{n+1} = FD_n$, $\alpha_0 = !_{F0}$, $\alpha_{n+1} = F\alpha_n$ $(n \in \mathbb{N})$
- ▶ Define a W*-algebra D and turn it into a cocone $\mu : \Delta \to D$, i.e. a sequence of arrows $\mu_n : D_n \to D$ such that the equality $\mu_n = \mu_{n+1} \circ \alpha_n$ holds for every $n \ge 0$. This is a colimit of Δ
- Observe that $F\mu: F\Delta \to FD$ is a colimit for $F\Delta$, obtained by removing the first arrow from Δ .
- Two colimiting cocone with same vertices are isomorphic, which implies that D and FD share the same limit and are isomorphic.
- ▶ Dually, consider the sequence $\Delta^{op} = D_0 \xleftarrow{\beta_0} D_1 \leftarrow \cdots$ and provide a limit for it.
- Conclusion: The functor F admits a fixpoint.

Inductive types for the circuit language

 $A, B, C ::= X \mid I \mid \mathsf{qbit} \mid A + B \mid A \otimes B \mid \mu X.A$

$$\begin{array}{c|c} \hline X \vdash X & \hline \Theta \vdash I & \hline \Theta \vdash \textbf{qbit} & \underline{\Theta \vdash A & \Theta \vdash B} \\ \hline \hline \underline{\Theta \vdash A & \Theta \vdash B} & \underline{X \vdash A & \vdash \Theta} \\ \hline \hline \Theta \vdash A \otimes B & \underline{\nabla \vdash A \times \Theta} \end{array}$$

Example

$$\label{eq:mat} \begin{split} \mathsf{nat} &\equiv \mu X. \ I + X \qquad \mathsf{well-formed} \ \checkmark \\ \mu X.I + (\mu Y. \ I + Y \otimes X) \qquad \mathsf{ill-formed} \ \mathsf{X} \end{split}$$

Terms for QPL with inductive types

- Based on the language QPL by Peter Selinger
- Partial grammar of terms for QPL with inductive types:

$$\begin{split} M, N &::= \mathsf{new unit } u \mid \mathsf{new qbit } q \\ \mathbf{discard } x \mid q_1, \dots, q_n \, *= S \mid \\ M; N \mid \mathsf{skip} \mid b = \mathsf{measure } q \mid \mathsf{while } b \; \mathsf{do } M \mid \\ x &= \mathsf{left}_{A,B}M \mid x = \mathsf{right}_{A,B}M \mid \\ \mathsf{case } y \; \mathsf{of} \; \{\mathsf{left } x_1 \to M \mid \mathsf{right } x_2 \to N\} \mid \\ x &= (x_1, x_2) \mid (x_1, x_2) = x \mid y = \mathsf{fold } x \mid y = \mathsf{unfold } x \mid \\ \mathsf{proc } f :: \; x : A \to y : B \; \{M\} \; \mathsf{in } \; R| \; y = f(x) \end{split}$$

A categorical model based on W*-algebras for QPL with inductive types

▶ W*-Alg_{CPSU} = category of W*-algebras and normal completely positive subunital maps.

•
$$\mathbf{C} = \mathbf{W}^* - \mathbf{Alg}_{CPSU}^{op}$$
 (opposite category).

- \blacktriangleright $W^*\text{-}Alg_{\mathrm{CPSU}}$ has finite products \implies C has finite coproducts
- ▶ We interpret the entire language in the category C.
- ► Coproducts distribute over tensor products, i.e. $d_{A,B,C}: A \otimes (B+C) \cong (A \otimes B) + (A \otimes C)$ (Cho, 2016)

Semantics of while-loops

$$\blacktriangleright \ d_{A,B,C}: A \otimes (B+C) \cong (A \otimes B) + (A \otimes C)$$

• Recall bit =
$$I + I$$

• Define $d_A = d_{A,I,I} : A \otimes \text{bit} \to A \otimes I + A \otimes I$.

For any C-morphism f : A ⊗ bit → A ⊗ bit, we define a Scott-continuous endofunction

 $W_f : \mathbf{C} (A \otimes \mathsf{bit}, A \otimes \mathsf{bit}) \to \mathbf{C} (A \otimes \mathsf{bit}, A \otimes \mathsf{bit})$ $W_f(g) = [\mathrm{id} \otimes \mathsf{newbit}_0, \ g \circ f \circ (\mathrm{id} \otimes \mathsf{newbit}_1)] \circ d_A$

• newbit₀ = left_{I,I} :
$$I \rightarrow bit$$

• newbit₁ =
$$right_{I,I} : I \rightarrow bit$$

Interpreting inductive datatypes

• $\llbracket \Theta \vdash A \rrbracket : \mathbf{C}^{|\Theta|} \to \mathbf{C}$ functor defined by induction

$$\begin{bmatrix} X \vdash X \end{bmatrix} = \mathsf{Id} \\ \begin{bmatrix} \Theta \vdash I \end{bmatrix} = K_I \\ \begin{bmatrix} \Theta \vdash \mathbf{qbit} \end{bmatrix} = K_{\mathbf{qbit}} \\ \begin{bmatrix} \Theta \vdash A + B \end{bmatrix} = \begin{bmatrix} \Theta \vdash A \end{bmatrix} + \begin{bmatrix} \Theta \vdash B \end{bmatrix} \\ \begin{bmatrix} \Theta \vdash A \otimes B \end{bmatrix} = \begin{bmatrix} \Theta \vdash A \end{bmatrix} \otimes \begin{bmatrix} \Theta \vdash B \end{bmatrix}$$

► For inductive types: $\llbracket \Theta \vdash \mu X.A \rrbracket = K_{Y(\llbracket X \vdash A \rrbracket)}$

Y([[X ⊢ A]]): fixpoint for [[X ⊢ A]] given by algebraic compactness.

A categorical view on causality

- ▶ Needed: a discarding map $\diamond_A : A \to 1$ which enjoys the property that $\diamond_B \circ f = \diamond_A$ for every morphism $f : A \to B$.
- ► **Theorem** the interpretation in **C** of any *closed type* admits a canonical choice of discarding map by defining the type interpretations on the causal category **C**_c.
- ▶ $\mathbf{C}_c = \mathbf{C}/I$, i.e. objects = (A, \diamond_A) , where $A \in \mathsf{Ob}(\mathbf{C})$ and $\diamond_A \in \mathbf{C}(A, I)$. maps $f : (A, \diamond_A) \to (B, \diamond_B)$ in $\mathbf{C}_c = \mathsf{maps}$ $f : A \to B$ of \mathbf{C} , such that $\diamond_B \circ f = \diamond_A$.
- ▶ $\|\Theta \vdash A\| : \mathbf{C}_c^{|\Theta|} \to \mathbf{C}_c$ defined by induction
- ▶ Theorem: For any closed type $\cdot \vdash A$, we have $\llbracket A \rrbracket = U \Vert A \Vert$ and $\Vert A \Vert = (\llbracket A \rrbracket, \diamond_{\llbracket A \rrbracket})$

Conclusion

C*-algebras form a concrete model of quantum circuits

- ► W*-algebras form a concrete model of quantum programs
- Embedding a quantum PL in a conventional PL is an instance of enriched category theory

Future work

- Categorical axiomatization of W*-algebras? (Rennela, Staton, Furber, 2016)
- Verification tools: abstract interpretation for the analysis of quantum phenomena, e.g. quantum entanglement? (Cousot, Cousot, 1997; Perdrix, 2008)