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Programming quantum circuits

b X y

a •

−; a, b : qubit ` C def
=x← gate meas a;

(x, y)← gate (bit-control X) (x, b);

()← gate discard x; output y : qubit

I Problem: not all quantum protocols are that simple...
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Concrete model for quantum circuits

I C*-algebras: algebras of physical observables.

I Intuition: Measurable quantities of a physical system

I Example: 2-by-2 matrices are taken to represent qubits

I Positive maps: arrows which preserve observables

I Completely positive maps: arrows which allows to run the
computation on a subsystem of a bigger system

I Intuition: Communication channels which transmit quantum
information

|0〉 /n H⊗n
Uf

H⊗n

|1〉 H

(Deustch-Jozsa algorithm)
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Concrete model for quantum programs

I Goal: add recursive types, loops, ...

I Problem 1: Finite-dimensional algebras of physical
observables aren’t enough, semantically.

I Problem 2: Complete positivity is at the core of quantum
computation.

I Our solution: Semantics based on categories of W*-algebras
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Infinite-dimensional structures: why should we care?

I Argument 1: Benefit from the full power of the theory of
operator algebras. (e.g. Rennela, Staton, Furber, 2015)

I Argument 2: Infinite dimensionality arise naturally in
quantum field theory.

I Argument 3: The register space in a scalable photonic
quantum computer arguably has an infinite dimensional
aspect.

I Argument 4: Infinite dimensionality comes into play in
Quantum PL (e.g. Gielerak, Sawerwain, 2007; Rennela,
Staton, 2018).
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Abstract language for embedded circuits

I Circuit language = first order typed language.

I Wire types, such as a type for bits and qubits, and gates.

I Host language = higher order language (like a proof assistant)

I Special host type Circ(W1,W2)

J. Paykin, R. Rand, and S. Zdancewic. QWIRE: a core language for quantum circuits. POPL’17.
J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus: syntax and semantics. J. of Logic and
Computation, 2012.

M. Rennela, S. Staton, Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory, LMCS,

to appear.
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Embedding as enrichment

C
def
= b X y

a •

t
def
= box (a, b)⇒ C(a, b) : Circ(qubit⊗qubit,qubit)

C1 C2

w1 w2 w3

comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3)

(Wi type of the wire wi for i ∈ {1, 2, 3})

The embedding of the circuit language in the host language
is an instance of enriched category theory
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What is enriched category theory?

I Category: collection of objects and arrows between them.

I Enriched category: category whose arrows are objects of
another category

Max Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.

I Semantics: associate (mathematical) meaning to programs.

C
w1 w2

becomes an arrow [[C]] : [[w1]]→ [[w2]]

8 / 23



Types as C*-algebras

I A type A is interpreted as a C*-algebra JAK.

I C*-algebra = algebra of physical observables
(measurable quantities of a physical system).

I Bool: JboolK = C⊕ C

I Qubit: JqubitK = M2 = B(C2)

I Tensor: Jx : A, y : BK = A⊗B

I Void: J()K = C

I Natural numbers: JnatK = ⊕n∈N C
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Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)

I unital: preserves the unit, i.e.f(1) = 1
I sub-unital: f(1) ≤ 1
I positive: preserves observables

I positive element: a = x∗x for some x.
I observables are determined by positive elements.

I completely positive: allows to run the computation on a
subsystem of a bigger system.

I M2n(f) : M2n(B)→M2n(A) positive.
idJqubitK⊗n ⊗f : JqubitK⊗n ⊗ JBK→ JqubitK⊗n ⊗ JAK positive.

I Complete positivity is at the core of quantum
computation
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W*-algebras

I W*-algebras: C*-algebras with nice domain-theoretic
properties.

I Example: the poset of positive elements below the unit forms
a dcpo.

Examples of W*-algebras

I Finite dimensional C*-algebras.

I Algebras of bounded operators B(H) on any Hilbert space H.

I Function spaces L∞(X) for any standard measure space X.

I The space `∞(N) of bounded sequences.
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Recap on domain theory

I Poset (P,≤) = set P + partial order ≤

0 1 2 · · ·

⊥

true false

⊥

I ∆ ⊆ P directed if every pair in ∆ has an upper bound in ∆.

I least upper bound (lub)
∨

∆ of ∆ ⊆ P (it it exists) is
greater than or equal to all the other elements of the set ∆.

I dcpo D = poset D where every directed ∆ has a lub.

I Example: [0, 1]A, subset of positive elements of below the unit
of a W*-algebra.

I f : P → Q Scott-continuous if it preserves lubs.
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Löwner order

I φ : A→ B is normal if φ is a positive between W*-algebras
and its restriction φ : [0, 1]A → [0, 1]B is Scott-continuous.

I W∗-AlgCPSU: category of W*-algebras together with normal
CPSU-maps

I Löwner partial order: For positive maps f, g : A→ B
between W*-algebras A and B: v: f v g if and only if g − f
is positive, i.e. ∀x ∈ A+, (g − f)(x) ∈ B+.

Theorem (Rennela, 2013; Rennela, 2018)

For W*-algebras A and B, the poset (W∗-AlgCPSU(A,B),v) is
directed-complete.

13 / 23



W*-algebras are order-enriched

Recall: a category whose hom-sets are posets is called
Dcpo⊥!-enriched if:

1. its hom-sets are dcpos with bottom

2. pre-composition and post-composition of morphisms are strict
and Scott-continuous.

Theorem (Rennela, 2014)

The category W∗-AlgPSU is a Dcpo⊥!-enriched category.

Theorem

W∗-AlgCPSU, category of W*-algebras together with
NCPSU-maps, is Dcpo⊥!-enriched with the following order on
maps: f vcP g if and only if g − f is completely positive.
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Von Neumann functors

Definition

An endofunctor F on a Dcpo⊥!-enriched category C is locally
continuous if FX,Y : C(X,Y )→ C(FX,FY ) is
Scott-continuous.

Definition

A von Neumann functor is a locally continuous endofunctor on
W∗-AlgCPSU which preserves multiplication-preserving maps.

Theorem

The category W∗-AlgCPSU is algebraically compact for the
class of von Neumann functors, i.e. every von Neumann functor
F admits a canonical fixpoint and there is an isomorphism between
the initial F-algebra and the inverse of the final F-coalgebra.
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Recipe: how to construct a fixpoint for such functors

I Consider a sequence of the form ∆ = D0
α0−→ D1

α1−→ · · ·
where D0 = 0, Dn+1 = FDn, α0 =!F0, αn+1 = Fαn (n ∈ N)

I Define a W*-algebra D and turn it into a cocone µ : ∆→ D,
i.e. a sequence of arrows µn : Dn → D such that the equality
µn = µn+1 ◦ αn holds for every n ≥ 0. This is a colimit of ∆

I Observe that Fµ : F∆→ FD is a colimit for F∆, obtained
by removing the first arrow from ∆.

I Two colimiting cocone with same vertices are isomorphic,
which implies that D and FD share the same limit and are
isomorphic.

I Dually, consider the sequence ∆op = D0
β0←− D1 ← · · · and

provide a limit for it.

I Conclusion: The functor F admits a fixpoint.
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Inductive types for the circuit language

A,B,C ::= X | I | qbit | A+B | A⊗B | µX.A

X ` X Θ ` I Θ ` qbit
Θ ` A Θ ` B

Θ ` A+B

Θ ` A Θ ` B
Θ ` A⊗B

X ` A ` Θ
Θ ` µX.A

Example

nat ≡ µX. I +X well-formed X

µX.I + (µY. I + Y ⊗X) ill-formed X
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Terms for QPL with inductive types

I Based on the language QPL by Peter Selinger

I Partial grammar of terms for QPL with inductive types:

M,N ::= new unit u | new qbit q

discard x | q1, . . . , qn ∗ = S |
M ;N | skip | b = measure q | while b do M |
x = leftA,BM | x = rightA,BM |
case y of {left x1 →M | right x2 → N} |
x = (x1, x2) | (x1, x2) = x | y = fold x | y = unfold x |
proc f :: x : A→ y : B {M} in R| y = f(x)
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A categorical model based on W*-algebras for QPL
with inductive types

I W∗-AlgCPSU = category of W*-algebras and normal
completely positive subunital maps.

I C = W∗-Algop
CPSU (opposite category).

I W∗-AlgCPSU has finite products =⇒ C has finite
coproducts

I We interpret the entire language in the category C.

I Coproducts distribute over tensor products,
i.e. dA,B,C : A⊗ (B+C) ∼= (A⊗B) + (A⊗C) (Cho, 2016)
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Semantics of while-loops

I dA,B,C : A⊗ (B + C) ∼= (A⊗B) + (A⊗ C)

I Recall bit = I + I

I Define dA = dA,I,I : A⊗ bit→ A⊗ I +A⊗ I.

I For any C-morphism f : A⊗ bit→ A⊗ bit, we define a
Scott-continuous endofunction

Wf : C (A⊗ bit, A⊗ bit)→ C(A⊗ bit, A⊗ bit)

Wf (g) = [id⊗newbit0, g ◦ f ◦ (id⊗newbit1)] ◦ dA

I newbit0 = leftI,I : I → bit

I newbit1 = rightI,I : I → bit
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Interpreting inductive datatypes

I JΘ ` AK : C|Θ| → C functor defined by induction

JX ` XK = Id

JΘ ` IK = KI

JΘ ` qbitK = Kqbit

JΘ ` A+BK = JΘ ` AK + JΘ ` BK
JΘ ` A⊗BK = JΘ ` AK⊗ JΘ ` BK

I For inductive types: [[Θ ` µX.A]] = KY ([[X`A]])

I Y ([[X ` A]]): fixpoint for [[X ` A]] given by algebraic
compactness.
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A categorical view on causality

I Needed: a discarding map �A : A→ 1 which enjoys the
property that �B ◦ f = �A for every morphism f : A→ B.

I Theorem the interpretation in C of any closed type admits a
canonical choice of discarding map by defining the type
interpretations on the causal category Cc.

I Cc = C/I, i.e. objects = (A, �A), where A ∈ Ob(C) and
�A ∈ C(A, I). maps f : (A, �A)→ (B, �B) in Cc = maps
f : A→ B of C, such that �B ◦ f = �A.

I ‖Θ ` A‖ : C
|Θ|
c → Cc defined by induction

I Theorem: For any closed type · ` A, we have JAK = U‖A‖
and ‖A‖ = (JAK, �JAK)
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Conclusion

I C*-algebras form a concrete model of quantum circuits

I W*-algebras form a concrete model of quantum programs

I Embedding a quantum PL in a conventional PL is an instance
of enriched category theory

I Future work
I Categorical axiomatization of W*-algebras? (Rennela, Staton,

Furber, 2016)
I Verification tools: abstract interpretation for the analysis of

quantum phenomena, e.g. quantum entanglement? (Cousot,
Cousot, 1997; Perdrix, 2008)
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