LMA
UNIV

Sharing Equality is Linear

Andrea Condoluci

Joint work with Beniamino Accattoli
Claudio Sacerdoti Coen

chocola meeting
Lyon, September 26"

v d

lrezia—~

inventeurs du monde numérique

NLOTT082S

MATER STUDIORUM
ERSITA DI BOLOGNA

Structure of the Presentation

Evaluation & Conversion
Complexity
Sharing

Related Works

The Theory of Sharing Equality
A-Graphs
Queries
Sharing Equivalences

Linear-Time Algorithm
First-order Check
Variables Check

Structure of the Presentation

Evaluation & Conversion
Complexity
Sharing

Evaluation & Conversion

> Fix a dialect Ax of the A-calculus

» With a deterministic evaluation strategy —x

» nfx(t) is the normal form of ¢ with respect to —x

Evaluation
Given t, computing nfx(t)

Conversion
Given t and u, checking whether nfx(t) = nfx(u)

Complexity

What is the complexity

of evaluation and conversion?

Parameters
» Input term: size of the initial term |{|

> Number of steps: number n such that t —§ nfx(t)

Size explosion 3%

There exists a family {t,},en such that (for all Ax):
th =% nfx(tn)
with
|tal €O(n) and Infx(tn)l € (2")

Consequences

» Evaluation is exponential in n and |{|

» Conversion is also exponential

Sharing is caring @

Add sharing to Ax, obtaining Ashx:

Ax > RAM

\/

Ashx

1. Turn to shared evaluation —gnx
2. Compute shared normal forms nfspx(t)

3. Simulating —x up to sharing unfolding

i.e. so that nfsnx(t)] = nfx(t)

Evaluation w/ sharing

Compute nfshx(t) instead of nfx(t)

Call-by-Value (CbV)
Lett —>2bv nfepv(t)

» Blelloch & Greiner, 1995
Polynomial in || and n

» Accattoli & Condoluci & Sacerdoti Coen, 2019
Linear in |t] and n

Conversion w/ Sharing

Given t and u:

1. Evaluation : computing nfsnx(t) and nfspx(uv)

2. Sharing equality : checking nfspx(t)l =a nfsnx(U)!
Evaluation is bilinear... what about sharing equality?

Problems
> ltcan bet#A4uand yett| =4 ul

» Sharing unfolding is exponential

Polynomial sharing equality

== Testing without unfolding

Sharing Equality is Linear

Sharing equality

Given shared t and u, checking t| =4 ul

» Accatoli & Dal Lago, 2012
Sharing equality is O((|t| + |u])?)

== Conversion is biquadratic — thus reasonable

» This talk: sharing equality is O(|t]| + |u])

==) Conversion is bilinear

Structure of the Presentation

Related Works

Algorithms for Sharing Equality

Sharing equality

Given shared t and u, checking t| =4 ul

Let n:=|t| + |u|

Existing algorithms

» Accattoli & Dal Lago, 2012
O(n?) algorithm based on dynamic programming

» Grabmayer & Rochel, 2014
O(nlogn) algorithm for A-terms with letrec
(more general problem)

Related Problems

» First-order unification
Martelli & Montanari, 1977; Paterson & Wegman, 1978

» Nominal unification:
Two algorithms, adapting MM and PW, quadratic
Calveés & Fernandez and Levy & Villaret, 2010-13

» Nominal matching: linear only on unshared terms
Calves & Fernandez 2010

» Pattern unification:
PW based, claimed linear — seems quadratic
Qian 1993

» DFAs equivalence: pseudo -linear
Hopcroft & Karp 1971

This Talk

Andrea Condoluci, Beniamino Accattoli and Clau-
dio Sacerdoti Coen, Sharing Equality is Linear , PPDP

2019, October 7", 2019 Porto, Portugal.
https://arxiv.org/abs/1907.06101

» A simple theory of sharing equality
for A-terms as DAGs == A-graphs

» A linear-time, two-phases algorithm

1. First-order check: based on PW
2. Variables check: binders and variables are shared
correctly
The splitting in two steps comes from the
developed theory

Structure of the Presentation

The Theory of Sharing Equality
A-Graphs
Queries
Sharing Equivalences

Syntax Tree

(Ax.x(Ay.2))((Ay.2)2)

App\
Abs x App
| N\
App Absy Varz
PN |
Var x Absy Varz
|
Varz

Three kinds of nodes: App, Abs and Var

Syntax Tree (ii)

(Ax. x (Ay.2)) ((Ay.2)2)

App\
1Abs App
! 7N\
’/ App Abs fVarz
WA |
bVar Abs fVarz
|
fVarz

Bound variables (bVar) have a binding edge — the dashed one

A-graph

(AX. X Ay.Z)(Ay.z 2)

App

4

Abs

7N
[App App
SN S
bVar Abs
|
fVar z

Sharing in-degree > 1 (excluding binding edges)
Note: sharing of abstractions and under abstractions

Structural Conditions

App

9
Abs
TN

\ App

U

bVar
& (AX.xx) xx ?

» DAG: the graph is acyclic (excluding binding edges)

» Well-formed scopes: each A-node dominates the
bVar-nodes it binds

Sharing Equality

Ap

P
N

App

{)
Abs

')

bVar

App
()
App
e N
Abs Abs
1))
bVar bVary

((Ax.x) (Ax.x)) ((Ay.y) (Ay-y))

VS.

(Ax.x) (Ay-y)) (Ax.x) (Ay.y))

Problem

Are the two A-graphs sharing equal ?
== ff there exists a sharing equivalence

Bisimulations
Sharing equivalence is roughly a bisimulation

Definition (Bisimulation)
A binary relation 3 over the nodes of a A-graph is a
bisimulation if it is:
» Homogeneous: B relates only nodes of the same
kind
» Compatible: 5 is closed under the following rules

App(n1, n2) 5App(m1, m2) App(n1, n2) B App(mai, m2)
ny Bma ny Bmy

Abs(n) B Abs(m) bVar(n) B bVar(m)
nBm i nBm

Sharing Equivalence

Definition (Sharing equivalence)

A binary relation = over the nodes of a A-graph is a
sharing equivalence if it is:

Equivalence = is an equivalence relation

Bisimulation = is a bisimulation
Open if fVar(x) = fVar(y) then x =y

Sanity check

If G is a A-graph and = is a sharing equivalence over G,
then G/= is a A-graph.

Example

App

Abs
4

bVar

App

G and =

App

{)
App App
{) PN
Abs Abs Abs
1 1) 1)
bVar bVar bVar

G/=

App

L)

App

Abs
A

bVar

Sharing Equality Problem

Input A A-graph G + two root nodes n and m of G

Problem Is there a sharing equivalence = on G
such that n=m?

More generally:
Input G + a query Q (any relation over roots)

Problem Is there a sharing equivalence = on G
containing O7?

Example

App
/ \
App App
{) {)
Abs Abs
))
bVar bVar

Problem

App
{)
App
y N
Abs Abs
1) T
bVar bVar

Is there a sharing equivalence = containing a given

query O7?

Example

App
/ \
App App
{) {)
Abs Abs
))
bVar bVar

Problem

App
{)
App
y N
Abs Abs
1) T
bVar bVar

Is there a sharing equivalence = containing a given

query 9?7 Yep.

Propagated Queries

Propagation (:)J

Let O be a query. Its propagation 9| is the smallest
relation closed under the following rules:

App(n1, n2) 5 App(mi, m2) G e S)

ni Bma ny 3my
—b\ar(n) Bhvartm)
Abs(n) B Abs(m) o BT
nBdm

Universality of Q|

If there is an open bisimulation containing O, then 9l
is the smallest open bisimulation containing O

Spreaded Queries

Spreading (+)#

Let O be a query. Its spreading O+# is the smallest
equivalence relation closed under:

App(n1, n2) B App(mz1, m2) 8 App(n1, n2) B App(mz1, my)
ni1 Bma nz Bmoy
bvar(n) BhVerfm)
Abs(n) B Abs(m) o BT
nBm

Universality of O#

If there exists a sharing equivalence containing O,
then O+# is the smallest sharing equivalence con-

taining O

Sharing Equality Theorem

There exists a sharing equivalence containing O

[Q] holds, i.e. [n] =[m] foralln O m

Sharing Equality Theorem

There exists a sharing equivalence containing O

O+# is a sharing equivalence

9l is an open bisimulation

[Q] holds, i.e. [n] =[m] foralln O m

Read Back

[App App
bVar Abs

|

fVar z

Application: [App(n, m

)

Abstraction: [Abs(n)]
Bound Variable: [bVar(n)]
Free Variable: [fVar(x)]

[n[[m]
A2, [n]

Read Back — Locally Nameless

App
yd
Abs
\ App
\ / \ e
bVar Abs
|
fVar z

[T:r~ App(n,m = [(t¢):r~n][(Tx):r~»mj

o [T:r~ Abs(n = A[(TL): r~n]

= indexOf(n|T:r)

)
(n)]
° [T:r~ bVar(n)]
()]

[T:r~fVar(x)] = x

[€:r=r]=A0(A2)(*2)2)

Sharing Equality Theorem

There exists a sharing equivalence containing O

O+# is a sharing equivalence

9l is an open bisimulation

[Q] holds, i.e. [n] =[m] foralln O m

Sharing Equality Theorem

There exists a sharing equivalence containing O

O+# is a sharing equivalence

Structure of the Presentation

Linear-Time Algorithm
First-order Check
Variables Check

The Two Phases

Checking sharing equality

Compute 9+#, then check that it is a sharing equiva-
lence

Two phases

1. First-order check: is O# a FO bisimulation ?
2. Variables check: check variables and scopes

Once the first phase is solved, the second one is
straightforward

Note: the decomposition relies on the theory

Checking Sharing Equality

Compute O#, then check that it is a sharing equiva-
lence

Difficulty 1

> O+# is an equivalence relation

» Equivalence relations have size quadratic in the
no. of nodes

» |dea: use a canonic element -based representation
of O#

Difficulty 2

» Linearity requires to never merge equivalence
classes
» |dea (naive): propagating © downward by levels

Paterson & Wegman

Difficulty 2: linearity requires to never merge
equivalence classes

Paterson & Wegman idea

1. Start wherever
2. To process each node:

2.1 Process first the parent nodes
2.2 Process the ~neighbors
2.3 Propagate only

Linearity achieved because:
» no global synchronisation
» canonic -based representation =
» PW’s smart visit

First-order Check

Data: an initial state
Result: Fail or a final state

Procedure Main()
foreach node n do
if canonic(n) undefined
then
| BuildClass(n)
end
end

Procedure Enqueue(m, c)
case m, c of
Abs(m’), Abs(c’) =
| create edge m’ ~ ¢’
App(mz, m2), App(c1, C2) =
create edges m; ~ ¢
and my ~ ¢
bVar(_), bVar(_) = ()
fvar__, fVar(_) = ()
,=> fail
end
canonic(m):=c
queue(c).push(m)

Procedure BuildClass(c)
canonic(c):=c

visiting(c):=true

queue(c) := {c}

while queue(c) is non-empty do

n := queue(c).pop()

foreach parent m of n do

case canonic(m) of

undefined = BuildClass(m)
¢’ = if visiting(c’) then fail
end

end

foreach ~neighbour m of n do
case canonic(m) of

undefined = Enqueue(m, c)
¢’ = if ¢/ #£c then fail

end

end

end

visiting(c):= false

Variables Check

Data: canonic(-) representation of O#
Result: is Q# a sharing equivalence?

Procedure VarsCheck()

foreach variable node n do
case n, canonic(n) of
fVar(/), fVar(l’) =
| assert canonic(/) = canonic(/)
bVar(x), bVar(y) =
| assertx=y
end
end

Conclusions

» Consequence: B-conversion is bilinear

» A theory of sharing equality independent of
algorithms

» A first / higher -order decomposition of the
problem

» A linear PW-like algorithm for sharing equality

» We implemented the algorithm and verified its
complexity

» On ArXiV : detailed proofs of correctness,
completeness, and linearity

Thanks for your attention!

	Evaluation & Conversion
	Complexity
	Sharing

	Related Works
	The Theory of Sharing Equality
	-Graphs
	Queries
	Sharing Equivalences

	Linear-Time Algorithm
	First-order Check
	Variables Check

