Sharing Equality is Linear

Andrea Condoluci

Joint work with Beniamino Accattoli
Claudio Sacerdoti Coen

chocola meeting
Lyon, September 26th
Structure of the Presentation

Evaluation & Conversion
 Complexity
 Sharing

Related Works

The Theory of Sharing Equality
 λ-Graphs
 Queries
 Sharing Equivalences

Linear-Time Algorithm
 First-order Check
 Variables Check
Structure of the Presentation

Evaluation & Conversion
 Complexity
 Sharing

Related Works

The Theory of Sharing Equality
 λ-Graphs
 Queries
 Sharing Equivalences

Linear-Time Algorithm
 First-order Check
 Variables Check
Evaluation & Conversion

- Fix a dialect λ_X of the λ-calculus
- With a deterministic evaluation strategy \rightarrow_X
- $nf_X(t)$ is the normal form of t with respect to \rightarrow_X

Evaluation
Given t, computing $nf_X(t)$

Conversion
Given t and u, checking whether $nf_X(t) =_\alpha nf_X(u)$
What is the complexity of evaluation and conversion?

Parameters

- **Input term**: size of the initial term $|t|$
- **Number of steps**: number n such that $t \rightarrow^n_{\times} n f_{\times}(t)$
There exists a family \(\{t_n\}_{n \in \mathbb{N}} \) such that (for all \(\lambda_X \)):

\[
 t_n \xrightarrow[n]{} _nf_X(t_n)
\]

with

\[
|t_n| \in O(n) \quad \text{and} \quad |n f_X(t_n)| \in \Omega(2^n)
\]

Consequences

- Evaluation is exponential in \(n \) and \(|t| \)
- Conversion is also exponential
Sharing is caring ❤️

Add **sharing** to λ_X, obtaining λ_{shX}:

$\lambda_X \quad \longrightarrow \quad \lambda_{shX} \quad \longrightarrow \quad \text{RAM}$

1. Turn to **shared evaluation** \rightarrow_{shX}

2. Compute **shared normal forms** $\text{nf}_{shX}(t)$

3. Simulating \rightarrow_X up to **sharing unfolding**

 i.e. so that $\text{nf}_{shX}(t) \downarrow = \text{nf}_X(t)$
Evaluation w/ sharing

Compute $\text{nf}_{shX}(t)$ instead of $\text{nf}_{X}(t)$

Call-by-Value (CbV)

Let $t \rightarrow^{n}_{CbV} \text{nf}_{CbV}(t)$

- Blelloch & Greiner, 1995
 - Polynomial in $|t|$ and n
 - …

- Accattoli & Condoluci & Sacerdoti Coen, 2019
 - Linear in $|t|$ and n
Conversion w/ Sharing

Given t and u:

1. **Evaluation**: computing $\text{nf}_{\text{shX}}(t)$ and $\text{nf}_{\text{shX}}(u)$

2. **Sharing equality**: checking $\text{nf}_{\text{shX}}(t) \downarrow =_{\alpha} \text{nf}_{\text{shX}}(u) \downarrow$

Evaluation is bilinear... what about sharing equality?

Problems

- It can be $t \not=_{\alpha} u$ and yet $t \downarrow =_{\alpha} u \downarrow$

- Sharing unfolding is **exponential**

Polynomial sharing equality

→ **Testing without** unfolding
Sharing Equality is Linear

Sharing equality

Given \textit{shared} \(t \) and \(u \), checking \(t\downarrow =_\alpha u\downarrow \)

- Accatoli & Dal Lago, 2012
 Sharing equality is \(O((|t| + |u|)^2) \)
 Conversion is \textit{biquadratic} — thus \textit{reasonable}

- \textbf{This talk}: sharing equality is \(O(|t| + |u|) \)
 Conversion is \textit{bilinear}
Structure of the Presentation

Evaluation & Conversion
 Complexity
 Sharing

Related Works

The Theory of Sharing Equality
 \(\lambda\)-Graphs
 Queries
 Sharing Equivalences

Linear-Time Algorithm
 First-order Check
 Variables Check
Algorithms for Sharing Equality

Sharing equality

Given shared t and u, checking $t \downarrow =_{\alpha} u \downarrow$

Let $n := |t| + |u|$

Existing algorithms

- Accattoli & Dal Lago, 2012
 $O(n^2)$ algorithm based on dynamic programming

- Grabmayer & Rochel, 2014
 $O(n \log n)$ algorithm for λ-terms with letrec
 (more general problem)
Related Problems

- **First-order unification**

- **Nominal unification:**
 Two algorithms, adapting MM and PW, quadratic
 Calvès & Fernandez and Levy & Villaret, 2010-13

- **Nominal matching:** linear only on unshared terms
 Calvès & Fernandez 2010

- **Pattern unification:**
 PW based, claimed linear — seems quadratic
 Qian 1993

- **DFAs equivalence:** pseudo-linear
 Hopcroft & Karp 1971
A simple theory of sharing equality for λ-terms as DAGs \rightarrow λ-graphs

A linear-time, two-phases algorithm

1. First-order check: based on PW
2. Variables check: binders and variables are shared correctly

The splitting in two steps comes from the developed theory
Structure of the Presentation

Evaluation & Conversion
 Complexity
 Sharing

Related Works

The Theory of Sharing Equality
 λ-Graphs
 Queries
 Sharing Equivalences

Linear-Time Algorithm
 First-order Check
 Variables Check
Syntax Tree

\[(\lambda x. x (\lambda y. z))((\lambda y. z) z)\]

Three kinds of nodes: App, Abs and Var
(λx. x (λy. z)) ((λy. z) z)

Bound variables (bVar) have a binding edge — the dashed one
Sharing in-degree > 1 (excluding binding edges)

Note: sharing of abstractions and under abstractions
Structural Conditions

\(\lambda (\lambda x.xx) \, xx \) ?

- **DAG**: the graph is acyclic (excluding binding edges)

- **Well-formed scopes**: each \(\lambda \)-node dominates the bVar-nodes it binds
Sharing Equality

Problem
Are the two \(\lambda \)-graphs sharing equal? iff there exists a sharing equivalence.
Bisimulations

Sharing equivalence is **roughly a bisimulation**

Definition (Bisimulation)

A binary relation B over the nodes of a λ-graph is a **bisimulation** if it is:

- **Homogeneous**: B relates only nodes of the same kind
- **Compatible**: B is closed under the following rules

\[
\begin{align*}
\text{App}(n_1, n_2) & \sim B \text{ App}(m_1, m_2) \\
& \quad \Rightarrow n_1 \sim B m_1 \\
\text{Abs}(n) & \sim B \text{ Abs}(m) \\
& \quad \Rightarrow n \sim B m \\
\text{App}(n_1, n_2) & \sim B \text{ App}(m_1, m_2) \\
& \quad \Rightarrow n_2 \sim B m_2 \\
\text{bVar}(n) & \sim B \text{ bVar}(m) \\
& \quad \Rightarrow n \sim B m
\end{align*}
\]
Sharing Equivalence

Definition (Sharing equivalence)
A binary relation \(\equiv \) over the nodes of a \(\lambda \)-graph is a **sharing equivalence** if it is:

- **Equivalence** \(\equiv \) is an equivalence relation
- **Bisimulation** \(\equiv \) is a bisimulation
- **Open** if \(\text{fVar}(x) \equiv \text{fVar}(y) \) then \(x = y \)

Sanity check
If \(G \) is a \(\lambda \)-graph and \(\equiv \) is a sharing equivalence over \(G \), then \(G/\equiv \) is a \(\lambda \)-graph.
Example

\[G \text{ and } \equiv \]

\[G/\equiv \]
Sharing Equality Problem

Input A λ-graph G + two root nodes n and m of G

Problem Is there a sharing equivalence \equiv on G
such that $n \equiv m$?

More generally:

Input G + a query Q (any relation over roots)

Problem Is there a sharing equivalence \equiv on G
containing Q?
Example

Problem
Is there a sharing equivalence \equiv containing a given query Q?
Example

Problem
Is there a sharing equivalence \(\equiv\) containing a given query \(Q\)? **Yep.**
Let Q be a query. Its propagation $Q\downarrow$ is the smallest relation closed under the following rules:

1. $\text{App}(n_1, n_2) \ B \text{App}(m_1, m_2)$
 \[\frac{\ B}{n_1 \ B \ m_1} \]

2. $\text{Abs}(n) \ B \text{Abs}(m)$
 \[\frac{\ B}{n \ B \ m} \]

Universality of $Q\downarrow$

If there is an open bisimulation containing Q, then $Q\downarrow$ is the smallest open bisimulation containing Q.
Spreading Queries

Spreading (·)#

Let Q be a query. Its spreading Q# is the smallest equivalence relation closed under:

\[
\begin{align*}
\text{App}(n_1, n_2) & \sim \text{App}(m_1, m_2) \\
& \overset{\text{App}}{\rightarrow} n_1 \sim m_1 \\
& \text{Abs}(n) \sim \text{Abs}(m) \\
& \overset{\text{Abs}}{\rightarrow} n \sim m
\end{align*}
\]

Universality of Q#

If there exists a sharing equivalence containing Q, then Q# is the smallest sharing equivalence containing Q.
Sharing Equality Theorem

There exists a sharing equivalence containing Q

$Q \Rightarrow$ is an open bisimulation

[Q] holds, i.e. $[n] = [m]$ for all $n \sim Q \sim m$
Sharing Equality Theorem

There exists a sharing equivalence containing Q.

Q is a sharing equivalence.

Q is an open bisimulation.

$\left\llbracket Q \right\rrbracket$ holds, i.e. $[n] = [m]$ for all $n Q m$.
Read Back

Application: \([\text{App}(n, m)] := [n][m]\\)

Abstraction: \([\text{Abs}(n)] := \lambda ?. [n]\\)

Bound Variable: \([\text{bVar}(n)] := ?\\)

Free Variable: \([\text{fVar}(x)] := x\\)
Read Back — Locally Nameless

\[
\begin{align*}
\text{Abs} & \quad \text{App} \\
\text{bVar} & \quad \text{App} \\
\text{Abs} & \quad \text{App} \\
\text{fVar} z & \quad \text{App}
\end{align*}
\]

- \([\tau: r \rightsquigarrow \text{App}(n, m)] := ((\tau \leftarrow): r \rightsquigarrow n)[(\tau \leftarrow): r \rightsquigarrow m] \)
- \([\tau: r \rightsquigarrow \text{Abs}(n)] := \lambda[(\tau \downarrow): r \rightsquigarrow n] \)
- \([\tau: r \rightsquigarrow \text{bVar}(n)] := \text{indexOf}(n \mid \tau: r) \)
- \([\tau: r \rightsquigarrow \text{fVar}(x)] := x \)

\([\varepsilon: r \rightsquigarrow r] = (\lambda 0 (\lambda z)) ((\lambda z) z) \)
Sharing Equality Theorem

There exists a sharing equivalence containing Q

$Q\#$ is a sharing equivalence

$Q\downarrow$ is an open bisimulation

$[Q]$ holds, i.e. $[n] = [m]$ for all $n \sim Q m$
Sharing Equality Theorem

There exists a sharing equivalence containing \mathcal{Q}

$\mathcal{Q}\#$ is a sharing equivalence
Structure of the Presentation

Evaluation & Conversion
 Complexity
 Sharing

Related Works

The Theory of Sharing Equality
 λ-Graphs
 Queries
 Sharing Equivalences

Linear-Time Algorithm
 First-order Check
 Variables Check
The Two Phases

Checking sharing equality

Compute $Q\#$, then check that it is a sharing equivalence

Two phases

1. First-order check: is $Q\#$ a FO bisimulation?
2. Variables check: check variables and scopes

Once the first phase is solved, the second one is straightforward

Note: the decomposition relies on the theory
Checking Sharing Equality

Compute $Q^#$, then check that it is a sharing equivalence

Difficulty 1

- $Q^#$ is an equivalence relation
- Equivalence relations have size quadratic in the no. of nodes
- **Idea**: use a *canonic element*-based representation of $Q^#$

Difficulty 2

- Linearity requires to *never* merge equivalence classes
- **Idea** (naïve): propagating Q downward by levels
Paterson & Wegman

Difficulty 2: linearity requires to *never* merge equivalence classes

Paterson & Wegman idea

1. Start *wherever*
2. To process each node:
 1. Process first the parent nodes
 2. Process the \sim-neighbors
 3. Propagate only

Linearity achieved because:

- no global synchronisation
- *canonic*-based representation \equiv_c
- PW’s *smart* visit
First-order Check

Data: an initial state

Result: \(\mathcal{F}ail\) or a final state

Procedure Main()

```plaintext
dataset foreach node n do
  if canonic(n) undefined then
    BuildClass(n)
  end
end
```

Procedure Enqueue\((m, c)\)

```plaintext
case m, c of
  Abs\((m'), Abs\((c')\) ⇒
    create edge \(m' \sim c'\)
  App\((m_1, m_2), App\((c_1, c_2)\) ⇒
    create edges \(m_1 \sim c_1\)
    and \(m_2 \sim c_2\)
  bVar\(_\), bVar\(_\) ⇒ ()
  fVar\(_\), fVar\(_\) ⇒ ()
  _\ refresh \_ ⇒ fail
end

```

Procedure BuildClass\((c)\)

```plaintext
canonic(c) := c
visiting(c) := true
queue(c) := \{c\}
while queue(c) is non-empty do
  n := queue(c).pop()
  foreach parent m of n do
    case canonic(m) of
      undefined ⇒ BuildClass(m)
      c' ⇒ if visiting(c') then fail
    end
  end
  foreach \(\sim\) neighbour m of n do
    case canonic(m) of
      undefined ⇒ Enqueue\((m, c)\)
      c' ⇒ if c' ≠ c then fail
    end
  end
visiting(c) := false
```


Variables Check

Data: canonic(·) representation of $Q#$

Result: is $Q#$ a sharing equivalence?

Procedure VarsCheck()

```plaintext
foreach variable node $n$ do
  case $n, \text{canonic}(n)$ of
    fVar($l$), fVar($l'$) =>
      assert \text{canonic}(l) = \text{canonic}(l')
    bVar($x$), bVar($y$) =>
      assert $x = y$
  end
end
```
Conclusions

▶ Consequence: \(\beta\)-conversion is bilinear

▶ A theory of sharing equality **independent** of algorithms

▶ A **first** / **higher**-order decomposition of the problem

▶ A linear **PW-like** algorithm for sharing equality

▶ We implemented the algorithm and verified its complexity

▶ On **ArXiv**: detailed proofs of correctness, completeness, and linearity
Thanks for your attention!