
Sharing Equality is Linear

Andrea Condoluci

Joint work with Beniamino Accattoli
Claudio Sacerdoti Coen

meeting
Lyon, September 26th

Structure of the Presentation

Evaluation & Conversion
Complexity
Sharing

Related Works

The Theory of Sharing Equality
λ-Graphs
Queries
Sharing Equivalences

Linear-Time Algorithm
First-order Check
Variables Check

Structure of the Presentation

Evaluation & Conversion
Complexity
Sharing

Related Works

The Theory of Sharing Equality
λ-Graphs
Queries
Sharing Equivalences

Linear-Time Algorithm
First-order Check
Variables Check

Evaluation & Conversion

É Fix a dialect λX of the λ-calculus

É With a deterministic evaluation strategy →X

É nfX(t) is the normal form of t with respect to →X

Evaluation
Given t, computing nfX(t)

Conversion
Given t and u, checking whether nfX(t) =α nfX(u)

Complexity

What is the complexity

of evaluation and conversion?

Parameters
É Input term: size of the initial term |t|

É Number of steps: number n such that t→n
X nfX(t)

Size explosion

There exists a family {tn}n∈N such that (for all λX):

tn →n
X nfX(tn)

with

|tn| ∈ O(n) and |nfX(tn)| ∈ Ω(2n)

Consequences

É Evaluation is exponential in n and |t|

É Conversion is also exponential

Sharing is caring

Add sharing to λX, obtaining λshX:

λX RAM

λshX

1. Turn to shared evaluation →shX

2. Compute shared normal forms nfshX(t)

3. Simulating →X up to sharing unfolding

i.e. so that nfshX(t)↓ = nfX(t)

Evaluation w/ sharing

Compute nfshX(t) instead of nfX(t)

Call-by-Value (CbV)

Let t→n
CbV nfCbV(t)

É Blelloch & Greiner, 1995

Polynomial in |t| and n

...

É Accattoli & Condoluci & Sacerdoti Coen, 2019

Linear in |t| and n

Conversion w/ Sharing
Given t and u:

1. Evaluation : computing nfshX(t) and nfshX(u)

2. Sharing equality : checking nfshX(t)↓ =α nfshX(u)↓

Evaluation is bilinear... what about sharing equality?

Problems
É It can be t 6=α u and yet t↓ =α u↓

É Sharing unfolding is exponential

Polynomial sharing equality

Testing without unfolding

Sharing Equality is Linear

Sharing equality

Given shared t and u, checking t↓ =α u↓

É Accatoli & Dal Lago, 2012

Sharing equality is O((|t|+ |u|)2)

Conversion is biquadratic — thus reasonable

É This talk: sharing equality is O(|t|+ |u|)

Conversion is bilinear

Structure of the Presentation

Evaluation & Conversion
Complexity
Sharing

Related Works

The Theory of Sharing Equality
λ-Graphs
Queries
Sharing Equivalences

Linear-Time Algorithm
First-order Check
Variables Check

Algorithms for Sharing Equality

Sharing equality

Given shared t and u, checking t↓ =α u↓

Let n := |t|+ |u|

Existing algorithms

É Accattoli & Dal Lago, 2012

O(n2) algorithm based on dynamic programming

É Grabmayer & Rochel, 2014

O(n logn) algorithm for λ-terms with letrec
(more general problem)

Related Problems

É First-order unification
Martelli & Montanari, 1977; Paterson & Wegman, 1978

É Nominal unification:
Two algorithms, adapting MM and PW, quadratic
Calvès & Fernandez and Levy & Villaret, 2010-13

É Nominal matching: linear only on unshared terms
Calvès & Fernandez 2010

É Pattern unification:
PW based, claimed linear — seems quadratic
Qian 1993

É DFAs equivalence: pseudo -linear
Hopcroft & Karp 1971

This Talk

Andrea Condoluci, Beniamino Accattoli and Clau-
dio Sacerdoti Coen, Sharing Equality is Linear , PPDP
2019, October 7th, 2019 Porto, Portugal.

https://arxiv.org/abs/1907.06101

É A simple theory of sharing equality
for λ-terms as DAGs λ-graphs

É A linear-time, two-phases algorithm
1. First-order check: based on PW
2. Variables check: binders and variables are shared

correctly

The splitting in two steps comes from the
developed theory

Structure of the Presentation

Evaluation & Conversion
Complexity
Sharing

Related Works

The Theory of Sharing Equality
λ-Graphs
Queries
Sharing Equivalences

Linear-Time Algorithm
First-order Check
Variables Check

Syntax Tree

(λx.x (λy.z)) ((λy.z)z)

App

vv ((
Absx

��

App

}}
App

|| ""

Absy

��

Varz

Varx Absy

��

Varz

Varz

Three kinds of nodes: App, Abs and Var

Syntax Tree (ii)

(λx.x (λy.z)) ((λy.z)z)

App

vv ((
Abs

��

App

}} !!
App

}} !!

Abs

��

fVarz

bVar

9999999999 9999

Abs

��

fVarz

fVarz

Bound variables (bVar) have a binding edge — the dashed one

λ-graph

(λx.x λy.z) (λy.z z)

App

}}

""

Abs

App

~~ !!

App

}}

��

bVar

CC

Abs

��
fVar z

Sharing in-degree > 1 (excluding binding edges)
Note: sharing of abstractions and under abstractions

Structural Conditions

App

yy

�� �� �� �� ����

Abs

%%
App

�� 		 		 		 		 				
bVar

NN

¿ (λx.xx) xx ?

É DAG: the graph is acyclic (excluding binding edges)

É Well-formed scopes: each λ-node dominates the
bVar-nodes it binds

Sharing Equality

App

zz $$

App

�� 		
App
��

App
��

App
zz %%

Abs

Abs

Abs

Abs

bVar

HH

bVar

HH

bVar

HH

bVary

HH

((λx.x) (λx.x)) ((λy.y) (λy.y))
vs.

((λx.x) (λy.y)) ((λx.x) (λy.y))

Problem
Are the two λ-graphs sharing equal ?

iff there exists a sharing equivalence

Bisimulations

Sharing equivalence is roughly a bisimulation

Definition (Bisimulation)

A binary relation B over the nodes of a λ-graph is a
bisimulation if it is:
É Homogeneous: B relates only nodes of the same

kind
É Compatible: B is closed under the following rules

App(n1, n2) B App(m1,m2) �
n1 Bm1

App(n1, n2) B App(m1,m2) �
n2 Bm2

Abs(n) B Abs(m) �
n Bm

bVar(n) B bVar(m)
�

n Bm

Sharing Equivalence

Definition (Sharing equivalence)

A binary relation ≡ over the nodes of a λ-graph is a
sharing equivalence if it is:

Equivalence ≡ is an equivalence relation

Bisimulation ≡ is a bisimulation

Open if fVar(x) ≡ fVar(y) then x = y

Sanity check
If G is a λ-graph and ≡ is a sharing equivalence over G,
then G/≡ is a λ-graph.

Example

G and ≡ G/≡

App

zz $$

App

�� ��
App

�� ��

App

�� ��

App

zz $$
Abs

��

Abs

��

Abs

��

Abs

��
bVar

GG

bVar

GG

bVar

GG

bVar

GG

App

�� ��
App

�� ��
Abs

��
bVar

GG

Sharing Equality Problem

Input A λ-graph G + two root nodes n and m of G

Problem Is there a sharing equivalence ≡ on G
such that n≡m?

More generally:

Input G + a query Q (any relation over roots)

Problem Is there a sharing equivalence ≡ on G
containing Q?

Example

App

zz $$

App

�� 		
App
��

App
��

App
zz $$

Abs

Abs

Abs

Abs

bVar

GG

bVar

GG

bVar

GG

bVar

GG

Problem
Is there a sharing equivalence ≡ containing a given
query Q?

Example

App

zz $$

App

�� 		
App
��

App
��

App
zz $$

Abs

Abs

Abs

Abs

bVar

GG

bVar

GG

bVar

GG

bVar

GG

Problem
Is there a sharing equivalence ≡ containing a given
query Q? Yep.

Propagated Queries

Propagation (·)⇓

Let Q be a query. Its propagation Q⇓ is the smallest
relation closed under the following rules:

App(n1, n2) B App(m1,m2)�
n1 Bm1

App(n1, n2) B App(m1,m2)�
n2 Bm2

Abs(n) B Abs(m)�

n Bm

bVar(n) B bVar(m)
�

n Bm

Universality of Q⇓

If there is an open bisimulation containing Q, then Q⇓
is the smallest open bisimulation containing Q

Spreaded Queries

Spreading (·)#

Let Q be a query. Its spreading Q# is the smallest
equivalence relation closed under:

App(n1, n2) B App(m1,m2)�
n1 Bm1

App(n1, n2) B App(m1,m2)�
n2 Bm2

Abs(n) B Abs(m)�

n Bm

bVar(n) B bVar(m)
�

n Bm

Universality of Q#

If there exists a sharing equivalence containing Q,
then Q# is the smallest sharing equivalence con-
taining Q

Sharing Equality Theorem

There exists a sharing equivalence containing Q

Q# is a sharing equivalence

Q⇓ is an open bisimulation

JQK holds, i.e. JnK = JmK for all n Q m

Sharing Equality Theorem

There exists a sharing equivalence containing Q

Q# is a sharing equivalence

Q⇓ is an open bisimulation

JQK holds, i.e. JnK = JmK for all n Q m

Read Back

App

}}

""

Abs

App

}} ""

App

||

��

bVar

BB

Abs

��
fVar z

Application: JApp(n,m)K := JnKJmK
Abstraction: JAbs(n)K := λ?. JnK

Bound Variable: JbVar(n)K := ?
Free Variable: JfVar(x)K := x

Read Back — Locally Nameless

App

}}

""

Abs

App

}} ""

App

||

��

bVar

BB

Abs

��
fVar z

• Jτ : r App(n,m)K := J(τ
�
): r nKJ(τ�): r mK

• Jτ : r Abs(n)K := λJ(τ

�

): r nK

• Jτ : r bVar(n)K := indexOf(n | τ : r)

• Jτ : r fVar(x)K := x

Jε : r rK = (λ 0 (λ z)) ((λ z) z)

Sharing Equality Theorem

There exists a sharing equivalence containing Q

Q# is a sharing equivalence

Q⇓ is an open bisimulation

JQK holds, i.e. JnK = JmK for all n Q m

Sharing Equality Theorem

There exists a sharing equivalence containing Q

Q# is a sharing equivalence

Q⇓ is an open bisimulation

JQK holds, i.e. JnK = JmK for all n Q m

Structure of the Presentation

Evaluation & Conversion
Complexity
Sharing

Related Works

The Theory of Sharing Equality
λ-Graphs
Queries
Sharing Equivalences

Linear-Time Algorithm
First-order Check
Variables Check

The Two Phases

Checking sharing equality

Compute Q#, then check that it is a sharing equiva-
lence

Two phases

1. First-order check: is Q# a FO bisimulation ?
2. Variables check: check variables and scopes

Once the first phase is solved, the second one is
straightforward

Note: the decomposition relies on the theory

Checking Sharing Equality

Compute Q#, then check that it is a sharing equiva-
lence

Difficulty 1

É Q# is an equivalence relation
É Equivalence relations have size quadratic in the

no. of nodes
É Idea: use a canonic element -based representation

of Q#

Difficulty 2

É Linearity requires to never merge equivalence
classes
É Idea (naïve): propagating Q downward by levels

Paterson & Wegman

Difficulty 2: linearity requires to never merge
equivalence classes

Paterson & Wegman idea

1. Start wherever
2. To process each node:

2.1 Process first the parent nodes
2.2 Process the ∼neighbors
2.3 Propagate only

Linearity achieved because:
É no global synchronisation
É canonic -based representation =c

É PW’s smart visit

First-order Check
Data: an initial state
Result: Fail or a final state

Procedure Main()
foreach node n do

if canonic(n) undefined
then
BuildClass(n)

end
end

Procedure Enqueue(m,c)
case m,c of

Abs(m′),Abs(c′) ⇒
create edge m′ ∼ c′

App(m1,m2),App(c1, c2) ⇒
create edges m1 ∼ c1
and m2 ∼ c2

bVar(__),bVar(__) ⇒ ()
fVar__, fVar(__) ⇒ ()
, ⇒ fail

end
canonic(m) := c
queue(c).push(m)

Procedure BuildClass(c)
canonic(c) := c
visiting(c) := true
queue(c) := {c}
while queue(c) is non-empty do

n := queue(c).pop()
foreach parent m of n do

case canonic(m) of
undefined ⇒ BuildClass(m)
c′ ⇒ if visiting(c′) then fail

end
end
foreach ∼neighbour m of n do

case canonic(m) of
undefined ⇒ Enqueue(m,c)
c′ ⇒ if c′ 6= c then fail

end
end

end
visiting(c) := false

Variables Check

Data: canonic(·) representation of Q#
Result: is Q# a sharing equivalence?

Procedure VarsCheck()

foreach variable node n do
case n,canonic(n) of

fVar(l), fVar(l′) ==>
assert canonic(l) = canonic(l′)

bVar(x),bVar(y) ==>
assert x = y

end
end

Conclusions

É Consequence: β-conversion is bilinear

É A theory of sharing equality independent of
algorithms

É A first / higher -order decomposition of the
problem

É A linear PW-like algorithm for sharing equality

É We implemented the algorithm and verified its
complexity

É On ArXiV : detailed proofs of correctness,
completeness, and linearity

Thanks for your attention!

	Evaluation & Conversion
	Complexity
	Sharing

	Related Works
	The Theory of Sharing Equality
	-Graphs
	Queries
	Sharing Equivalences

	Linear-Time Algorithm
	First-order Check
	Variables Check

