Towards
Certified Incremental Functional Programming

Yann Régis-Gianas
(IRIF, Univ. Paris, Inria \(\pi.r^2\)) – yrg@irif.fr

with Paolo Giarrusso (Univ. Delft), Philip Schutser (Univ. Marburg), Lourdes Gonzalez Huesca (Univ. Mexico), Lelio Brun (ENS), Olivier Martinot (Univ. Paris)

2019-11-14
Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to
Data constantly change

Data at $t = 0$

Data at $t = 1$

Data at $t = 2$

Changes:

- $f(x)$ at $t = 0$
- $f(x)$ at $t = 1$
- $f(x)$ at $t = 2$

Now, take size $(x) = 2^{50}$ and size (modified part of x) = 2^{10}.

Recomputation is not an option!
Data constantly change

- Now, take $\text{size}(x) = 2^{50}$ and $\text{size}(\text{modified part of x}) = 2^{10}$.
- Recomputation is not an option!
Stream-based processing

- \(f \) only reacts to new items by producing a new version of its output.
- We are back to a reasonable computational setting.
What about large structured data?

- Stream-based processing is relevant for computations:
 - that are dealing with **linearizable** data;
 - whose output only depends on a bounded number of previous items.
- Examples: tweets, financial data, machine learning datasets, ...

How should we program systems that perform **non local** computations over **interdependent** and ever-changing **structured** values? (e.g. commits in a large source code repository, complex simulations, ...)
Incremental programming with first-class changes

Data x at $t = 0$

$\frac{dx}{1}$

$\frac{dx}{2}$

$f(x + dx_1)$

$f(x + dx_1 + dx_2)$

$D(f)$

$D(f)$

$D(f)$

dx_1

dx_2
Incremental programming with first-class changes

If

\[
\begin{aligned}
&f : A \to B \\
&\Delta A \text{ are changes over } A \text{ and } \Delta B \text{ are changes over } B \\
&\oplus_A : A \to \Delta A \to A \text{ and } \oplus_B : A \to \Delta B \to B
\end{aligned}
\]

then use \(D(f) \) such that:

\[
f(x \oplus_A dx) = f x \oplus_B D(f) x \, dx
\]
Incremental programming with first-class changes

\[
\begin{aligned}
\{ & f : A \rightarrow B \\
& \Delta A \text{ are changes over } A \text{ and } \Delta B \text{ are changes over } B \\
& \oplus_A : A \rightarrow \Delta A \rightarrow A \text{ and } \oplus_B : A \rightarrow \Delta B \rightarrow B \\
\}
\end{aligned}
\]

then use \(D(f) \) such that:

\[
f (x \oplus_A dx) = f x \oplus_B D(f) x \ dx
\]

where the complexity of \(D(f) \)

- (should ideally) only depends on the size of \(dx \), and
- (always) be better than the complexity of \(f \).
A first-order example

Let us assume that \texttt{rows} is a bunch of grades coming from a CSV file1:

\begin{verbatim}
let rows = ["Pédrot", "Pierre-Marie", "17";
 "Knuth", "Donald", "12";
 "Torvald", "Linus", "10"]
\end{verbatim}

The Ministry wants us to compute the mean of these grades. That's easy:

\begin{verbatim}
let grades = List.map (fun ℓ -> List.nth ℓ | > int_of_string) rows

let mean = List.fold_left (+) 0 grades / List.length grades
\end{verbatim}

We run the program, get some value \(m \), and we are done!

Unfortunately, students often make us notice that we did not grade them correctly. So you look back at the work and produce a change, e.g.:

In row 0, the value of column 2 moves from 17 to 11.

How should we update \(m \) without recomputing everything?

1Please, imagine that there is \(10^{40} \) rows in that file.
A first-order example

Let us assume that `rows` is a bunch of grades coming from a CSV file¹:

```haskell
let rows = [ "Pédrot", "Pierre-Marie", "17";
            "Knuth", "Donald", "12";
            "Torvald", "Linus", "10" ]
```

The Ministry wants us to compute the mean of these grades. That’s easy:

```haskell
let myprog rows =
    let grades = List.map (fun ℓ -> List.nth ℓ 2 |> int_of_string) rows in
    let mean = List.fold_left (+) 0 grades / List.length grades in
    mean
```

We run the program, get some value `m`, and we are done!

¹Please, imagine that there is 10^{40} rows in that file.
A first-order example

Let us assume that `rows` is a bunch of grades coming from a CSV file¹:

```ocaml
let rows = [ "Pédrot", "Pierre-Marie", "17";
             "Knuth", "Donald", "12";
             "Torvald", "Linus", "10" ]
```

The Ministry wants us to compute the mean of these grades. That’s easy:

```ocaml
let myprog rows =
    let grades = List.map (fun ℓ -> List.nth ℓ 2 |> int_of_string) rows in
    let mean = List.fold_left (+) 0 grades / List.length grades in
    mean
```

We run the program, get some value `m`, and we are done!
Unfortunately, students often make us notice that we did not grade them correctly.
So you look back at the work and produce a change, e.g.:

¹Please, imagine that there is 10^{40} rows in that file.
A first-order example

Let us assume that \texttt{rows} is a bunch of grades coming from a CSV file\footnote{Please, imagine that there is 10^{40} rows in that file.}:

\begin{verbatim}
let rows = ["Pédrot", "Pierre-Marie", "17";
 "Knuth", "Donald", "12";
 "Torvald", "Linus", "10"]
\end{verbatim}

The Ministry wants us to compute the mean of these grades. That's easy:

\begin{verbatim}
let myprog rows =
 let grades = List.map (fun ℓ -> List.nth ℓ 2 |> int_of_string) rows in
 let mean = List.fold_left (+) 0 grades / List.length grades in
 mean
\end{verbatim}

We run the program, get some value \(m \), and we are done!
Unfortunately, students often make us notice that we did not grade them correctly. So you look back at the work and produce a change, e.g.:

In row 0, the value of column 2 moves from 17 to 11.

How should we update \(m \) without recomputing everything?
Can we find a derivative for \texttt{myprog}?

```ocaml
let extract = fun \ell -> List.nth \ell 2 |> int_of_string

let sigma = List.fold_left ( + ) 0

let myprog rows =
    let grades = List.map extract rows in
    let count = List.length grades in
    let sum = sigma grades in
    let mean = sum / count in
    mean

type 'da dlist = ChangeItem of int * 'da

type dstring = ReplaceString of string

and dint = ReplaceInt of int | Shift of int

let apply_dint x = function
    | ReplaceInt y -> y
    | Shift dx -> x + dx

let apply_dstring _ (ReplaceString s) = s
```
Can we find a derivative for `myprog`?

```
let dint_of_string (ReplaceString new_value) =
    ReplaceInt (int_of_string new_value)

let dextract (ChangeItem (k, new_value)) =
    if k = 2 then dint_of_string new_value else Shift 0

let dmap df (ChangeItem (k, dx)) = ChangeItem (k, df dx)

let dlength _ = Shift 0

let dsigma (ChangeItem (_, Shift dx)) = Shift dx

let dmyprog rows drows =
    let dgrades = dmap dextract drows in
    let dcount = dlength dgrades in
    let dsum = dsigma dgrades in
    let dmean = ...
    in
    dmean
```
Can we find a derivative for `myprog`?

```ocaml
let dint_of_string (ReplaceString new_value) = 
    ReplaceInt (int_of_string new_value)

let dextract (ChangeItem (k, new_value)) = 
    if k = 2 then dint_of_string new_value else Shift 0

let dmap df (ChangeItem (k, dx)) = ChangeItem (k, df dx)

let dlength _ = Shift 0

let dsigma (ChangeItem (_, Shift dx)) = Shift dx

let dmyprog rows drows = 
    let dgrades = dmap dextract drows in
    let dcount = dlength dgrades in
    let dsum = dsigma dgrades in
    let dmean = Shift ( 
        (apply_dint sum dsum) / (apply_dint count dcount) 
        - sum / count
    ) 
    in 
    dmean
```
Can we find a derivative for `myprog`?

```ocaml
let dint_of_string (ReplaceString new_value) = ReplaceInt (int_of_string new_value)

let dextract (ChangeItem (k, new_value)) = 
  if k = 2 then dint_of_string new_value else Shift 0

let dmap df (ChangeItem (k, dx)) = ChangeItem (k, df dx)

let dlength _ = Shift 0

let dsigma (ChangeItem (_, Shift dx)) = Shift dx

let dmyprog rows drows = 
  let grades = List.map extract rows in 
  let dgrades = dmap dextract drows in 
  let count = List.fold_left ( + ) 0 grades in 
  let dcount = dlength dgrades in 
  let sum = List.fold_left ( + ) 0 grades in 
  let dsum = dsigma dgrades in 
  let dmean = Shift (
    (apply_dint sum dsum) / (apply_dint count dcount)
    - sum / count
  )
  in 
  dmean
```
Can we find a derivative for *myprog*?

(We will try again later.)
Next level: An higher-order example

```ocaml
let product l1 l2 =
  List.map (fun x ->
    List.map (fun y -> (x, y)) l2
  ) l1

let dproduct l1 dl1 l2 dl2 = ?
```
Next level: An higher-order example

```plaintext
let product l1 l2 =
  let inner x = (fun y -> (x, y)) in
  let outer x =
    let inner' = inner x in
    List.map inner' l2
  in
  List.map outer l1

let dproduct l1 dl1 l2 dl2 =
  ...
  List.dmap inner' dinner' l2 dl2
  ...
  List.dmap outer douter l1 dl1
```
Next level: An higher-order example

```ocaml
let product l1 l2 =
  let inner x = (fun y -> (x, y)) in
  let outer x =
    let inner' = inner x in
    List.map inner' l2
  in
  List.map outer l1

let dproduct l1 dl1 l2 dl2 =
  ...
  List.dmapinner' dinner' l2 dl2
  ...
  List.dmapouter douter l1 dl1
```

douter is a function change. What is that?
Two subproblems

1. How should we define ΔA, ΔB, \oplus_A, and \oplus_B?
2. How to get this miraculous $D(f)$?
Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to
1. How should we define ΔA, ΔB, \oplus_A, and \oplus_B?
Change structures

1. How should we define ΔA, ΔB, \oplus_A, and \oplus_B?

Incremental language designers do not actually agree on this question...
A **complete change structure** is a tuple $(A, \Delta, \oplus, \ominus)$ such that:

- A is a type.
- $\Delta : A \rightarrow \text{Type}$
 where for all a of type A, the inhabitants of Δa are valid changes for a.
- $\oplus : \forall (x : A), \Delta x \rightarrow A$
 where $a \oplus da$ is the application of the change da to a.
- $\ominus : A \rightarrow \forall (x : A), \Delta x$
 where $a \ominus (b \ominus a) = b$.

Giarrusso’s change structures
A change action is a tuple \((A, \Delta A, \oplus, \otimes, \emptyset)\) such that:

- \(\Delta A\) is a type for changes.
- \(M_{\Delta} = (\Delta A, \otimes, \emptyset)\) is a monoid.
- \(\oplus : A \times \Delta A \to A\) is an action of the monoid \(M_{\Delta}\) on \(A\).
A type A is **displaceable** by $(\Delta A, \oplus, \ominus, \emptyset, \circ)$ if

- ΔA is a type for changes.
- $M_\Delta = (\Delta A, \ominus, \emptyset)$ is a monoid.
- $\oplus : A \times \Delta A \rightarrow A$ is an “action” of the monoid M_Δ on A.
- $\ominus : A \rightarrow A \rightarrow \Delta A$ where $a \ominus (b \ominus a) = b$.
A rich change structure is a tuple \((A, \Delta A, \mathcal{V}, \ominus, \odot, \Theta, \Theta, !)\) such that:

- \(A\) is a type and \(\Delta A\) is a type for changes.
- \(\mathcal{V} : A \rightarrow \Delta A \rightarrow \text{Prop}\) is a validity predicate for change.
- \(\Delta : A \rightarrow \text{Type}\) as a subset type \(\Delta x \triangleq \{dx : A \mid \mathcal{V} x dx\}\)
- \(\ominus : \forall(x : A), \Delta x \rightarrow A\)
 where \(a \ominus da\) is the application of the change \(da\) to \(a\).
- \(\odot : \forall(x : A)(dx : \Delta x) \rightarrow \Delta(x \ominus dx) \rightarrow \Delta x\)
 is an associative change composition operator, behaving as an action on \(A\).
- \(\Theta : \forall(x : A), \Delta x\)
 is such that \(\forall x, x \ominus \Theta x = x\) and behaves as an identity for \(\odot\).
- \(\Theta : A \rightarrow \forall(x : A), \Delta x\)
 where \(a \ominus (b \ominus a) = b\).
- \(! : \forall(y : A), A \rightarrow \Delta y\)
Equivalence of changes

Let $x : A$ and $dx_1 \, dx_2 : \Delta x$. The two changes dx_1 and dx_2 are equivalent, written $dx_1 \equiv dx_2$, if:

$$x \oplus dx_1 = x \oplus dx_2$$
Change structure examples: natural numbers

- Take $\Delta \mathbb{N} = \mathbb{Z}$ and $\circ = +_{\mathbb{Z}}$
- The validity predicate $\mathcal{V} n k$ is defined as $(k < 0) \rightarrow (-k < n)$.
- Then, $n \oplus k = n +_{\mathbb{Z}} k$ and $\ominus = -_{\mathbb{Z}}$.
- The nil change is 0 for all n.
Change structure examples : products

If \((A, \Delta A, \nu_A, \oplus_A, \odot_A, \ominus_A, \oslash_A)\) and \((B, \Delta B, \nu_B, \oplus_B, \odot_B, \ominus_B, \oslash_B)\) are two change structures, then, by lifting the two set of operations to products,
\((A \times B, \Delta A \times \Delta B, \nu_{A \times B}, \oplus_{A \times B}, \odot_{A \times B}, \ominus_{A \times B}, \oslash_{A \times B})\) is also a change structure.
Change structure examples: sums

- Take $\Delta(A + B) = \Delta A + \Delta B + A + B$
- $\forall_{A+B} s \ ds$ if

 $$(\exists a \ da, s = \text{in}_1 a \land ds = \text{in}_1 da) \lor (\exists b \ db, s = \text{in}_2 b \land ds = \text{in}_2 db) \lor
 (\exists a', ds = \text{in}_3 a') \lor (\exists b', ds = \text{in}_4 b')$$

- $\emptyset(\text{in}_1 a) = \emptyset a$ and $\emptyset(\text{in}_2 b) = \emptyset b$.

- Exercise: Define \oplus, \ominus and \oslash!
Change structure examples: functions (Gonzalez’ style)

- Take $\Delta(A \to B) = A \to \Delta B$.
- Lift the change structure over B in a pointwise way.
- For instance, change application is:

$$f \oplus df = \lambda x. f \, x \oplus df \, x$$

- For nil change:

$$\Theta f = \lambda x. \Theta(f \, x)$$
Change structure examples: functions (Giarrusso's style)

- Take $\Delta(A \rightarrow B) = A \rightarrow \Delta A \rightarrow \Delta B$.
- For the change application, Giarrusso uses:

$$f \oplus df = \lambda x. f \ x \oplus df \ x \ (\emptyset \ x)$$

- Because of the need for:

$$(f \oplus df) (x \oplus dx) = f \ x \oplus df \ x \ dx$$

- In that setting, $\emptyset f$ must therefore enjoy:

$$(f \oplus (\emptyset f)) (x \oplus dx) = f \ x \oplus (\emptyset f) \ x \ dx = f \ (x \oplus dx)$$

- That is, $\emptyset f$ must be a derivative of f.
Validity for function changes

\[\forall f \, df = \begin{cases} \forall a \, da, \forall_A a \, da \rightarrow \forall_B (f \, a) (df \, a \, da) \land \\ \forall a \, da, f \, a \oplus df \, a \, da = f \, (a \oplus da) \oplus df \, (a \oplus da) (\emptyset (a \oplus da)) \end{cases} \]
Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to
A toy compiler for arithmetic expressions

(** Abstract syntax trees for arithmetic expressions. *)

```ml
type exp = EInt of int | EBin of op * exp * exp and op = Add | Mul
```

(** Instructions of a stack machine. *)

```ml
type instr = IPush of int | IAdd | IMul
```

(** We want a compiler from arithmetic expressions to instructions. *)

```ml
type source = exp and target = instr list
```

(** [compile] is defined by induction over arithmetic expressions. *)

```ml
let rec compile : source -> target = function
  | EInt d -> [IPush d]
  | EBin (op, lhs, rhs) -> compile lhs @ compile rhs @ [to_instr op]
and to_instr = function Add -> IAdd | Mul -> IMul
```
Source code changes

A rich set of changes for the abstract syntax trees.

```plaintext
type dexp =
    ReplaceEInt of int (* Replace a literal. *)
    | ReplaceOp of op (* Replace an operation. *)
    | ChangeLeft of dexp (* Apply a change on lhs. *)
    | ChangeRight of dexp (* Apply a change on rhs. *)
    | LeftInsertOp of op * exp (* Insert an operation with rhs *)
    | RightInsertOp of op * exp (* Insert an operation with lhs *)
    | ProjLeft (* Keep only lhs. *)
    | ProjRight (* Keep only rhs. *)
    | BinOpToEInt of int (* Change an operation into a literal. *)
    | EIntToBinOp of op * exp * exp (* Change a literal into an operation. *)
    | DExpNil (* Change nothing. *)
```
Source change application

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(** Here is how some of these changes can be applied to ASTs. *)</td>
</tr>
<tr>
<td>2</td>
<td>let apply_dexp e de =</td>
</tr>
<tr>
<td>3</td>
<td>match e, de with</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Did I miss some cases?

With some extra pain, you can define compose_dexp.
Source change application

let apply_dexp e de =
 match e, de with
 | EInt x, ReplaceEInt y -> EInt y
 | EInt x, EIntToBinOp (op, lhs, rhs) -> EBin (op, lhs, rhs)
 | EBin (b, lhs, rhs), BinOpToEInt x -> EInt x
 | EBin (b, lhs, rhs), ProjLeft -> lhs
 | EBin (b, lhs, rhs), ProjRight -> rhs
 | EBin (b, lhs, rhs), ReplaceOp b' -> EBin (b, lhs, rhs)
 | e, LeftInsertOp (op, lhs) -> EBin (op, lhs, e)
 | e, RightInsertOp (op, rhs) -> EBin (op, e, rhs)
 | _, _ -> failwith "Invalid change"

- Did I miss some cases?
- With some extra pain, you can define compose_dexp.
...and now?

```ml
(** [compile] is defined by induction over arithmetic expressions. *)
let rec compile : source -> target = function
 | EInt d -> [IPush d]
 | EBin (op, lhs, rhs) -> compile lhs @ compile rhs @ [to_instr op]

and to_instr = function Add -> IAdd | Mul -> IMul

(** [dcompile source dsource] computes how [compile source] should be
changed if [source] is changed by [dsource]. *)
let dcompile : source -> dsource -> dtarget = ?
```
A programming challenge

- Derivatives are often **partial functions**.

 Can you remove an element from an empty list?
 The program safety depends on the **validity of changes**.
A programming challenge

- Derivatives are often **partial functions**.
- Derivatives are defined by **many cases**.

If a datatype has n cases and if there is m distinct kind of changes, prepare yourself to consider $n \times m$ cases (and many make no sense)!
A programming challenge

- Derivatives are often **partial functions**.
- Derivatives are defined by **many cases**.
- Efficient derivatives are often **program dependent**.

There is no magic wand. Efficient derivatives exploit mathematical properties of functions.
A programming challenge

- Derivatives are often **partial functions**.
- Derivatives are defined by **many cases**.
- Efficient derivatives are often **program dependent**.
- Incremental programming is **algorithmically challenging**.

An incrementalization must share information with its base computation. Use **retroactive data structures** to efficiently store and update it.
A programming challenge

- Derivatives are often **partial functions**.
- Derivatives are defined by **many cases**.
- Efficient derivatives are often **program dependent**.
- Incremental programming is **algorithmically challenging**.
- Incremental programming **hardly scales** to large programs.

Manual incrementalization of small functions is hard but feasible. Large programs have no obvious derivatives.
A programming challenge

- Derivatives are often **partial functions**.
- Derivatives are defined by **many cases**.
- Efficient derivatives are often **program dependent**.
- Incremental programming is **algorithmically challenging**.
- Incremental programming **hardly scales** to large programs.
- The complexity of incremental programs is **hard to reason about**.

A tiny change of the inputs can have a large impact on the outputs. The complexity is better expressed w.r.t the size of the output update. Require reasoning about $f(x)$, $f(x \oplus dx)$ and $D(f) \times dx$.
A programming challenge

- Derivatives are often **partial functions**.
- Derivatives are defined by **many cases**.
- Efficient derivatives are often **program dependent**.
- Incremental programming is **algorithmically challenging**.
- Incremental programming **hardly scales** to large programs.
- The complexity of incremental programs is **hard to reason about**.
Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to
Our take on this programming challenge

For a function f for which a “smart” incrementalization is not obvious:

\Rightarrow ΔCaml provides `derive f`, an automatic incrementalization of f.

For a function f for which the programmer has some intuition:

\Rightarrow ΔCoq assists the programmer through the incrementalization process.
2. How to get this miraculous $D(f)$?
The quest for automatic differentiation

2. How to get this miraculous $D(f)$?

Easy! Take:

$$D(f) x \, dx = \lambda x \, dx.\, f(x \oplus dx) \ominus f(x)$$
The quest for automatic differentiation

2. How to get this miraculous $D(f)$?

▶ Easy! Take:

$$D(f) \ dx = \lambda x \ dx \ . \ f(x \oplus dx) \Theta f(x)$$

▶ This is a too naive! $D(f)$ must be more efficient than recomputation!
2. How to get this miraculous $D(f)$?

▶ Easy! Take:

$$D(f) \, x \, dx = \lambda x \, dx. f(x \oplus dx) \ominus f \, x$$

▶ This is a too naive! $D(f)$ must be more efficient than recomputation!

▶ Two more realistic approaches:
 ▶ Gonzalez’ partial derivatives;
 ▶ Giarrusso’s static differentiation.
Partial derivatives à la Gonzalez

Let's extend the standard call-by-value λ-calculus with $\mathcal{D}(\bullet)$ ruled by:

$$\mathcal{D}(\lambda x.t) \rightarrow \lambda x \ dy \ dx \ \frac{\partial t}{\partial x} \quad \text{where}$$

$$\frac{\partial y}{\partial x} = \begin{cases}
 dx & \text{if } y = x \\
 0 & \text{otherwise}
\end{cases}$$

$$\frac{\partial (\lambda y.t)}{\partial x} = \lambda y \ \frac{\partial t}{\partial x} \quad \text{if } x \neq y$$

$$\frac{\partial \mathcal{D}(t)}{\partial x} = \mathcal{D}\left(\frac{\partial t}{\partial x}\right)$$

$$\frac{\partial (r \ s)}{\partial x} = \left(\mathcal{D}(r) \ s \ \frac{\partial s}{\partial x}\right) \odot \left(\frac{\partial r}{\partial x} \ (x \oplus \frac{\partial s}{\partial x})\right)$$
Partial derivatives à la Gonzalez

Theorem (Chain rule)
The chain rule holds for the deterministic differential λ-calculus.

$$\mathcal{D}(\lambda x. (f \circ g) \, x) \rightarrow \lambda x \, dx. \mathcal{D}(f) \, (g \, x) \, (\mathcal{D}(g) \, x \, dx)$$

Theorem (Soundness of dynamic differentiation)
Let f be a function. The following equation holds:

$$f \,(x \oplus dx) = f \, x \oplus \mathcal{D}(f) \, x \, dx$$

where the equality stands for the definitional equivalence.

- Add a rule for your favorite primitives and their derivatives, and voilà!
- $\mathcal{D}(\bullet)$ lifts primitive derivatives to higher-order programs.
- A framework to reason about derivatives, inspired by Differential λ-calculus.
Partial derivatives à la Gonzalez

Theorem (Chain rule)
The chain rule holds for the deterministic differential λ-calculus.

$$D(\lambda x. (f \circ g) x) \rightarrow \lambda x \, dx. D(f) \, (g x) \, (D(g) \, x \, dx)$$

Theorem (Soundness of dynamic differentiation)
Let f be function. The following equation holds:

$$f \, (x \oplus dx) = f \, x \oplus D(f) \, x \, dx$$

where the equality stands for the definitional equivalence.

▶ Add a rule for your favorite primitives and their derivatives, and voilà!
▶ $D(\bullet)$ lifts primitive derivatives to higher-order programs.
▶ A framework to reason about derivatives, inspired by Differential λ-calculus.
✗ Unfortunately, partial derivatives require huge implementation efforts...
Giarrusso et al study the following stunningly simple program transformation:

\[
\begin{align*}
D(x) &= dx \\
D(t u) &= D(t) u D(u) \\
D(\lambda x.t) &= \lambda x dx. D(t)
\end{align*}
\]
Static differentiation (Giarrusso et al, PLDI’14)

Giarrusso et al study the following stunningly simple program transformation:

\[
\begin{align*}
D(x) &= dx \\
D(t \ u) &= D(t) \ u \ D(u) \\
D(\lambda x. t) &= \lambda x \ dx \ D(t)
\end{align*}
\]

- It performs static differentiation w.r.t. all free variables at once.
- As a program transformation, it can be easily embedded in a compiler.
Giarrusso et al study the following stunningly simple program transformation:

\[
\begin{align*}
 &D(x) = dx \\
 &D(tu) = D(t)uD(u) \\
 &D(\lambda x.t) = \lambda x \, dx \cdot D(t)
\end{align*}
\]

- It performs static differentiation w.r.t. all free variables at once.
- As a program transformation, it can be easily embedded in a compiler.

Theorem (Soundness of static differentiation)

If \(f : A \rightarrow B, a : A \) and \(da : \Delta A \) is a valid change for \(a \), then the following holds:

\[
f (a \oplus da) \simeq f a \oplus D(f) a da
\]

were \(\simeq \) denotes the (definitional) equality of denotations.
Inefficiency of Giarrusso’s static differentiation

Applied to `average`, static differentiation produces the following derivative:

```ocaml
let daverage : int list -> (int, Δint) Δlist -> Δint
  = fun xs dxs ->
    let s = sum xs and ds = dsum xs dxs in
    let n = len xs and dn = dlen xs dxs in
    let d = div s n and dd = ddiv s ds n dn in
    dd

let ddiv s ds n dn = (s ⊕ ds) / (n ⊕ dn)
```
Inefficiency of Giarrusso’s static differentiation

```plaintext
let average : int list -> int = fun xs ->
  let s = sum xs in
  let n = len xs in
  let d = div s n in
  d
```

Applied to `average`, static differentiation produces the following derivative:

```plaintext
let daverage : int list -> (int, Δint) Δlist -> Δint
  = fun xs dxs ->
    let s = sum xs and ds = dsum xs dxs in
    let n = len xs and dn = dlen xs dxs in
    let d = div s n and dd = ddiv s ds n dn in
    dd

let ddiv s ds n dn = (s ⊕ ds) / (n ⊕ dn)
```

`ddiv` needs `s` (i.e. `sum xs`) even though `average` `xs` already computed it!
Static differentiation in Cache Transfer Style (ESOP’19)

In CTS, a function returns a cache of its intermediate results:

```ocaml
let cts_average : int list -> int * cache_average = fun xs ->
  let s, cache_sum = cts_sum xs in
  let n, cache_len = cts_len xs in
  let d, cache_div = cts_div s n in
  (d, (s, cache_sum, n, cache_len, d, cache_div))
```

In CTS, a derivative exploits and updates this cache:

```ocaml
let cts_daverage : cache_average -> int list -> (int, △int) △list -> △int * cache_average
  = fun cache xs dxs ->
    let (s, cache_sum, n, cache_length, d, cache_div) = cache in
    let ds, cache_sum = dsum cache_sum xs dxs in
    let dn, cache_len = dlen cache_len xs dxs in
    let dd, cache_div = ddiv cache_div s ds n dn in
    (dd, (s ⊕ ds, cache_sum, n ⊕ dn, cache_len, d ⊕ dd, cache_div))
```
Status of CTS differentiation

In the paper

▶ A new soundness proof of differentiation (in an untyped setting).
▶ A soundness proof of the CTS differentiation.
▶ Preliminary benchmarks show that resulting incrementalizations are of an order of magnitude faster than recomputing.

Now

▶ The implementation of \(\Delta \)Caml is work-in-progress.
▶ \(\Delta \)Caml is core ML + change structures + derivatives.
▶ The transformation requires terms to be in \(\lambda \)-lifted A-normal form.
Towards the certification of hand-written CTS derivatives

How should we design the ∆Coq library?

We are trying to answer this through a case study: an incremental List module.
Which change structure for Lists?

If \((A, \Delta A, \mathcal{V}_A, \oplus_A, \odot_A, \ominus_A, \ominus_A)\) is a change structure, then let us take

\[
\Delta\text{list } A ::= \text{Insert}_k a \mid \text{Remove}_k a \mid \text{Update}_k a\ da \mid \text{Compose } dl\ dl \mid \text{NilChange}
\]

where we take \(k \in \mathbb{N}, a \in A, da \in \Delta A,\) and \(dl \in \Delta\text{list } A.\)
List.map

How would you incrementalize List.map?
How would you incrementalize `List.map`?

```ocaml
let rec dmap_nil f df dl =  
  match dl with  
  | Insert k a -> Insert k (f a)  
  | Remove k a -> Remove k (f a)  
  | Update k a da -> Update k (f a) (df a da)  
  | Compose dl1 dl2 -> Compose (dmap_nil f df dl1) (dmap_nil f df dl2)  
  | NilChange -> NilChange  

let dmap f df l dl =  
  if is_nil df then dmap_nil f df dl else ! (map (f ⊕ df) (l ⊕ dl))
```

▶ The caches are omitted because they are not necessary for `List.map`.
How would you incrementalize `List.fold_left`?
How would you incrementalize `List.fold_left`?

- **If you know nothing about `f`**:
 - Take a cache that remembers all the intermediate values of the accumulator.
 - Restart the iteration from the position of the change.
 - Worst-case: $O(|l|)$.

- **If you know that `f` is commutative and invertible**:
 - There is no need for a cache.
 - Undo/Update the contribution of the element at the change position.
 - Worst-case: $(O(1))$

- **If you know that `f` is associative**:
 - Take a cache which is a (differential variant of a) fingertree.
 - Split the fingertree at the change position, apply the change and join the fingertree back.
 - Worst-case: $O(\log_2(l))$.

List.fold_left

How would you incrementalize `List.fold_left`?
Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to
How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

They are instrumented to build a graph representing their execution traces. Output changes are obtained by propagating changes in the graph. Tremendous performances thanks to aggressive memoization. But … A derivative is simply a new program compatible with usual verification tools. Acar’s notion of changes is based on replacement. We believe that more structured changes open better opportunities.
How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?

- They are instrumented to build a graph representing their execution traces.
- Output changes are obtained by propagating changes in the graph.
- Tremendous performances thanks to aggressive memoization.
How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?

► They are instrumented to build a graph representing their execution traces.
► Output changes are obtained by propagating changes in the graph.
► Tremendous performances thanks to aggressive memoization.

But ...

► It is a dynamic and imperative process in a graph: hard to reason about.
⇒ A derivative is simply a new program compatible with usual verification tools.
How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?

- They are instrumented to build a graph representing their execution traces.
- Output changes are obtained by **propagating changes** in the graph.
- Tremendous performances thanks to aggressive memoization.

But ...

- It is a dynamic and imperative process in a graph: hard to reason about.
 - A derivative is simply a new program compatible with usual verification tools.
- Acar’s notion of changes is based on replacement.
 - We believe that more structured changes open better opportunities.
Towards cache communication

```haskell
let rec sort = function
  ...
  | x :: xs ->
    let cmp, cmp_cache = less_than x in
    let (xless, xmore), partition_cache = partition cmp xs in
    ...
```

```haskell
let rec dsort (sorted_list, cmp_cache, partition_cache, ...) =
  ...
  (* Case for `\texttt{Insert k a}' *)
  let dcmp, dcmp_cache = dless_than cmp_cache dx in
  let (dxless, dxmore), partition_cache =
    dpartition partition_cache dcmp (\texttt{Insert k a})
  in
  ...
```

- \texttt{dpartition} has a $O(n)$ worst-case complexity.
Towards cache communication

```
let rec sort = function
  ...
  | x :: xs ->
    let cmp, cmp_cache = less_than x in
    let (xless, xmore), partition_cache = partition cmp xs in
    ...
```

```
let rec dsort (sorted_list, cmp_cache, partition_cache, ...) =
  ...
  (* Case for `Insert k a' *)
  let dcmp, dcmp_cache = dless_than cmp_cache dx in
  let (dxless, dxmore), partition_cache =
    dpartition partition_cache dcmp (Insert k a)
  in
  ...
```

- **dpartition** has a $O(n)$ worst-case complexity.
- But by exploiting **sorted_list** this could be reduced to $\log(n)$!
Towards cache communication

```
let rec sort = function
  ...
  | x :: xs ->
    let cmp, cmp_cache = less_than x in
    let (xless, xmore), partition_cache = partition cmp xs in
    ...
```

```
let rec dsort (sorted_list, cmp_cache, partition_cache, ...) =
  ...
  (* Case for `Insert k a` *)
  let dcmp, dcmp_cache = dless_than cmp_cache dx in
  let (dxless, dxmore), partition_cache =
    dpartition partition_cache dcmp (Insert k a)
  in
  ...
```

- `dpartition` has a $O(n)$ worst-case complexity.
- But by exploiting `sorted_list` this could be reduced to $\log(n)$!
- The cache of `sort` has information about values processed by `partition`.
- Can we share information between caches?
Conclusion

Where we are

- Cache-Transfer-Style differentiation is a program transformation to incrementalize higher-order programs.
- We have a Coq proof and several experiments in OCaml.

Thank you for attention! Any questions?
Conclusion

Where we are

- Cache-Transfer-Style differentiation is a program transformation to incrementalize higher-order programs.
- We have a Coq proof and several experiments in OCaml.

What we are up to

- Implementing ΔCaml and ΔCoq to conduct large experiments.
- Studying a theory of caches.
Conclusion

Where we are

- Cache-Transfer-Style differentiation is a program transformation to incrementalize higher-order programs.
- We have a Coq proof and several experiments in OCaml.

What we are up to

- Implementing ΔCaml and ΔCoq to conduct large experiments.
- Studying a theory of caches.

Thank you for attention! Any questions?