Up-to techniques for behavioural metrics
via fibrations

Daniela Petrişan
Université de Paris, IRIF
joint work with Filippo Bonchi and Barbara König
Chocola, Lyon, 9 May 2019
Overview
In this talk

Part I

• Up-to techniques for behavioural equivalences
• Behavioural metrics coinductively
• A running example: computing distances between regular languages more efficiently

Part II

• A generic framework for proving soundness of up-to techniques using liftings of functors
• The Wasserstein lifting of a Set-functor
• Application to the running example
Part I: Introducing up-to techniques for behavioural metrics
Up-to techniques for behavioural equivalences

Used for proving behavioural equivalences of processes in concurrency theory:

- [Pous and Sangiorgi. 2011] *Enhancements of the coinductive proof method. In Advanced Topics in Bisimulation and Coinduction. Cambridge University Press*
Up-to techniques for behavioural equivalences

Used for proving behavioural equivalences of processes in concurrency theory:

Applications for automata: The HKC algorithm for checking language equivalence for NFAs

So what are up-to techniques?

In many cases behavioural equivalences are coinductive predicates, i.e., they can be expressed as the greatest fixpoint νb of a monotone function

$$b: \text{Rel}_Q \rightarrow \text{Rel}_Q,$$

where Rel_Q is the complete lattice of relations on the state space Q.

Coinduction proof principle:

$$\begin{align*}
(x, y) &\in r \quad r \subseteq b(r) \\
(x, y) &\in \nu b
\end{align*}$$
So what are up-to techniques?

In many cases behavioural equivalences are coinductive predicates, i.e., they can be expressed as the greatest fixpoint νb of a monotone function

$$b : \text{Rel}_Q \to \text{Rel}_Q,$$

where Rel_Q is the complete lattice of relations on the state space Q.

Coinduction proof principle:

$$\begin{align*}
(x, y) \in r & \quad r \subseteq b(r) \\
\hline
(x, y) \in \nu b
\end{align*}$$

Coinduction up-to $f : \text{Rel}_Q \to \text{Rel}_Q$ proof principle:

$$\begin{align*}
(x, y) \in r & \quad r \subseteq b(f(r)) \\
\hline
(x, y) \in \nu b
\end{align*}$$
So what are up-to techniques?

In many cases behavioural equivalences are coinductive predicates, i.e., they can be expressed as the greatest fixpoint νb of a monotone function

$$b : \text{Rel}_Q \to \text{Rel}_Q,$$

where Rel_Q is the complete lattice of relations on the state space Q.

Coinduction proof principle:

$$\frac{r \leq b(r)}{r \leq \nu b}$$

Coinduction up-to $f : \text{Rel}_Q \to \text{Rel}_Q$ proof principle:

$$\frac{r \leq b(f(r))}{r \leq \nu b}$$
Sound and Compatible up-to techniques

Definition (Sound up-to technique)
A function \(f : \text{Rel}_Q \to \text{Rel}_Q \) is sound w.r.t. \(\nu b \) when the coinduction up-to \(f \) proof principle is valid:

\[
\frac{(x, y) \in r \quad r \subseteq b(f(r))}{(x, y) \in \nu b}
\]

Soundness of up-to techniques is not a compositional notion and can be hard to establish.

Definition (Compatible up-to technique)
A monotone function \(f : \text{Rel}_Q \to \text{Rel}_Q \) is compatible w.r.t. \(\nu b \) when

\[
f \circ b(r) \subseteq b \circ f(r)
\]

for all relations \(r \).

Lemma: Compatibility implies soundness.
Definition (Sound up-to technique)
A function $f: \text{Rel}_Q \to \text{Rel}_Q$ is sound w.r.t. νb when the coinduction up-to f proof principle is valid:

$$
\frac{(x, y) \in r \quad r \subseteq b(f(r))}{(x, y) \in \nu b}
$$

Soundness of up-to techniques is not a compositional notion and can be hard to establish.

Definition (Compatible up-to technique)
A monotone function $f: \text{Rel}_Q \to \text{Rel}_Q$ is compatible w.r.t. νb when $f \circ b(r) \subseteq b \circ f(r)$ for all relations r.
Sound and Compatible up-to techniques

Definition (Sound up-to technique)
A function \(f: \text{Rel}_Q \to \text{Rel}_Q \) is sound w.r.t. \(\nu b \) when the coinduction up-to \(f \) proof principle is valid:

\[
(x, y) \in r \quad r \subseteq b(f(r)) \quad \Rightarrow \quad (x, y) \in \nu b
\]

Soundness of up-to techniques is not a compositional notion and can be hard to establish.

Definition (Compatible up-to technique)
A monotone function \(f: \text{Rel}_Q \to \text{Rel}_Q \) is compatible w.r.t. \(\nu b \) when \(f \circ b(r) \subseteq b \circ f(r) \) for all relations \(r \).

Lemma: Compatibility implies soundness.
Example: language equivalence for NFAs

Example

Up-to congruence closure is a sound up-to technique w.r.t. language equivalence for determinized NFAs.
Example: language equivalence for NFAs

Example

Up-to congruence closure is a sound up-to technique w.r.t. language equivalence for determinized NFAs.

Two crucial observations:
Example: language equivalence for NFAs

Example

Up-to congruence closure is a sound up-to technique w.r.t. language equivalence for determinized NFAs.

Two crucial observations:

• Language equivalence coincides with bisimilarity for deterministic automata, i.e. is \(\nu b \) for \(b : \text{Rel}_Q \rightarrow \text{Rel}_Q \) given by

\[
b(r) = \{(x, y) \mid o(x) = o(y) \text{ and } \forall a \in A, (\delta_a(x), \delta_b(y)) \in r\}
\]
Example: language equivalence for NFAs

Example

Up-to congruence closure is a sound up-to technique w.r.t. language equivalence for determinized NFAs.

Two crucial observations:

• Language equivalence coincides with bisimilarity for deterministic automata, i.e. is \(\nu b \) for \(b: \text{Rel}_Q \rightarrow \text{Rel}_Q \) given by

\[
b(r) = \{(x, y) \mid o(x) = o(y) \text{ and } \forall a \in A, (\delta_a(x), \delta_b(y)) \in r\}
\]

• The determinization of an NFA with states \(Q \) also has an algebraic structure: \(\mathcal{P}Q \) is a join-semilattice, and, moreover:

\[
L(X) \cup L(Y) = L(X \cup Y), \quad \text{for } X, Y \in \mathcal{P}Q.
\]
Example: language equivalence for NFAs

To prove that two states x and y in an NFA accept the same language it suffices to compute a bisimulation relating $\{x\}$ and $\{y\}$ in the determinized automaton.
Example: language equivalence for NFAs

To prove that two states \(x \) and \(y \) in an NFA accept the same language it suffices to compute a bisimulation relating \(\{x\} \) and \(\{y\} \) in the determinized automaton.

Define **up-to congruence** as the map \(\text{cgr}: \text{Rel}_{PQ} \rightarrow \text{Rel}_{PQ} \) sending a relation \(r \) to its closure under equivalence and the rule:

\[
\begin{align*}
(X_1, Y_1) \in r & \quad (X_2, Y_2) \in r \\
\hline
(X_1 \cup X_2, Y_1 \cup Y_2) & \in r
\end{align*}
\]
Example: language equivalence for NFAs

To prove that two states x and y in an NFA accept the same language it suffices to compute a bisimulation relating \{x\} and \{y\} in the determinized automaton.

Define **up-to congruence** as the map $\text{cgr}: \text{Rel}_{PQ} \to \text{Rel}_{PQ}$ sending a relation r to its closure under equivalence and the rule:

$$
(X_1, Y_1) \in r \quad (X_2, Y_2) \in r \\
(X_1 \cup X_2, Y_1 \cup Y_2) \in r
$$

The proof principle:

$$
(x, y) \in r \quad r \subseteq b(\text{cgr}(r)) \\
(x, y) \in \nu b
$$

is valid. The HKC algorithm [Bonchi and Pous, POPL’13] computes on-the-fly a bisimulation **up-to congruence** relating \{x\} and \{y\}.
Moving to behavioural metrics

In a quantitative setting, exact behavioural equivalences are not robust notions, remember Radu’s talk: “Probabilistic bisimulations are useless”.
Moving to behavioural metrics

In a quantitative setting, exact behavioural equivalences are not robust notions, remeber Radu’s talk: “Probabilistic bisimulations are useless”.

One replaces notions of equivalence between processes by notions of distances between processes, an idea originally due to Jou and Smolka 1990.
Moving to behavioural metrics

In a quantitative setting, exact behavioural equivalences are not robust notions, remember Radu’s talk: “Probabilistic bisimulations are useless”.

One replaces notions of equivalence between processes by notions of distances between processes, an idea originally due to Jou and Smolka 1990.

We have seen how one can lift distances between states of a system to distances between probability distributions on these state spaces.
Moving to behavioural metrics

In a quantitative setting, exact behavioural equivalences are not robust notions, remember Radu’s talk: “Probabilistic bisimulations are useless”.

One replaces notions of equivalence between processes by notions of distances between processes, an idea originally due to Jou and Smolka 1990.

We have seen how one can lift distances between states of a system to distances between probability distributions on these state spaces.

Computing behavioural metrics is not easy... Can we use up-to techniques? In the process we also discuss systematic liftings of arbitrary Set-functors to pseudo-metrics.
Running example: distance between regular languages

Definition (Shortest distinguishing word distance)
Given two languages \(L \) and \(K \), define

\[
d_{sdw}(L, K) = c^{|w|},
\]

where \(c \) is a constant such that \(0 < c < 1 \) and \(w \) is the shortest word which belongs to exactly one of the languages \(L, K \).
Definition (Shortest distinguishing word distance)
Given two languages L and K, define

$$d_{sdw}(L, K) = c^{|w|},$$

where c is a constant such that $0 < c < 1$ and w is the shortest word which belongs to exactly one of the languages L, K.

Example: In the NFA below $d_{sdw}(x_0, y_0) \leq c^n$.

How can we prove such inequalities more efficiently?
Running example: distance between regular languages

For a deterministic automaton, the distance d_{sdw} between the languages accepted by two states can be expressed as the greatest fixpoint νb of a function

$$b: [0, 1]^{Q \times Q} \to [0, 1]^{Q \times Q}$$

defined on the complete lattice $[0, 1]^{Q \times Q}$ ordered with the reversed point-wise order $<:

$$b(d)(q_1, q_2) = \begin{cases}
1, & \text{if only one of } q_1, q_2 \\
\cdot \max_{a \in A} d(\delta_a(q_1), \delta_a(q_2)), & \text{otherwise}
\end{cases}$$
Option 1 (coinduction): Determine the NFA and find a distance \overline{d} such that $\overline{d}(\{x_0\}, \{y_0\}) \leq c^n$ and $\overline{d} < b(\overline{d})$. Use the coinduction principle:

$$\overline{d} < b(\overline{d}) \quad \Rightarrow \quad \overline{d} < \sqrt{b}$$
Option 1 (coinduction): Determine the NFA and find a distance \bar{d} such that $\bar{d}(\{x_0\}, \{y_0\}) \leq c^n$ and $\bar{d} < b(\bar{d})$. Use the coinduction principle:

$$\bar{d} < b(\bar{d})$$

$$\bar{d} < \nu b$$

We obtain $\bar{d} < d_{sdw}$, and hence $d_{sdw}(\{x_0\}, \{y_0\}) \leq c^n$.

Running example: distance between regular languages

$$a, b \xrightarrow{a} x_0$$

$$a, b \xrightarrow{b} y_0$$

$$a, b \xrightarrow{a} x_1$$

$$a, b \xrightarrow{b} y_1$$

$$a, b \xrightarrow{a, b} x_2$$

$$a, b \xrightarrow{b} y_2$$

$$\cdots$$

$$a, b \xrightarrow{a} x_{n−1}$$

$$a, b \xrightarrow{b} y_{n−1}$$

$$a, b \xrightarrow{a} x_n$$

$$a, b \xrightarrow{b} y_n$$
Option 1 (coinduction): Determine the NFA and find a distance \bar{d} such that $\bar{d}(\{x_0\}, \{y_0\}) \leq c^n$ and $\bar{d} < b(\bar{d})$. Use the coinduction principle:

$\bar{d} < b(\bar{d})$

We obtain $\bar{d} < d_{sdw}$, and hence $d_{sdw}(\{x_0\}, \{y_0\}) \leq c^n$.

Disadvantage: we need to compute \bar{d} for exponentially many pairs of states.
Option 2 (coinduction up-to): use a sound up-to context technique which closes a $[0,1]$-valued relation under the rules:

\[
\begin{align*}
d(X_1, X_2) & \leq r \\
\Rightarrow f(d)(X_1, X_2) & \leq r \\
f(d)(Y_1, Y_2) & \leq r
\end{align*}
\]

\[
\begin{align*}
f(d)(X_1, X_2) & \leq r \\
\Rightarrow f(d)(Y_1, Y_2) & \leq r \\
f(d)(X_1 \cup Y_1, X_2 \cup Y_2) & \leq r
\end{align*}
\]
Option 2 (coinduction up-to): use a sound up-to context technique which closes a $[0,1]$-valued relation under the rules:

\[
\begin{align*}
\frac{d(X_1, X_2) \leq r}{f(d)(X_1, X_2) \leq r} & \quad \frac{f(d)(X_1, X_2) \leq r}{f(d)(Y_1, Y_2) \leq r} \quad \frac{f(d)(Y_1, Y_2) \leq r}{f(d)(X_1 \cup Y_1, X_2 \cup Y_2) \leq r}
\end{align*}
\]

Find a relaxed invariant \overline{d} such that $\overline{d} < b(f(\overline{d}))$ and $\overline{d}([x_0], [y_0]) \leq c^n$. Use the coinduction up-to principle to conclude $\overline{d} < d_{sdw}$, and hence $d_{sdw}(x_0, y_0) \leq c^n$.
Running example: distance between regular languages

Option 2 (coinduction up-to): use a sound up-to context technique which closes a \([0, 1]\)-valued relation under the rules:

\[
\begin{align*}
\frac{d(X_1, X_2) \leq r}{f(d)(X_1, X_2) \leq r} & \quad \frac{f(d)(X_1, X_2) \leq r}{f(d)(Y_1, Y_2) \leq r} \\
\end{align*}
\]

Find a relaxed invariant \(\overline{d}\) such that \(\overline{d} < b(f(\overline{d}))\) and

\(\overline{d}(\{x_0\}, \{y_0\}) \leq c^n\). Use the coinduction up-to principle to conclude

\(\overline{d} < d_{sdw}\), and hence \(d_{sdw}(x_0, y_0) \leq c^n\).

Define \(\overline{d}(\{x_i\}, \{y_j\}) = c^{n-\max\{i,j\}}\) and \(\overline{d}(X, Y) = 1\) for all other values.

Notice that it suffices to define \(\overline{d}\) on a linear number of pairs.
Running example: distance between regular languages

From the generic framework developed in the rest of the talk, we will establish:

- how both b and f can be expressed in terms of so called Wasserstein liftings of functors to $[0,1]$-valued relations.
- why the soundness of f follows from a generic framework developed previously for up-to techniques in a fibrational setting.
Part II: Soundness of up-to techniques for behavioural metrics
Use the fibrational framework of our previous CSL-LICS’2014 paper to prove the soundness of the quantitative version of the up-to congruence technique. To this end:

- Coinductive predicates (in particular, behavioural metrics) can be expressed via functor liftings
- Up-to techniques can also be expressed via functor liftings
- Discuss functor liftings and in particular what we will call the Wasserstein lifting of a functor
- Apply all this machinery in the example of d_{sdw}
We consider systems modelled as coalgebras for a functor $F : \text{Set} \to \text{Set}$, i.e. maps of the form $\xi : X \to FX$.
Coinductive predicates via functor liftings

We consider systems modelled as coalgebras for a functor $F: \text{Set} \to \text{Set}$, i.e. maps of the form $\xi: X \to FX$.

Coinductive predicates describing properties of a coalgebra $\xi: X \to FX$ can be seen as post-fixpoints of a composite map b

$$b: \text{Rel}_X \xrightarrow{\overline{F}} \text{Rel}_{FX} \xrightarrow{\xi^{-1}} \text{Rel}_X$$
Coinductive predicates via functor liftings

We consider systems modelled as coalgebras for a functor $F: \text{Set} \to \text{Set}$, i.e. maps of the form $\xi: X \to FX$.

Coinductive predicates describing properties of a coalgebra $\xi: X \to FX$ can be seen as post-fixpoints of a composite map b

$$b: \text{Rel}_X \xrightarrow{\bar{F}} \text{Rel}_{FX} \xrightarrow{\xi^{-1}} \text{Rel}_X$$

where \bar{F} is a “lifting” of F mapping relations on X to relations on FX and for $R \subseteq FX \times FX$

$$(x, y) \in \xi^{-1}(R) \iff (\xi(x), \xi(y)) \in R$$
Example 1: language equivalence via functor liftings

Forgetting about the initial state, a DFA is a coalgebra for the functor $F X = 2 \times X^A$, i.e. a map of the form

$$\langle o, \delta \rangle: X \to 2 \times X^A,$$

with $o(q) = 1$ iff q is accepting and $\delta(q)(a) = \delta_a(q)$.
Example 1: language equivalence via functor liftings

Forgetting about the initial state, a DFA is a coalgebra for the functor $FX = 2 \times X^A$, i.e. a map of the form

$$\langle o, \delta \rangle : X \to 2 \times X^A,$$

with $o(q) = 1$ iff q is accepting and $\delta(q)(a) = \delta_a(q)$.

Language equivalence is the largest fixpoint of the composite map

$$b : \text{Rel}_X \xrightarrow{\bar{F}} \text{Rel}_{FX} \xrightarrow{\langle o, \delta \rangle^{-1}} \text{Rel}_X$$
Example 1: language equivalence via functor liftings

Forgetting about the initial state, a DFA is a coalgebra for the functor $FX = 2 \times X^A$, i.e. a map of the form

$$\langle o, \delta \rangle : X \rightarrow 2 \times X^A,$$

with $o(q) = 1$ iff q is accepting and $\delta(q)(a) = \delta_a(q)$.

Language equivalence is the largest fixpoint of the composite map

$$b : \text{Rel}_X \xrightarrow{\overline{F}} \text{Rel}_{FX} \xrightarrow{\langle o, \delta \rangle^{-1}} \text{Rel}_X$$

where \overline{F} denotes here the so-called canonical lifting of F, i.e., for $R \subseteq X \times X$ and $(o_i, \phi_i) \in FX$ we have

$$(o_1, \phi_1) \overline{F}(R) (o_2, \phi_2)$$

iff

$$\begin{cases} o_1 = o_2 \\ \forall a \in A \quad \phi_1(a) R \phi_2(a) \end{cases}$$
Example 2: distance between regular languages

Forgetting about the initial state, a DFA is a coalgebra for the functor $FX = 2 \times X^A$, i.e. a map of the form

$$\langle o, \delta \rangle : X \to 2 \times X^A,$$

with $o(q) = 1$ iff q is accepting and $\delta(q)(a) = \delta_a(q)$.
Example 2: distance between regular languages

Forgetting about the initial state, a DFA is a coalgebra for the functor $FX = 2 \times X^A$, i.e. a map of the form

$$\langle o, \delta \rangle: X \to 2 \times X^A,$$

with $o(q) = 1$ iff q is accepting and $\delta(q)(a) = \delta_a(q)$.

The distance d_{sdw} is the largest fixpoint of the monotone map b on the lattice of $[0,1]$-valued relations, ordered by \prec (the point-wise reverse order on the reals). This is obtained as the composite

$$b: [0,1]\text{-Rel}_X \xrightarrow{\bar{F}} [0,1]\text{-Rel}_{FX} \xrightarrow{\langle o, \delta \rangle^{-1}} [0,1]\text{-Rel}_X$$
Example 2: distance between regular languages

Forgetting about the initial state, a DFA is a coalgebra for the functor $FX = 2 \times X^A$, i.e. a map of the form

$$\langle o, \delta \rangle: X \to 2 \times X^A,$$

with $o(q) = 1$ iff q is accepting and $\delta(q)(a) = \delta_a(q)$.

The distance d_{sdw} is the largest fixpoint of the monotone map b on the lattice of $[O, 1]$-valued relations, ordered by $<$ (the point-wise reverse order on the reals). This is obtained as the composite

$$b: [O, 1]\text{-Rel}_X \xrightarrow{\bar{F}} [O, 1]\text{-Rel}_{FX} \xrightarrow{\langle o, \delta \rangle^{-1}} [O, 1]\text{-Rel}_X$$

where \bar{F} is defined for $d: X \times X \to [O, 1]$ by

$$(o_1, \phi_1) \bar{F}(d) (o_2, \phi_2) \text{ iff } \begin{cases} 1 & \text{if } o_1 \neq o_2 \\ c \cdot \max_{a \in A} d(\phi_1(a), \phi_2(a)) & \text{otherwise} \end{cases}$$
Up-to context closure via functor liftings

If we consider now a system, which is not only modelled as a coalgebra, but is also equipped with a compatible algebraic structure, it makes sense to consider the up-to congruence technique with respect to this algebraic structure.
If we consider now a system, which is not only modelled as a coalgebra, but is also equipped with a compatible algebraic structure, it makes sense to consider the up-to congruence technique with respect to this algebraic structure.

Definition (Bialgebra)
Consider two functors F, T and a natural transformation $\zeta : TF \Rightarrow FT$. A bialgebra for ζ is a tuple (X, α, ξ) such that

$$\alpha : TX \rightarrow X$$

is a T-algebra,

$$\xi : X \rightarrow FX$$

is an F-coalgebra

so that the next diagram commutes.

$$\begin{array}{ccc} TX & \xrightarrow{\alpha} & X & \xrightarrow{\xi} & FX \\ \downarrow_{T\xi} & & \downarrow_{F\alpha} & & \uparrow_{\zeta X} \\ TFX & \xrightarrow{\zeta X} & FTX \end{array}$$
Bialgebras

Definition (Bialgebra)
Consider two functors F, T and a natural transformation $\zeta : TF \Rightarrow FT$. A bialgebra for ζ is a tuple (X, α, ξ) such that $\alpha : TX \to X$ is a T-algebra, $\xi : X \to FX$ is an F-coalgebra so that the next diagram commutes.

\[
\begin{array}{ccc}
TX & \xrightarrow{\alpha} & X \\
\downarrow{T\xi} & & \uparrow{F\alpha} \\
TFX & \xrightarrow{\zeta_X} & FTX
\end{array}
\]

Example
The determinization of an NFA with states Q is a bialgebra of the form $(\mathcal{P}Q, \cup, \gamma)$ for the functors $FX = 2 \times X^A$, $TX = \mathcal{P}X$ and $\zeta_X : \mathcal{P}(2 \times X^A) \to 2 \times (\mathcal{P}X)^A$ defined for $M \subseteq 2 \times X^A$ by

\[
\zeta_X(M) = (\bigvee_{(b,f) \in M} b, [a \mapsto \{f(a) \mid (b, f) \in M\}])
\]
Example 1: Up-to context closure for determinized NFAs

To sum up, a determinized NFA has both algebra and coalgebra structures, which are related by a distributive law:

\[\cup : \mathcal{P}\mathcal{P} \mathcal{Q} \to \mathcal{P} \mathcal{Q} \quad \text{and} \quad \xi : \mathcal{P} \mathcal{Q} \to 2 \times (\mathcal{P} \mathcal{Q})^A. \]
Example 1: Up-to context closure for determinized NFAs

To sum up, a determinized NFA has both algebra and coalgebra structures, which are related by a distributive law:

\[\cup : \mathcal{P} \mathcal{P} Q \to \mathcal{P} Q \quad \text{and} \quad \xi : \mathcal{P} Q \to 2 \times (\mathcal{P} Q)^A. \]

Context closure \(\text{ctx} : \text{Rel}_{\mathcal{P} Q} \to \text{Rel}_{\mathcal{P} Q} \) of a relation \(r \) on \(\mathcal{P} Q \) is defined via the rule:

\[
(X_1, Y_1) \in r \quad (X_2, Y_2) \in r \\
(\underbrace{X_1 \cup X_2}, \underbrace{Y_1 \cup Y_2}) \in \text{ctx}(r)
\]
Example 1: Up-to context closure for determinized NFAs

To sum up, a determinized NFA has both algebra and coalgebra structures, which are related by a distributive law:

\[\cup: \mathcal{P}\mathcal{P}\mathcal{Q} \rightarrow \mathcal{P}\mathcal{Q} \quad \text{and} \quad \xi: \mathcal{P}\mathcal{Q} \rightarrow 2 \times (\mathcal{P}\mathcal{Q})^A. \]

Context closure \(\text{ctx}: \text{Rel}_{\mathcal{P}\mathcal{Q}} \rightarrow \text{Rel}_{\mathcal{P}\mathcal{Q}} \) of a relation \(r \) on \(\mathcal{P}\mathcal{Q} \) is defined via the rule:

\[
\frac{(X_1, Y_1) \in r \quad (X_2, Y_2) \in r}{(X_1 \cup X_2, Y_1 \cup Y_2) \in \text{ctx}(r)}
\]

This can be seen as the composite map:

\[
\text{ctx}: \text{Rel}_{\mathcal{P}\mathcal{Q}} \xrightarrow{\bar{\mathcal{P}}} \text{Rel}_{\mathcal{P}\mathcal{P}\mathcal{Q}} \xrightarrow{\Sigma_\cup} \text{Rel}_{\mathcal{P}\mathcal{Q}}
\]

where \(\bar{\mathcal{P}} \) is the canonical relation lifting of \(\mathcal{P} \) and \(\Sigma_\cup \) is forward image along the \(\cup \).
Example 1: Up-to context closure for determinized NFAs

Context closure $\text{ctx}: \text{Rel}_{PQ} \rightarrow \text{Rel}_{PQ}$ of a relation r on PQ is defined via the rule:

$$(X_1, Y_1) \in r \quad (X_2, Y_2) \in r$$

$$(X_1 \cup X_2, Y_1 \cup Y_2) \in \text{ctx}(r)$$

This can be seen as the composite map:

$$\text{ctx}: \text{Rel}_{PQ} \xrightarrow{\overline{P}} \text{Rel}_{\overline{P}PQ} \xrightarrow{\Sigma_\cup} \text{Rel}_{PQ}$$

where \overline{P} is the canonical relation lifting of P and Σ_\cup is forward image along the \cup, i.e., for $R \in \text{Rel}_{PQ}$ and $S \in \text{Rel}_{\overline{P}PQ}$:

- $(X, Y) \in \overline{P}(R)$ iff
 $$\forall A \in X, \exists B \in Y \quad (A, B) \in R$$
 $$\forall B \in Y, \exists A \in X \quad (A, B) \in R$$
- $(X, Y) \in \Sigma_\cup(S)$ iff $X = \cup X$, $Y = \cup Y$ and $(X, Y) \in S$.

21 / 38
Example 2: Quantitative up-to context closure for determinized NFAs

Definition (Quantitative context closure)
The quantitative context closure \(f: \text{Rel}_{PQ} \to \text{Rel}_{PQ} \) considered in the running example is defined as the composite

\[
f: [0, 1]-\text{Rel}_{PQ} \xrightarrow{\overline{P}} [0, 1]-\text{Rel}_{PPQ} \xrightarrow{\Sigma_{U}} [0, 1]-\text{Rel}_{PQ}
\]
Example 2: Quantitative up-to context closure for determinized NFAs

Definition (Quantitative context closure)
The quantitative context closure \(f: \text{Rel}_{PQ} \rightarrow \text{Rel}_{PQ} \) considered in the running example is defined as the composite

\[
\begin{align*}
f &: [0, 1]-\text{Rel}_{PQ} \xrightarrow{\overline{P}} [0, 1]-\text{Rel}_{P\cup P} \xrightarrow{\Sigma_{\cup}} [0, 1]-\text{Rel}_{PQ}
\end{align*}
\]

where \(\overline{P} \) is the “canonical” \([0, 1]\)-relation lifting of \(P \), equipping \(P \times X \) with the Hausdorff distance and \(\Sigma_{\cup} \) is forward image along the \(\cup \),
Definition (Quantitative context closure)
The quantitative context closure $f: \text{Rel}_{PQ} \rightarrow \text{Rel}_{PQ}$ considered in the running example is defined as the composite

$$f: [0, 1]-\text{Rel}_{PQ} \xrightarrow{\overline{P}} [0, 1]-\text{Rel}_{P\cup Q} \xrightarrow{\Sigma_{U}} [0, 1]-\text{Rel}_{PQ}$$

where \overline{P} is the “canonical” $[0, 1]$-relation lifting of P, equipping $P \times X$ with the Hausdorff distance and Σ_{U} is forward image along the \cup, i.e., for $d \in [0, 1]-\text{Rel}_{PQ}$ and $s \in [0, 1]-\text{Rel}_{P\cup Q}$:

- $\overline{P}(d)(X_1, X_2) = \sup \{ \sup \inf d(x_1, x_2), \sup \inf d(x_1, x_2) \}$

- $\Sigma_{U}(s)(X, Y) = \inf \{ s(X, Y) / \text{divides}.alt0 \cup X = X, \cup Y = Y \}$
Example 2: Quantitative up-to context closure for determinized NFAs

Definition (Quantitative context closure)
The quantitative context closure $f : \text{Rel}_{PQ} \to \text{Rel}_{PQ}$ considered in the running example is defined as the composite

$$f : [0, 1]-\text{Rel}_{PQ} \xrightarrow{\overline{P}} [0, 1]-\text{Rel}_{P\overline{P}Q} \xrightarrow{\Sigma_U} [0, 1]-\text{Rel}_{PQ}$$

where \overline{P} is the “canonical” $[0, 1]$-relation lifting of P, equipping $P \times X$ with the Hausdorff distance and Σ_U is forward image along the \cup, i.e., for $d \in [0, 1]-\text{Rel}_{PQ}$ and $s \in [0, 1]-\text{Rel}_{P\overline{P}Q}$:

- $\overline{P}(d)(X_1, X_2) = \sup \{ \sup_{x_1 \in X_1} \inf_{x_2 \in X_2} d(x_1, x_2), \sup_{x_2 \in X_2} \inf_{x_1 \in X_1} d(x_1, x_2) \}$
- $\Sigma_U(s)(X, Y) = \inf \{ s(\mathcal{X}, \mathcal{Y}) \mid \cup \mathcal{X} = X, \cup \mathcal{Y} = Y \}$.
A common framework for quantitative and qualitative setting

\[\text{Rel}_X \xrightarrow{f} \text{Rel}_Y \]

Set

\[\text{properties} \]

\[\text{systems} \]
A common framework for quantitative and qualitative setting
A common framework for quantitative and qualitative setting

\[[0,1]-\text{Rel}_X \quad [0,1]-\text{Rel}_Y \]

\[X \xrightarrow{f} Y \]

\[\Sigma \]

\[\text{Set} \quad \text{systems} \]

\[\text{properties} \quad p \]

\[\text{ Set} \]

\[\text{ systems} \]
A common framework for quantitative and qualitative setting

\[[0, 1]-\text{Rel}_X \xrightarrow{\Sigma_f} [0, 1]-\text{Rel}_Y \]

Set properties

\[[0, 1]-\text{Rel} \]

systems
A functor $p : \mathcal{P} \to \mathcal{B}$ is called a fibration when for every morphism $f : X \to Y$ in \mathcal{B} and every R in \mathcal{P} with $p(R) = Y$ there exists a map $\tilde{f}_R : f^*(R) \to R$ such that $p(\tilde{f}_R) = f$ and satisfying the universal property:

For all maps $g : Z \to X$ in \mathcal{B} and $u : Q \to R$ in \mathcal{P} sitting above fg (i.e., $p(u) = fg$) there is a unique map $v : Q \to f^*(R)$ such that $u = \tilde{f}_R v$ and $p(v) = g$.
A functor $p : P \to B$ is called a fibration when for every morphism $f : X \to Y$ in B and every R in P with $p(R) = Y$ there exists a map $\tilde{f}_R : f^*(R) \to R$ such that $p(\tilde{f}_R) = f$ and satisfying the universal property:

For all maps $g : Z \to X$ in B and $u : Q \to R$ in P sitting above fg (i.e., $p(u) = fg$) there is a unique map $v : Q \to f^*(R)$ such that $u = \tilde{f}_R v$ and $p(v) = g$.
A functor $p: \mathcal{P} \to \mathcal{B}$ is called a **fibration** when for every morphism $f: X \to Y$ in \mathcal{B} and every R in \mathcal{P} with $p(R) = Y$ there exists a map $\tilde{f}_R: f^*(R) \to R$ such that $p(\tilde{f}_R) = f$ and satisfying the universal property:

For all maps $g: Z \to X$ in \mathcal{B} and $u: Q \to R$ in \mathcal{P} sitting above fg (i.e., $p(u) = fg$) there is a unique map $v: Q \to f^*(R)$ such that $u = \tilde{f}_R v$ and $p(v) = g$.

\[
\begin{align*}
\text{Q} & \xrightarrow{\forall u} & R \\
\text{f}^*(R) & \xrightarrow{\tilde{f}_R} & R \\
\text{Z} & \xrightarrow{fg} & \text{X} \\
\text{X} & \xrightarrow{f} & \text{Y}
\end{align*}
\]
A functor $p: \mathcal{P} \to \mathcal{B}$ is called a \textbf{fibration} when for every morphism $f: X \to Y$ in \mathcal{B} and every R in \mathcal{P} with $p(R) = Y$ there exists a map $\tilde{f}_R: f^*(R) \to R$ such that $p(\tilde{f}_R) = f$ and satisfying the universal property:

\[
\begin{array}{ccc}
Q & \xrightarrow{\forall u} & f^*(R) \\
\downarrow & & \downarrow \tilde{f}_R \\
& X & \xrightarrow{f} Y
\end{array}
\]

For all maps $g: Z \to X$ in \mathcal{B} and $u: Q \to R$ in \mathcal{P} sitting above fg (i.e., $p(u) = fg$) there is a unique map $v: Q \to f^*(R)$ such that $u = \tilde{f}_Rv$ and $p(v) = g$.

In a bi/fibration every reindexing has a left adjoint Σ_f/univ_f.
A functor \(p: \mathcal{P} \to \mathcal{B} \) is called a \textbf{fibration} when for every morphism \(f: X \to Y \) in \(\mathcal{B} \) and every \(R \) in \(\mathcal{P} \) with \(p(R) = Y \) there exists a map \(\tilde{f}_R: f^*(R) \to R \) such that \(p(\tilde{f}_R) = f \) and satisfying the universal property:

For all maps \(g: Z \to X \) in \(\mathcal{B} \) and \(u: Q \to R \) in \(\mathcal{P} \) sitting above \(fg \) (i.e., \(p(u) = fg \)) there is a unique map \(v: Q \to f^*(R) \) such that \(u = \tilde{f}_R v \) and \(p(v) = g \).

In a \textbf{bifibration} every reindexing has a left adjoint \(\Sigma_f \vdash f^* \).
Liftings of functors

Given a fibration \(p: \mathbb{P} \rightarrow \mathbb{B} \) and a functor \(F: \mathbb{B} \rightarrow \mathbb{B} \), a lifting of \(F \) is a functor \(\hat{F}: \mathbb{P} \rightarrow \mathbb{P} \) such that

\[
P \xrightarrow{\hat{F}} \mathbb{P} \quad \xleftarrow{p} \quad \mathbb{B} \xrightarrow{F} \mathbb{B}
\]

For every \(r \in \mathbb{P} \) and \(f: \mathbb{X} \rightarrow \mathbb{Y} \) in \(\mathbb{B} \), we have a canonical natural transformation

\[
F \circ f^* (R) \rightarrow (Ff \circ F)(R)
\]

The lifting \(\hat{F} \) is called a fibred lifting of \(F \) when the above natural transformation is an isomorphism for every \(r \).
Liftings of functors

Given a fibration \(p: \mathcal{P} \to \mathcal{B} \) and a functor \(F: \mathcal{B} \to \mathcal{B} \), a lifting of \(F \) is a functor \(\widehat{F}: \mathcal{P} \to \mathcal{P} \) such that

\[
\begin{array}{ccc}
\mathcal{P} & \xrightarrow{\widehat{F}} & \mathcal{P} \\
p & \downarrow & \downarrow p \\
\mathcal{B} & \xrightarrow{F} & \mathcal{B}
\end{array}
\]

For every \(r \in \mathcal{P}_Y \) and \(f: \mathcal{X} \to \mathcal{Y} \) in \(\mathcal{B} \), we have a canonical natural transformation

\[
\overline{F} \circ f^*(R) \to (Ff)^* \circ \overline{F}(R).
\]

The lifting \(\widehat{F} \) is called a fibred lifting of \(F \) when the above natural transformation is an isomorphism for every \(r \).
Consider a fibration $p: \mathbb{P} \to \mathbb{B}$ and a bialgebra in \mathbb{B}

\[TX \xrightarrow{\alpha} X \xrightarrow{\gamma} FX \]

\[T \gamma \downarrow \quad \quad \quad \quad \quad F \alpha \uparrow \]

\[TFX \xrightarrow{\zeta_X} FTX \]

Consider two liftings \overline{T} and \overline{F} of T, respectively F, to the category \mathbb{P} such that there exists a lifting $\overline{\zeta}: \overline{T} \circ \overline{F} \Rightarrow \overline{F} \circ \overline{T}$ of the distributive law ζ. Then the up-to technique

\[f: \mathbb{P}_X \xrightarrow{\overline{T}} \mathbb{P}_{TX} \xrightarrow{\Sigma_\alpha} \mathbb{P}_X \]

is sound with respect to the coinductive predicate defined by

\[b: \mathbb{P}_X \xrightarrow{\overline{F}} \mathbb{P}_{FX} \xrightarrow{\xi^*} \mathbb{P}_X \]
Lifting of functors to many-valued relations
Quantale valued predicates and relations

Definition
A quantale \mathcal{V} is a complete lattice equipped with an associative operation $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ which is distributive on both sides over arbitrary joins \lor. We assume the tensor is commutative and has a unit 1.
Quantale valued predicates and relations

Definition
A quantale \mathcal{V} is a complete lattice equipped with an associative operation $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ which is distributive on both sides over arbitrary joins \bigvee. We assume the tensor is commutative and has a unit 1.

Definition
Given a set X and a quantale \mathcal{V}, a \mathcal{V}-valued predicate on X is a map $p : X \to \mathcal{V}$. A \mathcal{V}-valued relation on X is a map $r : X \times X \to \mathcal{V}$.
Quantale valued predicates and relations

Definition
A quantale \mathcal{V} is a complete lattice equipped with an associative operation $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ which is distributive on both sides over arbitrary joins \bigvee. We assume the tensor is commutative and has a unit 1.

Definition
Given a set X and a quantale \mathcal{V}, a \mathcal{V}-valued predicate on X is a map $p : X \to \mathcal{V}$. A \mathcal{V}-valued relation on X is a map $r : X \times X \to \mathcal{V}$.

Given two \mathcal{V}-valued predicates $p, q : X \to \mathcal{V}$, we say that

$$p \leq q \iff \forall x \in X. \ p(x) \leq q(x).$$
Quantale valued predicates and relations

Definition
A quantale \mathcal{V} is a complete lattice equipped with an associative operation $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ which is distributive on both sides over arbitrary joins \vee. We assume the tensor is commutative and has a unit 1.

Definition
Given a set X and a quantale \mathcal{V}, a \mathcal{V}-valued predicate on X is a map $p : X \to \mathcal{V}$. A \mathcal{V}-valued relation on X is a map $r : X \times X \to \mathcal{V}$.

Given two \mathcal{V}-valued predicates $p, q : X \to \mathcal{V}$, we say that

$$p \leq q \iff \forall x \in X. p(x) \leq q(x).$$

A morphism between \mathcal{V}-valued predicates $p : X \to \mathcal{V}$ and $q : Y \to \mathcal{V}$ is a map $f : X \to Y$ such that $p \leq q \circ f$. We consider the category \mathcal{V}-Pred whose objects are \mathcal{V}-valued predicates and arrows are as above.
The bifibrations of \(\mathcal{V} \)-valued predicates

\[
\mathcal{V}\text{-Pred}_X \xrightarrow{f} \mathcal{V}\text{-Pred}_Y
\]

\[
\mathcal{V}\text{-Pred} \xrightarrow{p} \text{Set}
\]

properties systems
The bifibrations of \mathcal{V}-valued predicates

\[f^* (p) = p \circ f, \]
The bifibrations of \forall-valued predicates

$\forall\text{-Pred}_X \xrightarrow{\Sigma_f} \forall\text{-Pred}_Y$

f^*

$X \xrightarrow{f} Y$

$\forall\text{-Pred} \xrightarrow{p} \text{Set}$

properties

systems

- $f^*(p) = p \circ f$,
- $\Sigma_f(p)(y) = \bigvee \{p(x) \mid x \in f^{-1}(y)\}$
The bifibrations of \mathcal{V}-valued predicates and relations

We have a change-of-base situation, where $\Delta X = X \times X$.

We obtain a bifibration \mathcal{V}-Rel \rightarrow Set.

Remark: \mathcal{V}-categories are \mathcal{V}-valued relations $r : X \times X \rightarrow \mathcal{V}$ that are
• reflexive if for all $x \in X$ we have $r(x, x) \geq \text{false}$, and
• transitive if for all $x, y, z \in X$ we have $r(y, z) \otimes r(x, y) \leq r(x, y)$.

We also obtain a bifibration \mathcal{V}-Cat \rightarrow Set.

For the quantale $([\text{false}, \infty], \geq)$ these are the generalized pseudometrics from Lawvere's seminal paper.
The bifibrations of \(\mathcal{V} \)-valued predicates and relations

We have a change-of-base situation, where \(\Delta X = X \times X \).

\[
\begin{aligned}
\mathcal{V}\text{-Rel} & \xrightarrow{l} \mathcal{V}\text{-Pred} \\
\downarrow & \quad \downarrow \\
\text{Set} & \xrightarrow{\Delta} \text{Set}
\end{aligned}
\]

We obtain a bifibration \(\mathcal{V}\text{-Rel} \to \text{Set} \).

Remark: \(\mathcal{V} \)-categories are \(\mathcal{V} \)-valued relation \(r : X \times X \to \mathcal{V} \) that are

- reflexive if for all \(x \in X \) we have \(r(x, x) \geq 1 \), and
- transitive if for all \(x, y, z \in X \) we have \(r(y, z) \otimes r(x, y) \leq r(x, y) \).

We also obtain a bifibration \(\mathcal{V}\text{-Cat} \to \text{Set} \).
The bifibrations of \mathcal{V}-valued predicates and relations

We have a change-of-base situation, where $\Delta X = X \times X$.

$$
\begin{array}{ccc}
\mathcal{V}\text{-Rel} & \overset{\iota}{\longrightarrow} & \mathcal{V}\text{-Pred} \\
\downarrow & & \downarrow \\
\text{Set} & \overset{\Delta}{\longrightarrow} & \text{Set}
\end{array}
$$

We obtain a bifibration $\mathcal{V}\text{-Rel} \to \text{Set}$.

Remark: \mathcal{V}-categories are \mathcal{V}-valued relation $r : X \times X \to \mathcal{V}$ that are

- **reflexive** if for all $x \in X$ we have $r(x, x) \geq 1$, and
- **transitive** if for all $x, y, z \in X$ we have $r(y, z) \otimes r(x, y) \leq r(x, y)$.

We also obtain a bifibration $\mathcal{V}\text{-Cat} \to \text{Set}$.

For the quantale $([0, \infty], \geq_{[0, \infty]}, +, 0)$ these are the generalized pseudo-metrics from Lawvere's 1973 seminal paper.
A systematic way of lifting functors

Step 1: Lift a Set-functor F to a functor \hat{F} in the category of \forall-predicates.
A systematic way of lifting functors

\[\mathcal{V}\text{-Rel} \xrightarrow{l} \mathcal{V}\text{-Pred} \]

\[\downarrow \quad \downarrow \]

\[\text{Set} \xrightarrow{\Delta} \text{Set} \]

Step 1: Lift a Set-functor \(F \) to a functor \(\tilde{F} \) the category of \(\mathcal{V} \)-predicates.

Step 2: Transfer this lifting to a lifting \(\bar{F} \) on \(\mathcal{V} \)-relations.
A systematic way of lifting functors

\[
\begin{array}{c}
\nu\text{-Rel} \xrightarrow{\iota} \nu\text{-Pred} \\
\downarrow \quad \downarrow \\
\text{Set} \xrightarrow{\Delta} \text{Set}
\end{array}
\]

Step 1: Lift a Set-functor \(F \) to a functor \(\widehat{F} \) the category of \(\nu \)-predicates.

Step 2: Transfer this lifting to a lifting \(\overline{F} \) on \(\nu \)-relations.

Step 3: When does \(\overline{F} \) restrict to \(\nu \)-categories?
A systematic way of lifting functors

\[\mathcal{V}-\text{Rel} \xrightarrow{l} \mathcal{V}-\text{Pred} \]
\[\downarrow \quad \downarrow \]
\[\text{Set} \xrightarrow{\Delta} \text{Set} \]

Step 1: Lift a Set-functor \(F \) to a functor \(\hat{F} \) on the category \(\mathcal{V}-\text{Pred} \).

Proposition. There is a one-to-one correspondence between

- fibred liftings \(\overline{F} \) of \(F \) to \(\mathcal{V}-\text{Pred} \),
- monotone natural transformations \(\mathcal{V}^{-} \Rightarrow \mathcal{V}^{F^{-}} \),
- monotone evaluation maps \(\text{ev} : F\mathcal{V} \rightarrow \mathcal{V} \).

We also define \(\text{ev}_{\text{can}} : F\mathcal{V} \rightarrow \mathcal{V} \) as follows:

\[\text{ev}_{\text{can}}(u) = \bigvee \{ r \mid u \in F(\uparrow r) \}. \]
A systematic way of lifting functors

\[\mathcal{V} \text{-Rel} \xrightarrow{\lambda} \mathcal{V} \text{-Pred} \]

\[\text{Set} \xrightarrow{\Delta} \text{Set} \]

Step 2: Transfer the predicate lifting \(\hat{F} \) to a lifting \(\overline{F} \) on \(\mathcal{V} \)-relations.

\[\mathcal{V} \text{-Rel}_X \xrightarrow{\lambda_X} \mathcal{V} \text{-Rel}_F \]

\[\mathcal{V} \text{-Pred}_{\Delta X} \xrightarrow{\overline{F}_{\Delta X}} \mathcal{V} \text{-Pred}_{F \Delta X} \xrightarrow{\Sigma \lambda_X} \mathcal{V} \text{-Pred}_{\Delta FX} \]

where \(\lambda_X : F(X \times X) \rightarrow FX \times FX \) is given by the pairing of projections \(\langle F\pi_1, F\pi_2 \rangle \).
Step 2: Transfer the predicate lifting \widehat{F} to a lifting \overline{F} on \mathcal{V}-relations.

Concretely, the lifting \overline{F} is defined via “couplings”:

$$\overline{F}(p)(t_1, t_2) = \bigvee \{\widehat{F}(p)(t) \mid t \in F(X \times X), F\pi_i(t) = t_i\}$$

We call \overline{F} the Wasserstein lifting associated with \widehat{F}.
A systematic way of lifting functors

Step 3: When does \widetilde{F} restrict to \mathcal{V}-categories?

We have the following characterization theorem, where κ_X denotes the constant to 1 predicate on X, and for two predicates $p, q : X \to \mathcal{V}$ we denote by $p \otimes q : X \to \mathcal{V}$ the predicate mapping x to $p(x) \otimes q(x)$.

Theorem. Assume \widetilde{F} is a lifting of F to \mathcal{V}-Pred and \widetilde{F} is the corresponding \mathcal{V}-Rel Wasserstein lifting. Then

- If $\widetilde{F}(\kappa_X) \geq \kappa_{FX}$ then \widetilde{F} preserves reflexive relations,
A systematic way of lifting functors

Step 3: When does \bar{F} restrict to \mathcal{V}-categories?

We have the following characterization theorem, where κ_X denotes the constant to 1 predicate on X, and for two predicates $p, q : X \to \mathcal{V}$ we denote by $p \otimes q : X \to \mathcal{V}$ the predicate mapping x to $p(x) \otimes q(x)$.

Theorem. Assume \widehat{F} is a lifting of F to \mathcal{V}-Pred and \bar{F} is the corresponding \mathcal{V}-Rel Wasserstein lifting. Then

- If $\widehat{F}(\kappa_X) \geq \kappa_{FX}$ then \bar{F} preserves reflexive relations,
- If \widehat{F} is a fibred lifting, F preserves weak pullbacks and $\widehat{F}(p \otimes q) \geq \widehat{F}(p) \otimes \widehat{F}(q)$ then \bar{F} preserves transitive relations,
A systematic way of lifting functors

Step 3: When does \overline{F} restrict to \mathcal{V}-categories?

We have the following characterization theorem, where κ_X denotes the constant to 1 predicate on X, and for two predicates $p, q: X \to \mathcal{V}$ we denote by $p \otimes q: X \to \mathcal{V}$ the predicate mapping x to $p(x) \otimes q(x)$.

Theorem. Assume \widehat{F} is a lifting of F to \mathcal{V}-Pred and \overline{F} is the corresponding \mathcal{V}-Rel Wasserstein lifting. Then

- If $\widehat{F}(\kappa_X) \geq \kappa_{FX}$ then \overline{F} preserves reflexive relations,
- If \widehat{F} is a fibred lifting, F preserves weak pullbacks and $\widehat{F}(p \otimes q) \geq \widehat{F}(p) \otimes \widehat{F}(q)$ then \overline{F} preserves transitive relations,
- \overline{F} preserves symmetric relations.
A systematic way of lifting functors

Step 3: When does \bar{F} restrict to \mathcal{V}-categories?

We have the following characterization theorem, where κ_X denotes the constant to 1 predicate on X, and for two predicates $p, q: X \to \mathcal{V}$ we denote by $p \otimes q: X \to \mathcal{V}$ the predicate mapping x to $p(x) \otimes q(x)$.

Theorem. Assume \widehat{F} is a lifting of F to \mathcal{V}-Pred and \bar{F} is the corresponding \mathcal{V}-Rel *Wasserstein lifting*. Then

- If $\widehat{F}(\kappa_X) \geq \kappa_{FX}$ then \bar{F} preserves reflexive relations,
- If \widehat{F} is a fibred lifting, F preserves weak pullbacks and $\widehat{F}(p \otimes q) \geq \widehat{F}(p) \otimes \widehat{F}(q)$ then \bar{F} preserves transitive relations,
- \bar{F} preserves symmetric relations.

Whenever F preserves weak pullbacks the canonical evaluation lifting \widehat{F}_{can} satisfies the above conditions.
Theorem
Assume the natural transformation $\zeta: T \circ F \Rightarrow F \circ T$ lifts to a natural transformation $\hat{\zeta}: \hat{T} \circ \hat{F} \Rightarrow \hat{F} \circ \hat{T}$ between V-predicate liftings and that we have $\hat{T} \circ \sum \chi_x^F \leq \sum T \chi_x^F \circ \hat{T}$. Then ζ lifts to a distributive law $\bar{\zeta}: \bar{T} \circ \bar{F} \Rightarrow \bar{F} \circ \bar{T}$ between the corresponding Wasserstein liftings.
Lifting distributive laws to Wasserstein liftings

Theorem
Assume the natural transformation \(\zeta : T \circ F \Rightarrow F \circ T \) lifts to a natural transformation \(\hat{\zeta} : \hat{T} \circ \hat{F} \Rightarrow \hat{F} \circ \hat{T} \) between \(\mathcal{V} \)-predicate liftings and that we have \(\hat{T} \circ \Sigma_{X}^{F} \leq \Sigma_{T}^{X} \circ \hat{T} \). Then \(\zeta \) lifts to a distributive law \(\overline{\zeta} : \overline{T} \circ \overline{F} \Rightarrow \overline{F} \circ \overline{T} \) between the corresponding Wasserstein liftings.

Theorem
Assume that \(\zeta : T \circ F \Rightarrow F \circ T \) is a natural transformation and that, furthermore, \(T \) preserves weak pullbacks and \(F \) preserves intersections. Then \(\zeta \) lifts to a natural transformation

\[
\hat{\zeta} : \hat{T}_{\text{can}} \circ \hat{F}_{\text{can}} \Rightarrow \hat{F}_{\text{can}} \circ \hat{T}_{\text{can}} .
\]
Closing the circle: the d_{sdw} example
The determinization of an NFA is a bialgebra for a distributive law \(\zeta : \mathcal{P}(2 \times X^A) \rightarrow 2 \times (\mathcal{P}X)^A \).
• The determinization of an NFA is a bialgebra for a distributive law \(\zeta : \mathcal{P}(2 \times X^A) \rightarrow 2 \times (\mathcal{P}X)^A \).

• The coinductive predicates \(b \) and the up-to technique \(f \) can be described using suitable Wasserstein liftings.
• The determinization of an NFA is a bialgebra for a distributive law $\zeta: \mathcal{P}(2 \times X^A) \to 2 \times (\mathcal{P}X)^A$.

• The coinductive predicates b and the up-to technique f can be described using suitable Wasserstein liftings.

• The above theorems can be used to show that the distributive law ζ can be lifted to a distributive lifting between the Wasserstein liftings.
Proving soundness of the quantitative up-to context closure

• The determinization of an NFA is a bialgebra for a distributive law $\zeta: \mathcal{P}(2 \times X^A) \to 2 \times (\mathcal{P}X)^A$.

• The coinductive predicates b and the up-to technique f can be described using suitable Wasserstein liftings.

• The above theorems can be used to show that the distributive law ζ can be lifted to a distributive lifting between the Wasserstein liftings.

• Use the CSL-LICS’14 result to infer the soundness of the up-to technique.
Conclusions
Summary and future work

- We proved soundness of a quantitative version of the up-to context closure technique.

- We introduced a systematic definition and analysis of the Wasserstein lifting using fibrations, generalizing previous work on pseudo-metrics by Baldan et al.

- How does this relate to other fibrational approaches to functor liftings, e.g. the codensity liftings of Katsumata and Sato? Can we envisage a generic Kantorovich-Rubinstein duality?

- Future work: can we capture the work of Chatzikokolakis et al. on up-to techniques for behavioural metrics in a probabilistic setting?
Summary and future work

• We proved soundness of a quantitative version of the up-to context closure technique.
• We introduced a systematic definition and analysis of the Wasserstein lifting using fibrations, generalizing previous work on pseudo-metrics by Baldan et. al.
Summary and future work

• We proved soundness of a quantitative version of the up-to context closure technique.
• We introduced a systematic definition and analysis of the Wasserstein lifting using fibrations, generalizing previous work on pseudo-metrics by Baldan et. al.
• How does this relate to other “fibrational” approaches to functor liftings, e.g. the codensity liftings of Katsumata and Sato? Can we envisage a generic Kantorovich-Rubinstein duality?
• Future work: can we capture the work of Chatzikokolakis et. al. on up-to techniques for behavioural metrics in a probabilistic setting?
Summary and future work

• We proved soundness of a quantitative version of the up-to-context closure technique.
• We introduced a systematic definition and analysis of the Wasserstein lifting using fibrations, generalizing previous work on pseudo-metrics by Baldan et. al.
• How does this relate to other “fibrational” approaches to functor liftings, e.g. the codensity liftings of Katsumata and Sato? Can we envisage a generic Kantorovich-Rubinstein duality?
• Future work: can we capture the work of Chatzikokolakis et. al. on up-to techniques for behavioural metrics in a probabilistic setting?