Intro TransCCS Properties Compositional semantics

A theory of communicating transactions

Matthew Hennessy

joint work with Edsko de Vries, Vasileois Koutavas

CHOCOLa, PPS Paris December 2012

%@ TRINITY COLLEGE DUBLIN

COLAISTE NA TRIONOIDE, BAILE ATHA CLIATH

~sfi

1/37

Intro TransCCS Properties Compositional semantics

Outline

Introduction

TransCCS

Liveness and safety properties

Compositional semantics

~sfi

2/37

Intro TransCCS Properties Compositional semantics

Standard Transactions

» Transactions provide an abstraction for error recovery in a
concurrent setting.

» Guarantees:

» Atomicity: Each transaction either runs in its entirety
(commits) or not at all

» Consistency: When faults are detected the transaction is
automatically rolled-back

» Isolation: The effects of a transaction are concealed from the
rest of the system until the transaction commits

» Durability: After a transaction commits, its effects are
permanent

» |solation:

» good: provides coherent semantics
» bad: limits concurrency
» bad: limits co-operation between transactions and their

environments =7

4/37

Intro TransCCS Properties Compositional semantics

Communicating/Co-operating Transactions

» We drop isolation to increase concurrency

» There is no limit on the communication between a transaction
and its environment

» These new transactional systems guarantee:

» Atomicity: Each transaction will either run in its entirety or
not at all

» Consistency: When faults are detected the transaction is
automatically rolled-back, together with all effects of the
transaction on its environment

» Durability: After all transactions that have interacted commit,
their effects are permanent (coordinated checkpointing)

~sfi

5/37

Intro TransCCS Properties Compositional semantics

Example: three-way rendezvous

P1|| P2 || P3| Pa

Problem:

> P, process/transaction subject to failure

» Some three P, should decide to collaborate
Result:

» Each P, in the coalition outputs id of its partners on channel
out,

~sfi

6/37

Intro TransCCS Properties Compositional semantics

Example: programming a three-way rendezvous

P1||P2|| P3| Pa

Algorithm for Pp:
» Broadcast id n randomly to two arbitrary partners
b!'(n) | bY{n)
> Receive ids from two random partners b?(y).b?(z)

> Propose coalition with these partners s, !(n,z) .s,!(n,y)
» Confirm that partners are in agreement:

» if YES, commit and report
» if NO, abort&retry

~sfi

7/37

Intro TransCCS Properties Compositional semantics

Example: programming a three-way rendezvous

Pi|| P2 || P3| Pa

P, < bl(n)|bl{(n) |
atomic[b?(y) .b?(z) .
syln,z) .s;1{n,y).
sn?(y1,21) -5n?(y2, 22) .
if{y,z} = {y1, 21} = {y2, 22}
then commit | out,!{y, z)
else abrt&retry |

(%)

~sfi

8/37

TransCCS Properties Compositional semantics

Communicating Transactions: Issues

» Language Design

» Transaction Synchronisers (Luchangco et al 2005)
» Transactional Events for ML (Fluet, Grossman et al. ICFP 2008)

» Communication Memory Transactions (Lesani, Palsberg PPoPP 2011)
> ..

» Implementation strategies

» See above

> Sema NTICS Behavioural theory: what should happen when programs are run

» TransCCS (Concur 2010, Aplas 2010)

~sfi

Intro TransCCS Properties Compositional semantics

Communication Memory Transactions vesni paisber

» Builds on optimistic semantics of memory transactions o'Herliny et

al 2010

» Adds asynchronous channel-based message passing as in Actors cML

etc
» Formal reduction semantics
» Formal properties of semantics proved
» Implementation as a Scala library

» Performance evaluation using benchmarks

~sfi

10/37

Intro TransCCS Properties Compositional semantics

TransCCS

An extension of CCS with communicating transactions.
1. Simple language: 2 additional language constructs and 3
additional reduction rules.

2. Intricate concurrent and transactional behaviour:

» encodes nested, restarting, and non-restarting transactions
» does not limit communication between transactions

3. Simple behavioural theory: based on properties of systems:

» Safety property: nothing bad happens
» Liveness property: something good happens

~sfi

12/37

Intro TransCCS Properties Compositional semantics

TransCCS
Syntax: P,Q == > wi.P; guarded choice
| Pl @ parallel
| wva.P hiding
| uX.P recursion
| [P vk Q] transaction (k bound in P)
| cok commit

Transaction [P > Q]

» execute P to completion (co k)
» subject to random aborts
» if aborted roll back all effects of P and initiate @

» roll back includes ...environmental impact of P "SI

13/37

Intro TransCCS Properties Compositional semantics

Rollbacks and Commits

Co-operating actions: | a < needs co-operation of — a

Ta| Ty | Te | Py | Pe

where
T, = [d.b.(co ki|a) >k 0]
Tp = [c.(co ka| b) >k, 0]
Tc. = [e.c.co k3 >y, 0]
Py = d.Ry4
Pe = eR:

» if T, aborts, what roll-backs are necessary?
» When can action a be considered permanent?

> When can code Ry be considered permanent? 2

Intro TransCCS Properties Compositional semantics

Reduction semantics main rules

R-ComMm B
dj = bj . c
Communication
D aiPi|) b.Q = Pi|Q
icl jed
R-Co
Commit
[P|lcokpvk Q] — P
R-AB
Random abort
[[P D>k Q]] — Q
R-EmMB
k gé R
Embed
[Prrk Q] |R— [P| Rk Q| R] ;ﬁ
Intro TransCCS Properties Compositional semantics

Simple Example

Convention:

» w: | am happy

» »: | am sad

a.cw+eo| [ac.co k+erpy r]

BTN [a.cw+ em|acC.cok+e€p>g acw+eon]|r]
JRACOURI, [cw | C.cok >k a.c.w+ e | r]
RO, [w | cok Dy acwitenlr]

R-Co
% w

(%)

~sfi

Intro TransCCS Properties Compositional semantics

Simple Example (a second trace)

a.cw+e.o| [ac.co k+€ >y r]

R-Eas, [a.cw+ e |aC.co k+ €y acw+en|r]
RComM, 1 ® > a.cw+ e |r] (Deadlocked)
R-AB

— a.c.w+e.m|r (The environment is restored)

~sfi

17/37

Intro TransCCS Properties Compositional semantics

Simple Example (all traces)

a.cw+eo| [ac.cok+e g r] = acwteo|r

A
R-EMB l R-AB
P 1 A
\R-iownvl

R-ComMm l Pe y

P, J
R-ComMm l

P, J

R-Co

& «—

VVI” never be Sad: (U assuming r does not contain € ;fl

Intro TransCCS Properties Compositional semantics

Aborting transactions

acw+eo| [atcok+evy r] — 3 acw+eon|r

A A commit step makes the effects of the
o l transaction permanent (Durability)

\\\\\\\\\\\

An abort step:

» restarts the transaction

» rolls-back embedded processes to
their state before embedding
(Consistency)

» does not roll-back actions that
happened before embedding

» does not affect non-embedded
processes

The behavioural theory will show the

Atomicity property. e

19/37

Intro TransCCS Properties Compositional semantics

Restarting transactions

a.cw—+eon|puX. [accok+erpy X] <

R—EMBl R-AB
Pl \R-CiOMM g
R—COMMl P2
P> ’
R-COMMl
P3 /
R—Col
o Infinitely aborting loop
Q
Will never be sad:) ~sfi

20/37

Intro TransCCS Properties Compositional semantics

Double Embedding

[a.co k| b >k 8] | [a.col|c > 0]

R-Es, :a.cok|b| [a.col|c > 0] bk [a.col|c > ®ﬂ]]
Bobs, b| [a.co k |a.col|c > a.co k] >k [a.col]|c v 0]]]]
R-Cown, :b|ﬂcok|co/|c>/a.cok]] D> [[5.CO/|C'>/®]]]]
20, o) cok|ebi [acol|co o]

R-Co b| c

~sfi

21/37

Intro TransCCS Properties Compositional semantics

Safety properties

Safety: “Nothing bad will happen” [Lamport'77]

» A safety property can be formulated as a safety test T® which
signals on channel ® when it detects the bad behaviour

Examples:

> MX(aX + e.m) can not perform e while performing any sequence of as
» T =e.m ‘ §b can not perform e when a followed by b is offered.

> P passes the safety test T® when P | T can not output on ®
» This is the negation of passing d “may test” [DeNicola-Hennessy’84]

Examples:

> I3 = pX. [a.b.co k+¢€ >y X] passes safety test T

> Iy = puX. [a.b.co k | € >x X] does not pass safety test T®

(%)

~sfi

23/37

Intro TransCCS Properties Compositional semantics

Safety

Definition (Basic Observable)
PJ., iff there exists P’ such that P —* P/ | o

» Basic observable actions are permanent
> True: [a.b.co k| >k 0] | (e.w|a.b) |,

> False: [a.b.co k+& 0k 0] | (e.o]|a.b) |,

Definition (P Passes safety test T)
Pcannot T® when P | Ty,

Definition (Safety Preservation)

SL .| when VT®. Scannot T® implies [cannot T°

~safe

~sfi

24/37

Intro TransCCS Properties Compositional semantics

Safety preservation: Examples

Sap = pX.[a.b.co k > X]
I = pX.[a.b.co k+e g X]
ls = wpX.[a.b.co k|e >y X]

> Sap L., Ia use test T® = e.o | a.b
> Sab o B — proof techniques required
> 7.P + T-Q gsafe [[P D>k Q]] , for any P7 Q — proof techniques rqd

(%)

~sfi

25/37

Intro TransCCS Properties Compositional semantics

L iveness

Liveness: “Something good will eventually happen” [Lamport'77]

» A liveness property can be formulated as a liveness test T%
which detects and reports good behaviour on w.

Examples:

» Y = 5bw can do an a then a b

> ,UX [[Eb(w ‘ co /) D> X]] can eventually do an a, b uninterrupted?

> a.pX. [bc(w|col) >y X] Engishz

» P passes the liveness test T“ when w is eventually guaranteed

Dilemma: What does this mean?
~sfi

26/37

Intro TransCCS Properties Compositional semantics

Dilemma
Does uX. [a.b.co k by X] pass liveness test T =a.b.w 7

a.b.w | pX. [a.b.co k by X] <

R-EMB l R-AB

_

WM

_

R-Comm —

|
l

_
R-Co

w

> must—testing: NO because of infinite loop
(%)
» should-testing: YES ~sfi

Intro TransCCS Properties Compositional semantics

Liveness testing
Definition (P Passes liveness test T“ [Rensink-Vogler'07])

Pshd T when VR. P|T* —="R implies RI,

Examples:

> uX. [a.b.co k by X] passes liveness test T4 = a.b.w
> [a.b.co k >, 0] does not pass test T%,

Definition (Liveness preservation)

SE,...! when VT® SshdT® implies [shd T*
_sfi

28/37

Intro TransCCS Properties Compositional semantics

Liveness preservation:Examples

Sy = pX.[a.b.co k >y X]
L = /JX. [[a.b.® D>k X]]
I = upX.[a.b.co k+e > X]

> Sab ¥, b use test T = a.b.w
> Sab 5y B — proof techniques required
> ,LLX [[P ‘ co k D>k X]] ~live P, for any P — proof techniques rqd

Proof techniques:

Require characterisations using “traces’ and “refusals”
(*)

~sfi

29/37

Intro TransCCS Properties Compositional semantics

Compositional Semantics

» The embedding rule is simple but entangles the processes

» We need to reason about the behaviour of P|Q in terms of P
and Q

» We introduce a compositional Labelled Transition System that
uses secondary transactions: [P > Q]°

a.c.0 | ﬂaccok|a® >k e]]

-~ ~ /A |

[a.c.0 >y a.c.0]° |

= ~ M N, ’\t“l\lll

A~ A -~ nm o~

emb k

emb k
a

[[accok|a® >k e]]

—
N r ~n k' 1 20N S a
N C !]

my Medowacth 1 gy Doeo klag e
=5 [0 >y a.c.0]° [==k [[co k2.0 by €]
co d.Cc.Y | co F —

LG | — a.®

~sfi

31/37

Intro TransCCS Properties Compositional semantics

Compositional Semantics: safe-testing

The behaviour of processes in TransCCS can be understood by a
simple subset of the LTS traces:

» where all actions are eventually committed

» that ignore transactional annotations on the traces

Trelean ([a.c.co k >y €]) = {e, ac, e}

Trejean (,uX. [a.c.co k >k X]) = {e, ac}

» Set of clean traces not prefix closed: atomicity

Characterisation of Safe Testing:

P E Q iff Trclean(P) g Trclean(Q)

safe

» To understand the safe-testing behaviour of P we only need
0 (%)
to consider the clean traces Trcjean(P). ~sfi

32/37

Intro TransCCS Properties Compositional semantics

Compositional semantics: should-testing

Tree Failures: [Rensink-Vogler'07]
(t, Ref) where

» 1 is a clean trace

> Ref iS a set Of Clean traces can be non-prefixed closed

Tree failures of a process:

(t, Ref) is a tree failure of P when
AP'. P=¢ P' and L(P)NRef =

F(P) = {(t, Ref) tree failure of P} A

Characterisation of should-testing:
SE...! iff F(S)DF()

_sfi
33/37
Intro TransCCS Properties Compositional semantics
Simple Examples
Let S,p = puX. [a.b.co k >y X] L(S.p) = {e, ab}
F(Sap) = {(€;5\ab),(ab,5) | S € A}
> Sup e h = [a.b.co k b 0] £(h) = {e, ab}
Sab ~ilive Il f(ll) - {(67 5)7 (ab7 S) | S g A*}
> Sap ~sare b = pX. Ja.b.co k + e >y X] L(h) = L(Sa)
Sab ~live l2 ~F.(Iz) — 'F(Sab)
i

34/37

Intro TransCCS Properties Compositional semantics

Summary

» TransCCS: a language for communicating/co-operative
transactions
» simple reduction semantics using an embedding rule
» behavioural theories for preservation of
» safety properties
» liveness properties
» characterisations which allow
» proofs of equivalences
» equational laws

References:

» Communicating Transactions, Concur 2010

» [iveness of Communicating Transactions, APLAS 2010

Current work:

» Extension to Haskell/CML

> prototype implementation o
: ~sfi
> PrOOf teChanueS based on traces, refusal trees, co-induction

35/37

Intro TransCCS Properties Compositional semantics
THANK YOU!
(*)
~sfi

36/37

Intro TransCCS Properties Compositional semantics

Workshop announcement

1st Workshop on Optimistic Cooperation in Concurrent
Programming (OCCP 2013)

> Location: Rome, Italy (co-located with ETAPS 2013)
» Date: Saturday March 16th, 2013
> Submissions: 14th Dec (abstracts) 21st Dec (Papers)

Details: http://www.cs.tcd.ie/Vasileios.Koutavas/occp-workshop

~sfi

37/37

