
Differential Logical Relations

Ugo Dal Lago Francesco Gavazzo Akira Yoshimizu

University of Bologna and INRIA Sophia Antipolis

November 14, 2019

DLRs: What Are We Talking About?

A new approach to program distance for HO sequential languages

A foundation for approximate program transformations

First step towards a differential program semantics

Let us proceed step by step. . .

From Program Equivalence to Program Distance

Program Equivalence

What is program distance?

A natural refinement of program equivalence: do programs have the same
behavior?

 let x1 = e1

x2 = e2

in e

 ≡

 let x2 = e2

x1 = e1

in e

Useful for many applications:

• Verification

• Security

• Optimization

Program Equivalence

Key points:

(1) Same observable behaviour:

e ≡ f =⇒ Obs(e) = Obs(f)

(2) Same interaction with the environment:

∀C. e ≡ f =⇒ C[e] ≡ C[f]

Compositionality

=⇒

From Equivalences to Distances

Program equivalence works fine for exact program analysis

Too strong for quantitative and approximate program analysis

• Probabilistic programming

• Differential privacy

• Real-valued computing

• Approximate computing

The Challenge of Approximate Computing

[Mittal 2016] Introducing soft errors in exact computations can provide
disproportionate gains in efficiency and resource-consumption

Many applications:

• Computer vision

• Sensor-based computation

• Data analytics and machine learning

The Challenge of Approximate Computing

[Misailovic et al. 2010] A language-based approach to approximate
computing via approximate program transformation

Program transformation

e 7→ T (e)

Correct: e and T (e) have same output (e ≡ T (e))

(ε-)Approximately correct: e and T (e) can have (ε-)different outputs

The Challenge of Approximate Computing: Examples

Loop perforation [Misailovic et al. 2010;2011]: skip iterations in expensive
loops over large dataset

c skip factor:

for (i = 0; i < b; i++) {e}yT
for (i = 0; i < b; i += c) {e}

Example

(
for (i = 0; i < N; i++)

sum += A[i]

)
T−−→
(

for (i = 0; i < N; i+=k)

sum += A[i]

)

The Challenge of Approximate Computing: Examples

Numerical integrations [Zeyuan et al. 2012]: e integrates a function
F : R→ R over [a, b]

let ∆ = b−a
n

xi = a+ i · ∆
2

in
1
n

∑n
i=1(b− a) · F (xi)

x1 x2 xn

F F F

average

output

. . .

E.g. F (x) = x · sin(log(x))

The Challenge of Approximate Computing: Examples

Substitution: Substitute F with F ′ computing a less accurate output in
less time

Perforation: Instead of computing F (xi) for all n-inputs, take only s ≤ n
inputs

x1 x2 xn

F F F

average

output

. . .

The Challenge of Approximate Computing

Approximate program transformations raise several questions

How to reason about APTs? When can we safely apply them?

What about compositionality?

=⇒

The classic theory of program equivalence is useless. . .

Program Distance

Program Distance

Obviously, e 6≡ T (e) . . . but differences bounded by accuracy ε

Natural guess: refine equivalences into distances

[Lawvere 1973]: equivalences and pseudometrics are essentially the same

e ≡ fKS

��
δ(e, f) = 0� _

��
δ(e, f) = ε

Program Distance

What about compositionality?

Program Equivalence: compositionality = congruence

∀C. e ≡ f =⇒ C[e] ≡ C[f]

Program distance: compositionality = non-expansiveness

δ(e, f) ≥ supC δ(C[e],C[f])

Question: is this the end of the story? Not for higher-order languages. . .

A Toy Language and its Denotational Semantics

We fix a simply-typed λ-calculus with primitives for real numbers

τ ::= real | τ → τ | τ × τ

Higher-order language

Γ, x : τ ` e : σ

Γ ` λx.e : τ → σ

Γ ` f : τ → σ Γ ` e : τ

Γ ` fe : σ

Real-valued computations

Γ ` r : real

Γ ` ei : real F : Rn → R
Γ ` F (e1, . . . , en) : real

Standard denotational semantics

JRealK = R Jτ → σK = JτK→ JσK Jτ × σK = JτK× JσK

Distance Amplification

Theorem [Crubillé & Dal Lago 2017; Gavazzo 2019]

Suppose:

(1) δ : Λ× Λ→ [0,∞] pseudometric

(2) δ is non-expansive

(3) δ is adequate: ∀e, f : real. δ(e, f) ≥ |JeK− JfK|
Then, δ(e, f) > 0 =⇒ δ(e, f) =∞

Distance Amplification: Solutions

Several solutions . . .

• Denotationally-based distances [de Amorim et al. 2017]

• Tuple and contextual distance [Crubillé & Dal Lago 2017]

• Applicative distances [Gavazzo 2018]

• Metric logical relations [Reed & Pierce 2010]

Metric Logical Relations

Design a type system for program sensitivity (a.k.a. program robustness
[Chaudhuri et al. 2011])

A program e has sensitivity c ∈ [0,∞] if

δ(v, v′) ≤ ε =⇒ δ(e(v), e(v′)) ≤ c · ε

Sensitivity tracked using a bounded linear type system

σ (τ non-expansive functions

!cσ (τ c-Lipschitz continuous functions

Metric Logical Relations

Main Result

A metric logical relation inducing a pseudometric δL s.t.

• Adequacy
δLreal(e, f) ≥ |JeK− JfK|

• Respects function space

δLτ(σ(λx.e,λx.f) ≥ sup
v
δLσ (e[v/x], f [v/x])

• Metric preservation For any ` e : !cσ (τ

δLσ (v, v′) ≤ ε =⇒ δLτ (e(v), e(v′)) ≤ c · ε

Metric Logical Relations

Metric logical relations and sensitivity analysis applicable to

• Differential privacy [Reed & Pierce 2010; de Amorim et al. 2017;
2019]

• Probabilistic computations [Gavazzo 2018]

• Approximate computing

Loop perforation [Chaudhuri et al. 2011]

Question: Is this really the end of the story? . . . Not really . . .

The Challenge of Approximate Computing, Reloaded

Recall our numerical integration example

let ∆ = b−a
n

xi = a+ i · ∆
2

in
1
n

∑n
i=1(b− a) · F (xi)

x1 x2 xn

F F F

average

output

. . .

and the substitution technique: we substitute F with F ′ computing a less
accurate output in less time

The Challenge of Approximate Computing, Reloaded

In approximate computing substitution is usually context-aware

Context aware-substitution: Substitute F with F ′ computing a less
accurate output in less time on inputs in a given set A

If input ∈ [0.5, 1]

λx.1/x 7→ λx.2.823−1.882*x

If input ≈ 0

λx.sin x 7→ λx.x

The Challenge of Approximate Computing, Reloaded

eid = λx.x esin = λx.sin x

1 2 3 4

1

2

3
esin
eid

The Challenge of Approximate Computing, Reloaded

Can we use δL to prove approximate correctness of T (esin) = eid? No!

δL(eid, esin) =∞

Even worst . . .

Proposition

For any pseudometric δ : Λ× Λ→ [0,∞] which is adequate and respect
function spaces

δτ(σ(λx.e,λx.f) ≥ sup
v
δσ(e[v/x], f [v/x])

we have
δ(eid, esin) =∞

Differential Logical Relations

Towards Differential Logical Relations

A striking intuition

Thinking to program differences as just numbers is too restrictive.

Towards Differential Logical Relations

Replace [0,∞] in

δ : Λ× Λ→ [0,∞]

with a more complex space of differences

δ : Λ× Λ→ D

D reflects the interactive complexity of programs, hence type-dependent

Differential Logical Relations

Question: What is a difference between two programs?

• Ordinary logical relations: boolean values.

• Metric logical relations: (real) numbers.

• Differential logical relations: difference spaces LτM

Differential Logical Relations

What is a difference between two (real) numbers?

LrealM = [0,∞]

What is a difference between two functions ` e, f : σ → τ?

Lσ → τM = JσK× LσM→ LτM

Intuition

LInput→ OutputM ≈ Input× Error(Input)→ Error(Output).

Differential Logical Relations

Putting things together. . .

LrealM = [0,∞]

Lσ → τM = JσK× LσM→ LτM
Lσ × τM = LσM× LτM.

Differential Logical Relations

A differential logical relations is a ternary relation Dτ ⊆ Λτ × LτM× Λτ

Informal reading

Dτ (e,φ, f) ⇐⇒ ”φ is a difference between ` e, f : τ”

What are the defining clauses of D?

Dreal(e, r, f) ⇐⇒ |JeK− JfK| ≤ r
Dτ1×τ2(e, (φ1,φ2), f) ⇐⇒ ∀i ∈ {1, 2}. Dτi(e.i,φi, f .i)

Dσ→τ (e,φ, f) ⇐⇒ ???

Differential Logical Relations

How to define Dσ→τ (e,φ, f)?

Intuition
LInput→ OutputM ≈ Input× Diff(Input)→ Diff(Output).

Hence φ : JσK× LσM→ LτM

Dσ→τ (e,φ, f) ⇐⇒ ∀v,w ∈ Vσ︸ ︷︷ ︸
∀ inputs

.

∀ζ ∈ LσM. Dσ(v, ζ,w)︸ ︷︷ ︸
∀ input difference ζ

=⇒

{
Dτ (ev,φ(JvK, ζ), fw)

Dτ (ew,φ(JvK, ζ), fv)︸ ︷︷ ︸
φ(JvK,ζ) output difference

Differential Logical Relations

How can we use DLRs to reason about context-aware approximate
program transformation?

Compositional reasoning for ordinary and metric logical relations follows
from fundamental lemma.

What is FL for differential logical relations?

Logical Relations Fundamental Lemma

Ordinary R(e, e) = true
Metric δ(e, e) = 0

Differential ???

Differential Logical Relations

Fundamental Lemma

For any ` e : τ , there exists φ ∈ LτM such that Dτ (e,φ, e).

Why non-null differences?

• φ describes the sensitivity of e.

• E.g. ` λx.x : real→ real has self-difference

λλ(r, ε).ε

• Thus only terms at ground types have null-difference.

Differential Logical Relations

Fundamental Lemma =⇒ compositional reasoning

• Given a context: C : σ → τ

• FL =⇒ ∃ζ ∈ Lσ → τM. (C, ζ,C) ∈ Dσ→τ
• Given terms ` e, f : σ s.t. (e,φ, f) ∈ Dσ
• Conclude:

(C[e], ζ(JeK,φ),C[f]) ∈ Dτ
Moral: ζ captures context-awareness

The impact of replacing f with e in C is ζ(JeK,φ)

The Challenge of Approximate Computing, Revolution

Look back at eid vs esin

Lemma

(eid,λλ(r, ε).ε+ | sin r − r|, esin) ∈ Dreal→real

Consider the context ` C = (λx..x(xc))[−] : (Real→ Real)→ Real

Consider the self-difference ζ for C

ζ ∈ Jreal→ realK× Lreal→ realM→ LrealM
ζ = λλ(ϕ,ψ).ψ(ϕ(c),ψ(c, 0)).

What is the impact of replacing esin with eid in context C?

ζ(JeidK,λλ(r, ε).ε+ | sin r − r|)

The Challenge of Approximate Computing, Revolution

Our analysis is compositional

We have taken the context C into account, but once and for all

The map ζ can be computed without any reference to eid and esin

Theoretical Results on Differential Logical Relations

DLRs and Ordinary LRs

Hereditary Null Differences

DLRs subsumes ordinary LRs

LrealM0 = {0} Lσ × τM0 = LσM0 × LτM0

Lσ → τM0 = {φ ∈ Lσ → τM | ∀x ∈ JσK. ∀ζ ∈ LσM0. φ(x, ζ) ∈ LτM0}

Proposition

Two programs ` e, f : τ are logically related iff ∃φ ∈ LτM0. Dτ (e,φ, f)

DLRs and Metric LRs

DLRs subsumes metric LRs

Hereditary Real-valued Differences

We parametrize LτM by a single real number r

LrealMr = {r} Lσ × τMr = LσMr × LτMr

Lσ → τMr = {φ ∈ Lσ → τM | ∀x ∈ JσK. ∀ζ ∈ LσMs. φ(x, ζ) ∈ LτMr+s}

Proposition

For all programs ` e, f : τ , δL(e, f) = r iff ∃φ ∈ LτMr. Dτ (e,φ, f)

Hereditary Finite Differences

Since the calculus is strongly normalizing we expect differences to be
hereditary finite

Hereditary Finite Differences

LrealM<∞ = R≥0 Lσ × τM<∞ = LσM<∞ × LτM<∞

Lσ → τM<∞ = {φ ∈ Lσ → τM | ∀x ∈ JσK. ∀ζ ∈ LσM<∞. φ(x, ζ) ∈ LτM<∞}

Fundamental Lemma, II

Assume all real-valued operators F to denote a weakly bounded function
F : Rn → R (i.e. F (B) bounded whenever B ⊆ Rn is). Then, for any
program ` e : τ there exists φ ∈ LτM<∞. Dτ (e,φ, e)

Categorical Foundation

Metric LRs have a categorical foundation in the symmetric monoidal
closed category of pseudometric spaces and Lipschitz-continuous maps

Also DLRs have a categorical foundation in the category of generalized
metric domains

Definition

Given a quantale (V ,≤,⊕, 0), a generalised metric domain on V is a pair
(X,DX), where X is a set and DX ⊆ X × V ×X satisfies:

DX(x, 0, y) =⇒ x = y

DX(x,ϕ, y) =⇒ D(y,ϕ,x)

DX(x,ϕ, y) ∧ DX(y,χ, y) ∧ D(y, ξ, z) =⇒ DX(x,ϕ⊕ χ⊕ ξ, z)

Categorical Foundation

We have non-null self distance DX(x,ϕ,x) 6=⇒ ϕ = 0

Theorem

GMDs form a cartesian closed category

Arrows are defined following the defining of DLRs

Conclusion

Conclusion

We have introduced DLRs and their basic properties.

We show the strengths of DLRs studying context-aware approximate
program transformations

But DLRs are interesting also from a purely theoretical perspective

Differential Program Semantics

DLRs are the first step towards differential program semantics

ERC Consolidator Grant DIAPASoN

Focus on program difference rather than program identity

• Ugo Dal Lago

• Simone Martini • Davide Sangiorgi

• Aurore Alcolei • Guillaume Geoffroy • Paolo Pistone

• Melissa Antonelli • Gabriele Vannoni

Future Work

Several future works

• Full recursion (step-indexing?)

• Better mathematical foundations (Partial metric spaces [Bukatin et
al. 2009. Kopperman et al.2005])

• Connections with incremental computing?

• Differential bisimulation? Differential game semantics?

• Effects

Future Work: Probabilistic Approximate Program
Transformation

Probabilistic loop perforation: compute F (xi) only for s ≤ n randomly
sampled inputs

x1 x2 xn

F F F

average

output

. . .

Probabilistic substitution

λx.sin x
T−−→ (λx.sin x)⊕ (λx.x)

Questions

The Category of Generalized Metric Domains

Objects Triples (X,DX ,V)

Arrows (f , Γ) : (X,DX ,VX)→ (Y ,DY ,VY)

f : X → Y Γ : X × VX → VY

such that

DX(x,ϕ,x′) =⇒

{
DY (f(x), Γ(x,ϕ), f(x′))

DY (f(x), Γ(x′,ϕ), f(x′))

	From Program Equivalence to Program Distance
	Program Distance
	Differential Logical Relations
	Theoretical Results on Differential Logical Relations
	Conclusion
	Questions

