
1/46

Towards
Certified Incremental Functional Programming

Yann Régis-Gianas
(IRIF, Univ. Paris, Inria π.r2) – yrg@irif.fr

with Paolo Giarrusso (Univ. Delft), Philip Schutser (Univ. Marburg), Lourdes
Gonzalez Huesca (Univ. Mexico), Lelio Brun (ENS), Olivier Martinot (Univ. Paris)

2019-11-14

yrg@irif.fr

2/46

Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to

3/46

Data constantly change

Data x at t = 0 Data x at t = 1 Data x at t = 2

Change Change

f(x) at t = 0 f(x) at t = 1 f(x) at t = 2

f f f

▶ Now, take size(x) = 250 and size(modified part of x) = 210 .
▶ Recomputation is not an option!

3/46

Data constantly change

Data x at t = 0 Data x at t = 1 Data x at t = 2

Change Change

f(x) at t = 0 f(x) at t = 1 f(x) at t = 2

f f f
▶ Now, take size(x) = 250 and size(modified part of x) = 210 .
▶ Recomputation is not an option!

4/46

Stream-based processing

Data
New items New items

f
New output New output

▶ f only reacts to new items by producing a new version of its output.
▶ We are back to a reasonable computational setting.

5/46

What about large structured data?

▶ Stream-based processing is relevant for computations:
▶ that are dealing with linearizable data ;
▶ whose output only depends on a bounded number of previous items.

▶ Examples: tweets, financial data, machine learning datasets, …

How should we program systems that
perform non local computations

over interdependent and ever-changing structured values?
(e.g. commits in a large source code repository, complex simulations, …)

6/46

Incremental programming with first-class changes

Data x at t = 0 dx1 dx2

f(x + dx1) f(x + dx1+ dx2)

D(f) D(f)

6/46

Incremental programming with first-class changes

If

 f : A → B
∆A are changes overA and∆B are changes overB
⊕A : A → ∆A → A and⊕B : A → ∆B → B

then useD(f) such that:

f (x⊕A dx) = f x⊕B D(f)x dx

where the complexity ofD(f)

▶ (should ideally) only depends on the size of dx, and
▶ (always) be better than the complexity of f .

6/46

Incremental programming with first-class changes

If

 f : A → B
∆A are changes overA and∆B are changes overB
⊕A : A → ∆A → A and⊕B : A → ∆B → B

then useD(f) such that:

f (x⊕A dx) = f x⊕B D(f)x dx

where the complexity ofD(f)

▶ (should ideally) only depends on the size of dx, and
▶ (always) be better than the complexity of f .

7/46

A first-order example
Let us assume that rows is a bunch of grades coming from a CSV file 1:

1 let rows = ["Pédrot" , "Pierre-Marie", "17";
2 "Knuth" , "Donald" , "12";
3 "Torvald", "Linus" , "10"]

The Ministry wants us to compute the mean of these grades. That’s easy:

1 let myprog rows =
2 let grades = List.map (fun ℓ -> List.nth ℓ 2 |> int_of_string) rows in
3 let mean = List.fold_left (+) 0 grades / List.length grades in
4 mean

We run the program, get some value m, and we are done!
Unfortunately, students often make us notice that we did not grade them correctly.
So you look back at the work and produce a change, e.g.:

In row 0, the value of column 2moves from 17 to 11.

How should we update m without recomputing everything?

1Please, imagine that there is 1040 rows in that file.

7/46

A first-order example
Let us assume that rows is a bunch of grades coming from a CSV file 1:

1 let rows = ["Pédrot" , "Pierre-Marie", "17";
2 "Knuth" , "Donald" , "12";
3 "Torvald", "Linus" , "10"]

The Ministry wants us to compute the mean of these grades. That’s easy:

1 let myprog rows =
2 let grades = List.map (fun ℓ -> List.nth ℓ 2 |> int_of_string) rows in
3 let mean = List.fold_left (+) 0 grades / List.length grades in
4 mean

We run the program, get some value m, and we are done!

Unfortunately, students often make us notice that we did not grade them correctly.
So you look back at the work and produce a change, e.g.:

In row 0, the value of column 2moves from 17 to 11.

How should we update m without recomputing everything?

1Please, imagine that there is 1040 rows in that file.

7/46

A first-order example
Let us assume that rows is a bunch of grades coming from a CSV file 1:

1 let rows = ["Pédrot" , "Pierre-Marie", "17";
2 "Knuth" , "Donald" , "12";
3 "Torvald", "Linus" , "10"]

The Ministry wants us to compute the mean of these grades. That’s easy:

1 let myprog rows =
2 let grades = List.map (fun ℓ -> List.nth ℓ 2 |> int_of_string) rows in
3 let mean = List.fold_left (+) 0 grades / List.length grades in
4 mean

We run the program, get some value m, and we are done!
Unfortunately, students often make us notice that we did not grade them correctly.
So you look back at the work and produce a change, e.g.:

In row 0, the value of column 2moves from 17 to 11.

How should we update m without recomputing everything?

1Please, imagine that there is 1040 rows in that file.

7/46

A first-order example
Let us assume that rows is a bunch of grades coming from a CSV file 1:

1 let rows = ["Pédrot" , "Pierre-Marie", "17";
2 "Knuth" , "Donald" , "12";
3 "Torvald", "Linus" , "10"]

The Ministry wants us to compute the mean of these grades. That’s easy:

1 let myprog rows =
2 let grades = List.map (fun ℓ -> List.nth ℓ 2 |> int_of_string) rows in
3 let mean = List.fold_left (+) 0 grades / List.length grades in
4 mean

We run the program, get some value m, and we are done!
Unfortunately, students often make us notice that we did not grade them correctly.
So you look back at the work and produce a change, e.g.:

In row 0, the value of column 2moves from 17 to 11.

How should we update m without recomputing everything?

1Please, imagine that there is 1040 rows in that file.

8/46

Can we find a derivative for myprog?

1 let extract = fun ℓ -> List.nth ℓ 2 |> int_of_string
2

3 let sigma = List.fold_left (+) 0
4

5 let myprog rows =
6 let grades = List.map extract rows in
7 let count = List.length grades in
8 let sum = sigma grades in
9 let mean = sum / count in
10 mean
11

12 type 'da dlist = ChangeItem of int * 'da
13

14 type dstring = ReplaceString of string
15

16 and dint = ReplaceInt of int | Shift of int
17

18 let apply_dint x = function
19 | ReplaceInt y -> y
20 | Shift dx -> x + dx
21

22 let apply_dstring _ (ReplaceString s) = s

8/46

Can we find a derivative for myprog?

1 let dint_of_string (ReplaceString new_value) =
2 ReplaceInt (int_of_string new_value)
3

4 let dextract (ChangeItem (k, new_value)) =
5 if k = 2 then dint_of_string new_value else Shift 0
6

7 let dmap df (ChangeItem (k, dx)) = ChangeItem (k, df dx)
8

9 let dlength _ = Shift 0
10

11 let dsigma (ChangeItem (_, Shift dx)) = Shift dx
12

13 let dmyprog rows drows =
14 let dgrades = dmap dextract drows in
15 let dcount = dlength dgrades in
16 let dsum = dsigma dgrades in
17 let dmean = ...
18 in
19 dmean

8/46

Can we find a derivative for myprog?

1 let dint_of_string (ReplaceString new_value) =
2 ReplaceInt (int_of_string new_value)
3

4 let dextract (ChangeItem (k, new_value)) =
5 if k = 2 then dint_of_string new_value else Shift 0
6

7 let dmap df (ChangeItem (k, dx)) = ChangeItem (k, df dx)
8

9 let dlength _ = Shift 0
10

11 let dsigma (ChangeItem (_, Shift dx)) = Shift dx
12

13 let dmyprog rows drows =
14 let dgrades = dmap dextract drows in
15 let dcount = dlength dgrades in
16 let dsum = dsigma dgrades in
17 let dmean = Shift (
18 (apply_dint sum dsum) / (apply_dint count dcount)
19 - sum / count
20)
21 in
22 dmean

8/46

Can we find a derivative for myprog?

1 let dint_of_string (ReplaceString new_value) =
2 ReplaceInt (int_of_string new_value)
3

4 let dextract (ChangeItem (k, new_value)) =
5 if k = 2 then dint_of_string new_value else Shift 0
6

7 let dmap df (ChangeItem (k, dx)) = ChangeItem (k, df dx)
8

9 let dlength _ = Shift 0
10

11 let dsigma (ChangeItem (_, Shift dx)) = Shift dx
12

13 let dmyprog rows drows =
14 let grades = List.map extract rows in
15 let dgrades = dmap dextract drows in
16 let count = List.fold_left (+) 0 grades in
17 let dcount = dlength dgrades in
18 let sum = List.fold_left (+) 0 grades in
19 let dsum = dsigma dgrades in
20 let dmean = Shift (
21 (apply_dint sum dsum) / (apply_dint count dcount)
22 - sum / count
23)
24 in
25 dmean

8/46

Can we find a derivative for myprog?

(We will try again later.)

9/46

Next level : An higher-order example

1 let product l1 l2 =
2 List.map (fun x ->
3 List.map (fun y -> (x, y)) l2
4) l1
5

6 let dproduct l1 dl1 l2 dl2 = ?

9/46

Next level : An higher-order example

1 let product l1 l2 =
2 let inner x = (fun y -> (x, y)) in
3 let outer x =
4 let inner' = inner x in
5 List.map inner' l2
6 in
7 List.map outer l1
8

9 let dproduct l1 dl1 l2 dl2 =
10 ...
11 List.dmap inner' dinner' l2 dl2
12 ...
13 List.dmap outer douter l1 dl1

9/46

Next level : An higher-order example

1 let product l1 l2 =
2 let inner x = (fun y -> (x, y)) in
3 let outer x =
4 let inner' = inner x in
5 List.map inner' l2
6 in
7 List.map outer l1
8

9 let dproduct l1 dl1 l2 dl2 =
10 ...
11 List.dmap inner' dinner' l2 dl2
12 ...
13 List.dmap outer douter l1 dl1

douter is a function change. What is that?

10/46

Two subproblems

1. How should we define∆A,∆B ,⊕A , and⊕B?
2. How to get this miraculousD(f)?

11/46

Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to

12/46

Change structures

1. How should we define∆A,∆B ,⊕A , and⊕B?

Incremental language designers do not actually agree on this question...

12/46

Change structures

1. How should we define∆A,∆B ,⊕A , and⊕B?

Incremental language designers do not actually agree on this question...

13/46

Giarrusso’s change structures

A complete change structure is a tuple (A,∆,⊕,) such that:

▶ A is a type.
▶ ∆ : A → Type

where for all a of typeA, the inhabitants of∆a are valid changes for a.
▶ ⊕ : ∀(x : A),∆x → A

where a⊕ da is the application of the change da to a.
▶ 	 : A → ∀(x : A),∆x

where a⊕ (b	 a) = b.

14/46

Alvarez and Ong’s change actions

A change action is a tuple (A,∆A,⊕,�,0) such that:

▶ ∆A is a type for changes.
▶ M∆ = (∆A,�,0) is a monoid.
▶ ⊕ : A×∆A → A is an action of the monoidM∆ onA.

15/46

Gonzalez’ displaceable types

A typeA is displaceable by (∆A,⊕,	,0,�) if

▶ ∆A is a type for changes.
▶ M∆ = (∆A,�,0) is a monoid.
▶ ⊕ : A×∆A 7→ A is an “action” of the monoidM∆ onA.
▶ 	 : A → A → ∆A where a⊕ (b	 a) = b.

16/46

Rich change structures

A rich change structure is a tuple (A,∆A,V,⊕,�,0,	, !) such that:

▶ A is a type and∆A is a type for changes.
▶ V : A → ∆A → Prop is a validity predicate for change.
▶ ∆ : A → Type as a subset type∆x ≜ {dx : A | V x dx}
▶ ⊕ : ∀(x : A),∆x → A

where a⊕ da is the application of the change da to a.
▶ � : ∀(x : A)(dx : ∆x) → ∆(x⊕ dx) → ∆x

is an associative change composition operator, behaving as an action onA.
▶ 0 : ∀(x : A),∆x

is such that ∀x, x⊕ 0x = x and behaves as an identity for�.
▶ 	 : A → ∀(x : A),∆x

where a⊕ (b	 a) = b.
▶ ! : ∀(y : A), A → ∆y

17/46

Change-related definitions

Equivalence of changes
Let x : A and dx1 dx2 : ∆x.
The two changes dx1 and dx2 are equivalent, written dx1 ≡ dx2 , if:

x⊕ dx1 = x⊕ dx2

18/46

Change structure examples : natural numbers

▶ Take∆N = Z and� = +Z

▶ The validity predicate V nk is defined as (k < 0) → (−k < n).
▶ Then, n⊕ k = n+Z k and	 = −Z .
▶ The nil change is 0 for all n.

19/46

Change structure examples : products

If (A,∆A,VA,⊕A,�A,0A,	A) and (B,∆B,VB ,⊕B ,�B ,0B ,	B) are
two change structures, then, by lifting the two set of operations to products,
(A×B,∆A×∆B,VA×B ,⊕A×B ,�A×B ,0A×B ,	A×B) is also a change
structure.

20/46

Change structure examples : sums

▶ Take∆(A+B) = ∆A+∆B +A+B

▶ VA+B s ds if

(∃ a da, s = in1 a ∧ ds = in1 da) ∨ (∃ b db, s = in2 b ∧ ds = in2 db) ∨
(∃ a′, ds = in3 a′) ∨ (∃ b′, ds = in4 b′)

▶ 0(in1a) = 0 a and 0(in2b) = 0 b.
▶ Exercise: Define⊕,	 and�!

21/46

Change structure examples : functions (Gonzalez’ style)

▶ Take∆(A → B) = A → ∆B .
▶ Lift the change structure overB in a pointwise way.
▶ For instance, change application is:

f ⊕ df = λx.f x⊕ df x

▶ For nil change:
0f = λx.0(f x)

22/46

Change structure examples : functions (Giarrusso’s style)

▶ Take∆(A → B) = A → ∆A → ∆B .
▶ For the change application, Giarrusso uses:

f ⊕ df = λx.f x⊕ df x (0x)

▶ Because of the need for:

(f ⊕ df) (x⊕ dx) = f x⊕ df x dx

▶ In that setting, 0f must therefore enjoy:

(f ⊕ (0 f)) (x⊕ dx) = f x⊕ (0 f)x dx = f (x⊕ dx)

▶ That is, 0 f must be a derivative of f .

23/46

Validity for function changes

V f df =

{
∀a da,VA a da → VB (f a) (df a da) ∧
∀a da, f a⊕ df a da = f (a⊕ da)⊕ df (a⊕ da) (0 (a⊕ da))

24/46

Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to

25/46

A toy compiler for arithmetic expressions

1 (** Abstract syntax trees for arithmetic expressions. *)
2 type exp = EInt of int | EBin of op * exp * exp and op = Add | Mul
3

4 (** Instructions of a stack machine. *)
5 type instr = IPush of int | IAdd | IMul
6

7 (** We want a compiler from arithmetic expressions to instructions. *)
8 type source = exp and target = instr list
9

10 (** [compile] is defined by induction over arithmetic expressions. *)
11 let rec compile : source -> target = function
12 | EInt d -> [IPush d]
13 | EBin (op, lhs, rhs) -> compile lhs @ compile rhs @ [to_instr op]
14

15 and to_instr = function Add -> IAdd | Mul -> IMul

26/46

Source code changes

1 (** A rich set of changes for the abstract syntax trees. *)
2 type dexp =
3 ReplaceEInt of int (* Replace a literal. *)
4 | ReplaceOp of op (* Replace an operation. *)
5 | ChangeLeft of dexp (* Apply a change on lhs. *)
6 | ChangeRight of dexp (* Apply a change on rhs. *)
7 | LeftInsertOp of op * exp (* Insert an operation with rhs *)
8 | RightInsertOp of op * exp (* Insert an operation with lhs *)
9 | ProjLeft (* Keep only lhs. *)
10 | ProjRight (* Keep only rhs. *)
11 | BinOpToEInt of int (* Change an operation into a literal. *)
12 | EIntToBinOp of op * exp * exp (* Change a literal into an operation. *)
13 | DExpNil (* Change nothing. *)

27/46

Source change application

1 (** Here is how some of these changes can be applied to ASTs. *)
2 let apply_dexp e de =
3 match e, de with
4 | EInt x, ReplaceEInt y -> EInt y
5 | EInt x, EIntToBinOp (op, lhs, rhs) -> EBin (op, lhs, rhs)
6 | EBin (b, lhs, rhs), BinOpToEInt x -> EInt x
7 | EBin (b, lhs, rhs), ProjLeft -> lhs
8 | EBin (b, lhs, rhs), ProjRight -> rhs
9 | EBin (b, lhs, rhs), ReplaceOp b' -> EBin (b, lhs, rhs)
10 | e, LeftInsertOp (op, lhs) -> EBin (op, lhs, e)
11 | e, RightInsertOp (op, rhs) -> EBin (op, e, rhs)
12 | _, _ -> failwith "Invalid change"

▶ Did I miss some cases?
▶ With some extra pain, you can define compose_dexp.

27/46

Source change application

1 (** Here is how some of these changes can be applied to ASTs. *)
2 let apply_dexp e de =
3 match e, de with
4 | EInt x, ReplaceEInt y -> EInt y
5 | EInt x, EIntToBinOp (op, lhs, rhs) -> EBin (op, lhs, rhs)
6 | EBin (b, lhs, rhs), BinOpToEInt x -> EInt x
7 | EBin (b, lhs, rhs), ProjLeft -> lhs
8 | EBin (b, lhs, rhs), ProjRight -> rhs
9 | EBin (b, lhs, rhs), ReplaceOp b' -> EBin (b, lhs, rhs)
10 | e, LeftInsertOp (op, lhs) -> EBin (op, lhs, e)
11 | e, RightInsertOp (op, rhs) -> EBin (op, e, rhs)
12 | _, _ -> failwith "Invalid change"

▶ Did I miss some cases?
▶ With some extra pain, you can define compose_dexp.

28/46

…and now?

1 (** [compile] is defined by induction over arithmetic expressions. *)
2 let rec compile : source -> target = function
3 | EInt d -> [IPush d]
4 | EBin (op, lhs, rhs) -> compile lhs @ compile rhs @ [to_instr op]
5

6 and to_instr = function Add -> IAdd | Mul -> IMul
7

8 (** [dcompile source dsource] computes how [compile source] should be
9 changed if [source] is changed by [dsource]. *)
10 let dcompile : source -> dsource -> dtarget = ?

29/46

A programming challenge

▶ Derivatives are often partial functions.

Can you remove an element from an empty list?
The program safety depends on the validity of changes.

▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

29/46

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.

If a datatype has n cases and if there ism distinct kind of changes,
prepare yourself to consider n ∗m cases (and many make no sense)!

▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

29/46

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.

There is no magic wand.
Efficient derivatives exploit mathematical properties of functions.

▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

29/46

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.

An incrementalizationmust share information with its base computation.
Use retroactive data structures to efficiently store and update it.

▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

29/46

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.

Manual incrementalization of small functions is hard but feasible.
Large programs have no obvious derivatives.

▶ The complexity of incremental programs is hard to reason about.

29/46

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

A tiny change of the inputs can have a large impact on the outputs.
The complexity is better expressed w.r.t the size of the output update.
Require reasoning about f x, f(x⊕ dx) andD(f)x dx.

29/46

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

30/46

Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to

31/46

Our take on this programming challenge

ΔCoq ΔCaml

OCaml

compilationextraction

declaration

▶ For a function f for which a “smart” incrementalization is not obvious:
⇒ ∆Caml provides derive f, an automatic incrementalization of f.

▶ For a function f for which the programmer has some intuition:
⇒ ∆Coq assists the programmer through the incrementalization process.

32/46

The quest for automatic differentiation

2. How to get this miraculousD(f)?

▶ Easy! Take:
D(f)x dx = λx dx.f(x⊕ dx)	 f x

▶ This is a too naive! D(f)must be more efficient than recomputation!
▶ Two more realistic approaches:

▶ Gonzalez’ partial derivatives ;
▶ Giarrusso’s static differentiation.

32/46

The quest for automatic differentiation

2. How to get this miraculousD(f)?

▶ Easy! Take:
D(f)x dx = λx dx.f(x⊕ dx)	 f x

▶ This is a too naive! D(f)must be more efficient than recomputation!
▶ Two more realistic approaches:

▶ Gonzalez’ partial derivatives ;
▶ Giarrusso’s static differentiation.

32/46

The quest for automatic differentiation

2. How to get this miraculousD(f)?

▶ Easy! Take:
D(f)x dx = λx dx.f(x⊕ dx)	 f x

▶ This is a too naive! D(f)must be more efficient than recomputation!

▶ Two more realistic approaches:
▶ Gonzalez’ partial derivatives ;
▶ Giarrusso’s static differentiation.

32/46

The quest for automatic differentiation

2. How to get this miraculousD(f)?

▶ Easy! Take:
D(f)x dx = λx dx.f(x⊕ dx)	 f x

▶ This is a too naive! D(f)must be more efficient than recomputation!
▶ Two more realistic approaches:

▶ Gonzalez’ partial derivatives ;
▶ Giarrusso’s static differentiation.

33/46

Partial derivatives à la Gonzalez

Let’s extend the standard call-by-value λ-calculus withD(•) ruled by:

D(λx.t) → λx dx.
∂t

∂x
where

∂y

∂x
=

dx if y = x

0 y otherwise

∂(λy.t)

∂x
= λy.

∂t

∂x
if x 6= y

∂D(t)
∂x

= D(∂t
∂x

)

∂(r s)

∂x
=

(
D(r) s ∂s

∂x

)
�
(∂r

∂x
(x⊕ ∂s

∂x
)
)

34/46

Partial derivatives à la Gonzalez
Theorem (Chain rule)
The chain rule holds for the deterministic differential λ-calculus.

D(λx.(f ◦ g)x) → λx dx.D(f) (g x) (D(g)x dx)

Theorem (Soundness of dynamic differentiation)
Let f be function. The following equation holds:

f (x⊕ dx) = f x⊕D(f)x dx

where the equality stands for the definitional equivalence.

▶ Add a rule for your favorite primitives and their derivatives, and voilà!
▶ D(•) lifts primitive derivatives to higher-order programs.
▶ A framework to reason about derivatives, inspired by Differential λ-calculus.

7 Unfortunately, partial derivatives require huge implementation efforts…

34/46

Partial derivatives à la Gonzalez
Theorem (Chain rule)
The chain rule holds for the deterministic differential λ-calculus.

D(λx.(f ◦ g)x) → λx dx.D(f) (g x) (D(g)x dx)

Theorem (Soundness of dynamic differentiation)
Let f be function. The following equation holds:

f (x⊕ dx) = f x⊕D(f)x dx

where the equality stands for the definitional equivalence.

▶ Add a rule for your favorite primitives and their derivatives, and voilà!
▶ D(•) lifts primitive derivatives to higher-order programs.
▶ A framework to reason about derivatives, inspired by Differential λ-calculus.
7 Unfortunately, partial derivatives require huge implementation efforts…

35/46

Static differentiation (Giarrusso et al, PLDI’14)

Giarrusso et al study the following stunningly simple program transformation:

D(x) = dx
D(t u) = D(t)uD(u)

D(λx.t) = λx dx.D(t)

▶ It performs static differentiation w.r.t. all free variables at once.
▶ As a program transformation, it can be easily embedded in a compiler.

Theorem (Soundness of static differentiation)
If f : A → B , a : A and da : ∆A is a valid change for a, then the following holds:

f (a⊕ da) ' f a⊕D(f) a da

were' denotes the (definitional) equality of denotations.

35/46

Static differentiation (Giarrusso et al, PLDI’14)

Giarrusso et al study the following stunningly simple program transformation:

D(x) = dx
D(t u) = D(t)uD(u)

D(λx.t) = λx dx.D(t)

▶ It performs static differentiation w.r.t. all free variables at once.
▶ As a program transformation, it can be easily embedded in a compiler.

Theorem (Soundness of static differentiation)
If f : A → B , a : A and da : ∆A is a valid change for a, then the following holds:

f (a⊕ da) ' f a⊕D(f) a da

were' denotes the (definitional) equality of denotations.

35/46

Static differentiation (Giarrusso et al, PLDI’14)

Giarrusso et al study the following stunningly simple program transformation:

D(x) = dx
D(t u) = D(t)uD(u)

D(λx.t) = λx dx.D(t)

▶ It performs static differentiation w.r.t. all free variables at once.
▶ As a program transformation, it can be easily embedded in a compiler.

Theorem (Soundness of static differentiation)
If f : A → B , a : A and da : ∆A is a valid change for a, then the following holds:

f (a⊕ da) ' f a⊕D(f) a da

were' denotes the (definitional) equality of denotations.

36/46

Inefficiency of Giarrusso’s static differentiation

1 let average : int list -> int = fun xs ->
2 let s = sum xs in
3 let n = len xs in
4 let d = div s n in
5 d

Applied to average, static differentiation produces the following derivative:

1 let daverage : int list -> (int, ∆int) ∆list -> ∆int
2 = fun xs dxs ->
3 let s = sum xs and ds = dsum xs dxs in
4 let n = len xs and dn = dlen xs dxs in
5 let d = div s n and dd = ddiv s ds n dn in
6 dd
7

8 let ddiv s ds n dn = (s ⊕ ds) / (n ⊕ dn)

ddiv needs s (i.e. sum xs) even though average xs already computed it!

36/46

Inefficiency of Giarrusso’s static differentiation

1 let average : int list -> int = fun xs ->
2 let s = sum xs in
3 let n = len xs in
4 let d = div s n in
5 d

Applied to average, static differentiation produces the following derivative:

1 let daverage : int list -> (int, ∆int) ∆list -> ∆int
2 = fun xs dxs ->
3 let s = sum xs and ds = dsum xs dxs in
4 let n = len xs and dn = dlen xs dxs in
5 let d = div s n and dd = ddiv s ds n dn in
6 dd
7

8 let ddiv s ds n dn = (s ⊕ ds) / (n ⊕ dn)

ddiv needs s (i.e. sum xs) even though average xs already computed it!

37/46

Static differentiation in Cache Transfer Style (ESOP’19)

In CTS, a function returns a cache of its intermediate results:

1 let cts_average : int list -> int * cache_average = fun xs ->
2 let s, cache_sum = cts_sum xs in
3 let n, cache_len = cts_len xs in
4 let d, cache_div = cts_div s n in
5 (d, (s, cache_sum, n, cache_len, d, cache_div))

In CTS, a derivative exploits and updates this cache:

1 let cts_daverage
2 : cache_average -> int list -> (int, ∆int) ∆list -> ∆int * cache_average
3 = fun cache xs dxs ->
4 let (s, cache_sum, n, cache_length, d, cache_div) = cache in
5 let ds, cache_sum = dsum cache_sum xs dxs in
6 let dn, cache_len = dlen cache_len xs dxs in
7 let dd, cache_div = ddiv cache_div s ds n dn in
8 (dd, (s ⊕ ds, cache_sum, n ⊕ dn, cache_len, d ⊕ dd, cache_div))

38/46

Status of CTS differentiation

In the paper
▶ A new soundness proof of differentiation (in an untyped setting).
▶ A soundness proof of the CTS differentiation.
▶ Preliminary benchmarks show that resulting incrementalizations are of an

order of magnitude faster than recomputing.

Now
▶ The implementation of∆Caml is work-in-progress.
▶ ∆Caml is core ML + change structures + derivatives.
▶ The transformation requires terms to be in λ-lifted A-normal form.

39/46

Towards the certification of hand-written CTS derivatives

How should we design the∆Coq library?

We are trying to answer this through a case study : an incremental List module.

40/46

Which change structure for Lists?

If (A,∆A,VA,⊕A,�A,0A,	A) is a change structure, then let us take

∆listA ::= Insertk a | Removek a | Updatek a da | Compose dl dl | NilChange

where we take k ∈ N, a ∈ A, da ∈ ∆A, and dl ∈ ∆listA.

41/46

List.map

How would you incrementalize List.map?

1 let rec dmap_nil f df dl =
2 match dl with
3 | Insert k a -> Insert k (f a)
4 | Remove k a -> Remove k (f a)
5 | Update k a da -> Update k (f a) (df a da)
6 | Compose dl1 dl2 -> Compose (dmap_nil f df dl1) (dmap_nil f df dl2)
7 | NilChange -> NilChange
8

9 let dmap f df l dl =
10 if is_nil df then dmap_nil f df dl else ! (map (f ⊕ df) (l ⊕ dl))

▶ The caches are omitted because they are not necessary for List.map.

41/46

List.map

How would you incrementalize List.map?

1 let rec dmap_nil f df dl =
2 match dl with
3 | Insert k a -> Insert k (f a)
4 | Remove k a -> Remove k (f a)
5 | Update k a da -> Update k (f a) (df a da)
6 | Compose dl1 dl2 -> Compose (dmap_nil f df dl1) (dmap_nil f df dl2)
7 | NilChange -> NilChange
8

9 let dmap f df l dl =
10 if is_nil df then dmap_nil f df dl else ! (map (f ⊕ df) (l ⊕ dl))

▶ The caches are omitted because they are not necessary for List.map.

42/46

List.fold_left

How would you incrementalize List.fold_left?

▶ If you know nothing about f:
▶ Take a cache that remembers all the intermediate values of the accumulator.
▶ Restart the iteration from the position of the change.
▶ Worst-case: O(|l|).

▶ If you know that f is commutative and inversible:
▶ There is no need for a cache.
▶ Undo/Update the contribution of the element at the change position.
▶ Worst-case: (O(1))

▶ If you know that f is associative:
▶ Take a cache which is a (differential variant of a) fingertree.
▶ Split the fingertree at the change position, apply the change and join the

fingertree back.
▶ Worst-case: O(log2(l)).

42/46

List.fold_left

How would you incrementalize List.fold_left?

▶ If you know nothing about f:
▶ Take a cache that remembers all the intermediate values of the accumulator.
▶ Restart the iteration from the position of the change.
▶ Worst-case: O(|l|).

▶ If you know that f is commutative and inversible:
▶ There is no need for a cache.
▶ Undo/Update the contribution of the element at the change position.
▶ Worst-case: (O(1))

▶ If you know that f is associative:
▶ Take a cache which is a (differential variant of a) fingertree.
▶ Split the fingertree at the change position, apply the change and join the

fingertree back.
▶ Worst-case: O(log2(l)).

43/46

Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to

44/46

How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?
▶ They are instrumented to build a graph representing their execution traces.
▶ Output changes are obtained by propagating changes in the graph.
▶ Tremendous performances thanks to aggressive memoization.

But …
▶ It is a dynamic and imperative process in a graph: hard to reason about.
⇒ A derivative is simply a new program compatible with usual verification tools.
▶ Acar’s notion of changes is based on replacement.
⇒ We believe that more structured changes open better opportunities.

44/46

How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?
▶ They are instrumented to build a graph representing their execution traces.
▶ Output changes are obtained by propagating changes in the graph.
▶ Tremendous performances thanks to aggressive memoization.

But …
▶ It is a dynamic and imperative process in a graph: hard to reason about.
⇒ A derivative is simply a new program compatible with usual verification tools.
▶ Acar’s notion of changes is based on replacement.
⇒ We believe that more structured changes open better opportunities.

44/46

How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?
▶ They are instrumented to build a graph representing their execution traces.
▶ Output changes are obtained by propagating changes in the graph.
▶ Tremendous performances thanks to aggressive memoization.

But …
▶ It is a dynamic and imperative process in a graph: hard to reason about.
⇒ A derivative is simply a new program compatible with usual verification tools.

▶ Acar’s notion of changes is based on replacement.
⇒ We believe that more structured changes open better opportunities.

44/46

How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?
▶ They are instrumented to build a graph representing their execution traces.
▶ Output changes are obtained by propagating changes in the graph.
▶ Tremendous performances thanks to aggressive memoization.

But …
▶ It is a dynamic and imperative process in a graph: hard to reason about.
⇒ A derivative is simply a new program compatible with usual verification tools.
▶ Acar’s notion of changes is based on replacement.
⇒ We believe that more structured changes open better opportunities.

45/46

Towards cache communication

1 let rec sort = function
2 ...
3 | x :: xs ->
4 let cmp, cmp_cache = less_than x in
5 let (xless, xmore), partition_cache = partition cmp xs in
6 ...

1 let rec dsort (sorted_list, cmp_cache, partition_cache, ...) =
2 ...
3 (* Case for ``Insert k a'' *)
4 let dcmp, dcmp_cache = dless_than cmp_cache dx in
5 let (dxless, dxmore), partition_cache =
6 dpartition partition_cache dcmp (Insert k a)
7 in
8 ...

▶ dpartition has aO(n) worst-case complexity.

▶ But by exploiting sorted_list this could be reduced to log(n)!
▶ The cache of sort has information about values processed by partition.
▶ Can we share information between caches?

45/46

Towards cache communication

1 let rec sort = function
2 ...
3 | x :: xs ->
4 let cmp, cmp_cache = less_than x in
5 let (xless, xmore), partition_cache = partition cmp xs in
6 ...

1 let rec dsort (sorted_list, cmp_cache, partition_cache, ...) =
2 ...
3 (* Case for ``Insert k a'' *)
4 let dcmp, dcmp_cache = dless_than cmp_cache dx in
5 let (dxless, dxmore), partition_cache =
6 dpartition partition_cache dcmp (Insert k a)
7 in
8 ...

▶ dpartition has aO(n) worst-case complexity.
▶ But by exploiting sorted_list this could be reduced to log(n)!

▶ The cache of sort has information about values processed by partition.
▶ Can we share information between caches?

45/46

Towards cache communication

1 let rec sort = function
2 ...
3 | x :: xs ->
4 let cmp, cmp_cache = less_than x in
5 let (xless, xmore), partition_cache = partition cmp xs in
6 ...

1 let rec dsort (sorted_list, cmp_cache, partition_cache, ...) =
2 ...
3 (* Case for ``Insert k a'' *)
4 let dcmp, dcmp_cache = dless_than cmp_cache dx in
5 let (dxless, dxmore), partition_cache =
6 dpartition partition_cache dcmp (Insert k a)
7 in
8 ...

▶ dpartition has aO(n) worst-case complexity.
▶ But by exploiting sorted_list this could be reduced to log(n)!
▶ The cache of sort has information about values processed by partition.
▶ Can we share information between caches?

46/46

Conclusion

Where we are
▶ Cache-Transfer-Style differentiation is a program transformation to

incrementalize higher-order programs.
▶ We have a Coq proof and several experiments in OCaml.

What we are up to
▶ Implementing∆Caml and∆Coq to conduct large experiments.
▶ Studying a theory of caches.

Thank you for attention! Any questions?

46/46

Conclusion

Where we are
▶ Cache-Transfer-Style differentiation is a program transformation to

incrementalize higher-order programs.
▶ We have a Coq proof and several experiments in OCaml.

What we are up to
▶ Implementing∆Caml and∆Coq to conduct large experiments.
▶ Studying a theory of caches.

Thank you for attention! Any questions?

46/46

Conclusion

Where we are
▶ Cache-Transfer-Style differentiation is a program transformation to

incrementalize higher-order programs.
▶ We have a Coq proof and several experiments in OCaml.

What we are up to
▶ Implementing∆Caml and∆Coq to conduct large experiments.
▶ Studying a theory of caches.

Thank you for attention! Any questions?

	Introduction
	Some structure for first-class changes
	Incrementalize this!
	How should we equip incremental programmers?
	Where we are and what we are up to

