Sharing Equality is Linear

Andrea Condoluci

Joint work with Beniamino Accattoli Claudio Sacerdoti Coen

chocola meeting Lyon, September 26th

ALMA MATER STUDIORUM Università di Bologna

Structure of the Presentation

Evaluation & Conversion Complexity Sharing

Related Works

The Theory of Sharing Equality

 λ -Graphs Queries Sharing Equivalences

Linear-Time Algorithm

First-order Check Variables Check

Structure of the Presentation

Evaluation & Conversion Complexity Sharing

Related Works

The Theory of Sharing Equality λ -Graphs Queries Sharing Equivalences

Linear-Time Algorithm First-order Check Variables Check

Evaluation & Conversion

- Fix a dialect λ_X of the λ -calculus
- ▶ With a deterministic evaluation strategy \rightarrow_X
- ▶ $nf_X(t)$ is the normal form of t with respect to \rightarrow_X

Evaluation Given t, computing $nf_X(t)$

Conversion Given t and u, checking whether $nf_X(t) =_{\alpha} nf_X(u)$

Complexity

What is the complexity

of evaluation and conversion?

Parameters

- Input term: size of the initial term |t|
- ▶ Number of steps: number *n* such that $t \rightarrow_X^n nf_X(t)$

Size explosion 💥

There exists a family $\{t_n\}_{n \in \mathbb{N}}$ such that (for all λ_X):

 $t_n \rightarrow_X^n \operatorname{nf}_X(t_n)$

with

$$|t_n| \in O(n)$$
 and $|nf_X(t_n)| \in \Omega(2^n)$

Consequences

- Evaluation is exponential in n and |t|
- Conversion is also exponential

Sharing is caring ♥

- 1. Turn to shared evaluation \rightarrow_{shX}
- 2. Compute shared normal forms $nf_{shX}(t)$
- 3. Simulating \rightarrow_X up to sharing unfolding

i.e. so that $nf_{shX}(t) \downarrow = nf_X(t)$

Evaluation w/ sharing

Compute $nf_{shX}(t)$ instead of $nf_X(t)$

Call-by-Value (CbV)

Let $t \rightarrow_{CbV}^{n} \operatorname{nf}_{CbV}(t)$

Blelloch & Greiner, 1995
 Polynomial in |t| and n

Accattoli & Condoluci & Sacerdoti Coen, 2019
 Linear in |t| and n

Conversion w/ Sharing

Given t and u:

- 1. Evaluation : computing $nf_{shX}(t)$ and $nf_{shX}(u)$
- 2. Sharing equality : checking $nf_{shX}(t)\downarrow =_{\alpha} nf_{shX}(u)\downarrow$

Evaluation is bilinear... what about sharing equality?

Problems

- ► It can be $t \neq_{\alpha} u$ and yet $t \downarrow =_{\alpha} u \downarrow$
- Sharing unfolding is exponential

Polynomial sharing equality

→ Testing without unfolding

Sharing Equality is Linear

Sharing equality

Given shared t and u, checking $t \downarrow =_{\alpha} u \downarrow$

► Accatoli & Dal Lago, 2012
 Sharing equality is O((|t| + |u|)²)
 → Conversion is biquadratic — thus reasonable

This talk: sharing equality is O(|t| + |u|)

→ Conversion is bilinear

Structure of the Presentation

Evaluation & Conversion Complexity Sharing

Related Works

The Theory of Sharing Equality λ -Graphs Queries Sharing Equivalences

Linear-Time Algorithm First-order Check Variables Check

Algorithms for Sharing Equality

```
Sharing equality
Given shared t and u, checking t \downarrow =_{\alpha} u \downarrow
```

Let n := |t| + |u|

Existing algorithms

- Accattoli & Dal Lago, 2012
 O(n²) algorithm based on dynamic programming
- Grabmayer & Rochel, 2014
 O(n log n) algorithm for λ-terms with letrec (more general problem)

Related Problems

First-order unification

Martelli & Montanari, 1977; Paterson & Wegman, 1978

Nominal unification:

Two algorithms, adapting MM and PW, quadratic Calvès & Fernandez and Levy & Villaret, 2010-13

- Nominal matching: linear only on unshared terms Calvès & Fernandez 2010
- Pattern unification: PW based, claimed linear — seems quadratic _{Qian 1993}
- DFAs equivalence: pseudo -linear

Hopcroft & Karp 1971

This Talk

Andrea Condoluci, Beniamino Accattoli and Claudio Sacerdoti Coen, Sharing Equality is Linear, PPDP 2019, October 7th, 2019 Porto, Portugal. https://arxiv.org/abs/1907.06101

- A simple theory of sharing equality for λ -terms as DAGs $\rightarrow \lambda$ -graphs
- A linear-time, two-phases algorithm
 - 1. First-order check: based on PW
 - Variables check: binders and variables are shared correctly

The splitting in two steps comes from the developed theory

Structure of the Presentation

Evaluation & Conversion Complexity Sharing

Related Works

The Theory of Sharing Equality λ -Graphs Queries Sharing Equivalences

Linear-Time Algorithm First-order Check Variables Check

Syntax Tree

Three kinds of nodes: App, Abs and Var

Syntax Tree (ii)

Bound variables (bVar) have a binding edge — the dashed one

 λ -graph

Sharing in-degree > 1 (excluding binding edges) Note: sharing of abstractions and under abstractions

Structural Conditions

DAG: the graph is acyclic (excluding binding edges)

 Well-formed scopes: each λ-node dominates the bVar-nodes it binds

Sharing Equality

Problem Are the two λ -graphs sharing equal? \rightarrow iff there exists a sharing equivalence

Bisimulations

Sharing equivalence is roughly a bisimulation

Definition (Bisimulation)

A binary relation \mathcal{B} over the nodes of a λ -graph is a bisimulation if it is:

- Homogeneous: B relates only nodes of the same kind
- ► Compatible: *B* is closed under the following rules

Sharing Equivalence

Definition (Sharing equivalence)

A binary relation \equiv over the nodes of a λ -graph is a sharing equivalence if it is:

Equivalence \equiv is an equivalence relation

Bisimulation \equiv is a bisimulation

Open if $fVar(x) \equiv fVar(y)$ then x = y

Sanity check

If G is a λ -graph and \equiv is a sharing equivalence over G, then G/\equiv is a λ -graph.

Example

Sharing Equality Problem

Input A λ -graph G + two root nodes n and m of G

Problem Is there a sharing equivalence \equiv on *G* such that $n \equiv m$?

More generally:

Input G + a query Q (any relation over roots)

Problem Is there a sharing equivalence \equiv on *G* containing Q?

Example

Problem

Is there a sharing equivalence \equiv containing a given query Q?

Example

Problem

Is there a sharing equivalence \equiv containing a given query Q? Yep.

Propagated Queries

Universality of *Q*↓

If there is an open bisimulation containing Q, then $Q \Downarrow$ is the smallest open bisimulation containing Q

Spreaded Queries

Universality of Q#

If there exists a sharing equivalence containing Q, then Q# is the smallest sharing equivalence containing Q

Sharing Equality Theorem

There exists a sharing equivalence containing $\ensuremath{\mathcal{Q}}$

$\llbracket Q \rrbracket$ holds, *i.e.* $\llbracket n \rrbracket = \llbracket m \rrbracket$ for all $n \ Q \ m$

Sharing Equality Theorem

Read Back

Read Back — Locally Nameless

- $\llbracket \tau : r \rightsquigarrow \operatorname{App}(n, m) \rrbracket$:= $\llbracket (\tau \lor) : r \rightsquigarrow n \rrbracket \llbracket (\tau \lor) : r \rightsquigarrow m \rrbracket$
- $\llbracket \tau : r \rightsquigarrow Abs(n) \rrbracket := \lambda \llbracket (\tau \downarrow) : r \rightsquigarrow n \rrbracket$
- $[\tau: r \rightsquigarrow bVar(n)] := indexOf(n | \tau: r)$
- $[\tau: r \rightsquigarrow fVar(x)] := x$

 $\llbracket \epsilon : r \rightsquigarrow r \rrbracket = (\lambda \ \underline{0} \ (\lambda \ z)) \ ((\lambda \ z) \ z)$

Sharing Equality Theorem

Sharing Equality Theorem

There exists a sharing equivalence containing $\ensuremath{\mathcal{Q}}$

$\mathcal{Q}\#$ is a sharing equivalence

Structure of the Presentation

Evaluation & Conversion Complexity Sharing

Related Works

The Theory of Sharing Equality λ -Graphs Queries Sharing Equivalences

Linear-Time Algorithm

First-order Check Variables Check

The Two Phases

Checking sharing equality

Compute $\mathcal{Q}\#$, then check that it is a sharing equivalence

Two phases

- 1. First-order check: is Q# a FO bisimulation ?
- 2. Variables check: check variables and scopes

Once the first phase is solved, the second one is straightforward

Note: the decomposition relies on the theory

Checking Sharing Equality

Compute $\mathcal{Q}\#,$ then check that it is a sharing equivalence

Difficulty 1

- Q# is an equivalence relation
- Equivalence relations have size quadratic in the no. of nodes
- Idea: use a canonic element -based representation of Q#

Difficulty 2

- Linearity requires to never merge equivalence classes
- ► Idea (naïve): propagating *Q* downward by levels

Paterson & Wegman

Difficulty 2: linearity requires to never merge equivalence classes

Paterson & Wegman idea

- 1. Start wherever
- 2. To process each node:
 - 2.1 Process first the parent nodes
 - 2.2 Process the \sim neighbors
 - 2.3 Propagate only

Linearity achieved because:

- no global synchronisation
- canonic -based representation =c
- PW's smart visit

First-order Check

Data: an initial state **Result:** *Fail* or a final state

```
Procedure Main()
foreach node n do
if canonic(n) undefined
then
BuildClass(n)
end
end
```

```
Procedure Enqueue (m, c)

case m, c of

Abs(m'), Abs(c') \Rightarrow

| create edge m' \sim c'

App(m_1, m_2), App(c_1, c_2) \Rightarrow

| create edges m_1 \sim c_1

and m_2 \sim c_2

bVar(\_), bVar(\_) \Rightarrow ()

fVar_, fVar(\_) \Rightarrow ()

., _⇒ fail

end

canonic(m) := c

gueue(c).push(m)
```

```
Procedure BuildClass(c)
   canonic(c) := c
   visiting(c) := true
   queue(c) := {c}
   while queue(c) is non-empty do
      n := queue(c).pop()
      foreach parent m of n do
         case canonic(m) of
            undefined \Rightarrow BuildClass(m)
            c' \Rightarrow if visiting(c') then fail
         end
      end
      foreach ~neighbour m of n do
         case canonic(m) of
            undefined \Rightarrow Enqueue(m, c)
            c' \Rightarrow if c' \neq c then fail
         end
      end
   end
   visiting(c) := false
```

Variables Check

```
Data: canonic(·) representation of Q\#

Result: is Q\# a sharing equivalence?

Procedure VarsCheck()

foreach variable node n do

case n, canonic(n) of

| fVar(l), fVar(l') \Rightarrow

| assert canonic(l) = canonic(l')

bVar(x), bVar(y) \Rightarrow

| assert x = y

end

end
```

Conclusions

- Consequence: $\oint \beta$ -conversion is bilinear \oint
- A theory of sharing equality independent of algorithms
- A first / higher-order decomposition of the problem
- A linear PW-like algorithm for sharing equality
- We implemented the algorithm and verified its complexity
- On ArXiV: detailed proofs of correctness, completeness, and linearity

Thanks for your attention!