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DLRs: What Are We Talking About?

A new approach to for HO sequential languages

A foundation for
First step towards a

Let us proceed step by step...



From Program Equivalence to Program Distance



Program Equivalence

What is 7
A natural refinement of : do programs have the same
?
let x1 =e¢€1 let x9 =e9
X9 = €2 = X1 = €1
in e in e

Useful for many applications:
o Verification
e Security

e Optimization



Program Equivalence

Key points:

(1) Same behaviour:

e=f = Obs(e) = Obs(f)
(2) Same interaction with the ;

VC.e=f = Cle] = CIf]

ml I —




From Equivalences to Distances

Program equivalence works fine for program analysis

Too strong for and program analysis

Probabilistic programming

Differential privacy

Real-valued computing

e Approximate computing



The Challenge of Approximate Computing

[Mittal 2016] Introducing in computations can provide
disproportionate gains in and

Many applications:
e Computer vision
e Sensor-based computation

e Data analytics and machine learning



The Challenge of Approximate Computing

[Misailovic et al. 2010] A approach to approximate
computing via

Program transformation
e— 1(e)

Correct: e and T'(e) have same output (e = T'(e))

(e-)Approximately correct: e and T'(e) can have (e-) outputs



The Challenge of Approximate Computing: Examples

[Misailovic et al. 2010;2011]: skip iterations in expensive
loops over large dataset

for (1 = 0; i < b; i++) {e}
T
for (1 = 0; i < b; i += ¢) {e}

Example

<for(i=0;i<N;i++)>T<for(i=0;i<N; ))
-

sum += A[i] sum += A[i]



The Challenge of Approximate Computing: Examples

[Zeyuan et al. 2012]: e integrates a function
F:R — R over [a, b

X1 X2 Xn
| |
let A= b*T“
w—aied P ]
in |
1
n Z?:l (b - (I) ’ F(X'L) average
output

E.g. F(x) =z -sin(log(x))



The Challenge of Approximate Computing: Examples

: Substitute F' with F’ computing a less accurate output in
less time

. Instead of computing F'(x;) for all n-inputs, take only s <n
inputs

X1 X2 Xn
F F F
average

output



The Challenge of Approximate Computing

Approximate program transformations raise several questions

How to reason about APTs? When can we safely apply them?

What about ?
Lil LLl —I'ﬂ_l —I“H_I
1 e 21 f — |cH e 7 |cH  f
TTT TT TTT TT

The classic theory of program equivalence is useless. . .



Program Distance



Program Distance

Obviously, e # T'(e) ... but differences bounded by

Natural guess: refine equivalences into

[Lawvere 1973]: and
e=f
ﬂ
(e, ff =0
(e, f) =

are essentially the same



Program Distance

What about ?

Program Equivalence: compositionality =

VC.e=f = Cle] = C[f]

Program distance: compositionality =
6(67 f) > Supc 6(0[6]7 C[f])

Question: is this the end of the story? Not for languages. . .



A Toy Language and its Denotational Semantics

We fix a A-calculus with primitives for

T = |7 =71 |TXT

Higher-order language

I'zx:7ke:0o ''tf:r—0 T'ke:7T
I'FXxe:7—0 'k fe:o

Real-valued computations

I'kej:real F:R"— R
T'kr:real ' F(ey,...,e,): real

Standard denotational semantics

[rea] =7 [r ol =[]~ o] [rxol =[] % [o]



Distance Amplification

Theorem [Crubillé & Dal Lago 2017; Gavazzo 2019]
Suppose:

(1) 6: A x A —[0,00] pseudometric

(2) dis

(3) dis : Ve, f :real. d(e, f) > |[e] — [f]
Then, é(e, f) >0 = d(e, f) = o0



Distance Amplification: Solutions

Several solutions ...
¢ Denotationally-based distances [de Amorim et al. 2017]
e Tuple and contextual distance [Crubillé & Dal Lago 2017]
o Applicative distances [Gavazzo 2018]
. [Reed & Pierce 2010]



Metric Logical Relations

Design a type system for (a.-k.a. program
[Chaudhuri et al. 2011])

A program e has sensitivity ¢ € [0, oo if

S(v,v') <e = dle(v),e(v)) < c-¢

Sensitivity tracked using a type system

o — T non-expansive functions

.o —o 7 c-Lipschitz continuous functions



Metric Logical Relations

Main Result
A metric logical relation inducing a 6l st

e Adequacy
6fea1(eaf) > |[[€]] - [[f]”

¢ Respects function space
6L (Ax.e, Ax.f) > sup 6% (e[v/x], flv/x])
v
e Metric preservation For any Fe:l.c —o 7T

6L(w,v") <e = dL(e(v),e(v)) < e



Metric Logical Relations

Metric logical relations and sensitivity analysis applicable to

e Differential privacy [Reed & Pierce 2010; de Amorim et al. 2017;
2019]

¢ Probabilistic computations [Gavazzo 2018]

Loop perforation [Chaudhuri et al. 2011]

Question: Is this really the end of the story? ... Not really ...



The Challenge of Approximate Computing, Reloaded

Recall our numerical integration example

X1 X2 Xn
| |

let A= b_Ta

X, =a+1- % " " R

in
1
n Z?:l(b - CL) ’ F(XZ) |average
outlput

and the technique: we substitute I’ with F’ computing a less
accurate output in less time



The Challenge of Approximate Computing, Reloaded

In approximate computing substitution is usually

. Substitute F' with F’ computing a less
accurate output in less time on inputs in a given set A

If input € [0.5,1]

Ax.1/x — Ax.2.823—1.882*x

If input =~ 0

Ax.sin x — Ax.x



The Challenge of Approximate Computing, Reloaded

€ig = AX.X €sin — AX.sin x
3
€sin
€id
2 |1
1 |1




The Challenge of Approximate Computing, Reloaded

Can we use 6% to prove approximate correctness of T'(esin) = €147 No!

5L (eida €sin) =00

Even worst ...

Proposition

For any pseudometric 6 : A x A — [0, co] which is and respect
7oAk, Nx.f) > sup b, (efu/x], flv/x])

we have

5(€ida €sin) =00



Differential Logical Relations



Towards Differential Logical Relations

A striking intuition

A Semantics for Approximate Program Transformations

Edwin Westbrook and Swarat Chaudhuri

Department of Computer Science, Rice University
Houston, TX 77005
Email: {emw4,swarat}@rice.edu

Thinking to as just is too restrictive.



Towards Differential Logical Relations

Replace [0, oo] in

0:AXA—

with a more complex

0:AXA—

reflects the of programs, hence



Differential Logical Relations

Question: What is a between two programs?

e Ordinary logical relations: boolean values.
e Metric logical relations: (real) numbers.

o Differential logical relations: ()



Differential Logical Relations

What is a difference between two (real) numbers?
(real]) = [0, 0]
What is a difference between two Fe,f:o0—717

(o= 7) = [o] x (o) = (7)

Intuition

(Input — Output) ~ Input x (Input) — (Output).



Differential Logical Relations

Putting things together. ..
(real) = [0, o0]
(o = 1) = [o] x (o) — (7)

(o x 1) = (o) x (7).



Differential Logical Relations

A is a D, C A X X A;
Informal reading
D-(e, ¢, f) <= "¢ is a difference between e, f : 7"

What are the defining clauses of D?

Drear(e,r, f) < |[le] = [fII <r
D7—1><7—2(€, (¢1>¢2)7f) — Vi€ {172} DTi(e'i¢¢ia fZ)
Dosr(e, ¢, f) <=



Differential Logical Relations

How to define D,_,, (e, ¢, f)?

Intuition
(Input — Output) ~ Input X (Input) — (Output).

Hence ¢ : [o] x —

Dosr(e, o, f) < Yv,weV,.
—_—————

V inputs

DT(GU, ¢([[U]]a C)? fw)
V¢ € (o). Do(v,{,w) = {DT(ew,¢([[v]],§),fv)

¢([v],¢) output difference

V input difference ¢




Differential Logical Relations

How can we use DLRs to reason about approximate
program transformation?

for ordinary and metric logical relations follows
from

What is FL for differential logical relations?

Logical Relations
Ordinary R(e,e) = true
Metric d(e,e) =0
Differential 77




Differential Logical Relations

Fundamental Lemma

For any F e : 7, there exists ¢ € (1) such that D, (e, ¢, e).

Why differences?
e ¢ describes the of e.
e E.g. F Ax.x: real — real has self-difference
A(r,e).e

e Thus only terms at ground types have null-difference.



Differential Logical Relations

Fundamental Lemma = reasoning

e Given a context: C: 0 — T
e FL — 3¢ € (o0 — 7). (C,(,C) € Dy—yr
e Given terms e, f : o s.t. (e,0,f) € Dy

e Conclude:

(Clel, ¢([el, ¢), Clf]) € D~

Moral: ¢ captures

The impact of replacing f with e in C is (([e], ¢)



The Challenge of Approximate Computing, Revolution

Look back at e;q VS €gin
Lemma

(e1a, A(r,€).6 + |sin 7 — 7|, €s1n) € Drearsreal
Consider the context - C' = (Ax..x(xc))[—] : (Real — Real) — Real
Consider the self-difference ¢ for C

¢ € [real — real] x (real — real) — (real)

¢ = Mg, ¥)1(e(c), ¥(c, 0)).

What is the of replacing egin with ejq in c?

C([eia], N7, €).€ + |sinr —r|)



The Challenge of Approximate Computing, Revolution

Our analysis is
We have taken the context C into account, but

The map ¢ can be computed without any reference to e;jq and egin



Theoretical Results on Differential Logical Relations



DLRs and Ordinary LRs

Hereditary Null Differences
DLRs subsumes LRs

(rea1)’ = {0} (o x 7)° = (o) x (7)°
(0= 7)°={p € (o —7)|Vz e [o]. V¢ € (0)°. ¢(x,¢) € (r)°}
Proposition

Two programs I e, f : 7 are logically related iff 3¢ € (7)°. D, (e, ¢, f)



DLRs and Metric LRs

DLRs subsumes LRs

Hereditary Real-valued Differences

We parametrize (7 by a single real number r
(real)” = {r} (o x7)" = (o)" x ()"

(o= 7)"={p € (o = 7) | Vz € [o]. ¥ € (o). ¢(x,¢) € ()"}

Proposition

For all programs e, f : 7, 6% (e, f) = r iff 3¢ € (7)". D, (e, ¢, f)



Hereditary Finite Differences

Since the calculus is strongly normalizing we expect differences to be

Hereditary Finite Differences

(real) <™ = Rx (o x 7)< = (o) < x (7)==

lo = 1)~ ={¢ € lo = 7) | vz € [o]. YC € (o) =*. ¢(,¢) € ()~}

Fundamental Lemma, Il

Assume all real-valued operators F' to denote a weakly bounded function
F:R" — R (i.e. F(B) bounded whenever B C R" is). Then, for any
program e : T there exists ¢ € (7)<*°. D, (e, ¢, ¢)



Categorical Foundation

have a categorical foundation in the symmetric
closed category of pseudometric spaces and Lipschitz-continuous maps

Also have a categorical foundation in the category of
Definition
Given a (V,<,8,0), a on V is a pair

(X,Dx), where X is a set and Dx C X x V x X satisfies:

Dx(z,0,y) = z=y
DX(':C7 P, y) — D(y7 ®, .’IZ’)
DX(x7907y)/\DX(y7X7y)/\D(yvé-az) => DX(x,(P@X@f,Z)



Categorical Foundation

We have Dx(z,p,z) == ¢

Theorem
GMDs form a

Arrows are defined following the defining of DLRs






Conclusion

We have introduced DLRs and their basic properties.

We show the strengths of DLRs studying

But DLRs are interesting also from a purely theoretical perspective



Differential Program Semantics

DLRs are the first step towards
ERC Consolidator Grant DIAPASoN

Focus on program rather than program

e Ugo Dal Lago
e Simone Martini e Davide Sangiorgi
e Aurore Alcolei e Guillaume Geoffroy e Paolo Pistone

o Melissa Antonelli e Gabriele Vannoni



Future Work

Several future works

Full recursion ( ?7)

Better mathematical foundations (Partial metric spaces [Bukatin et
al. 2009. Kopperman et al.2005])

Connections with ?

Differential bisimulation? Differential game semantics?



Future Work: Probabilistic Approximate Program
Transformation

: compute F(x;) only for s < n randomly
sampled inputs

average

output

Ax.sin x —— (Ax.sin x) = (Ax.x)






The Category of Generalized Metric Domains

Objects Triples (X, Dx, V)

Arrows (f,1): (X,Dx,Vx) = (Y, Dy, Vy)

f:X—>Y X xVx = Wy

such that

Dy (f(x),I'(z

z,¢), f(2'))
Dy (f(x), '(«,

Pt = { ) (@)
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