# A theory of communicating transactions

#### Matthew Hennessy

joint work with Edsko de Vries, Vasileois Koutavas

CHoCoLa, PPS Paris December 2012





1/37

Intro TransCCS Properties Compositional semantics

## Outline

Introduction

**TransCCS** 

Liveness and safety properties

Compositional semantics



#### Standard Transactions

► Transactions provide an abstraction for error recovery in a concurrent setting.

#### Guarantees:

- Atomicity: Each transaction either runs in its entirety (commits) or not at all
- Consistency: When faults are detected the transaction is automatically rolled-back
- ▶ Isolation: The effects of a transaction are concealed from the rest of the system until the transaction commits
- Durability: After a transaction commits, its effects are permanent

#### ► Isolation:

- good: provides coherent semantics
- bad: limits concurrency
- bad: limits co-operation between transactions and their environments



4/37

Intro TransCCS Properties Compositional semantic

# Communicating/Co-operating Transactions

- ▶ We drop isolation to increase concurrency
  - ► There is no limit on the communication between a transaction and its environment
- ► These new transactional systems guarantee:
  - Atomicity: Each transaction will either run in its entirety or not at all
  - ► Consistency: When faults are detected the transaction is automatically rolled-back, together with all effects of the transaction on its environment
  - Durability: After all transactions that have interacted commit, their effects are permanent (coordinated checkpointing)



## Example: three-way rendezvous

$$P_1 || P_2 || P_3 || P_4$$

#### Problem:

- $\triangleright$   $P_n$  process/transaction subject to failure
- $\triangleright$  Some three  $P_n$  should decide to collaborate

#### Result:

Each  $P_n$  in the coalition outputs id of its partners on channel out<sub>n</sub>



6/37

Intro TransCCS Properties Compositional semantic

## Example: programming a three-way rendezvous

$$P_1 || P_2 || P_3 || P_4$$

#### Algorithm for $P_n$ :

- ▶ Broadcast id *n* randomly to two arbitrary partners  $b!\langle n\rangle \mid b!\langle n\rangle$
- ▶ Receive ids from two random partners b?(y).b?(z)
- ▶ Propose coalition with these partners  $s_y!\langle n,z\rangle.s_z!\langle n,y\rangle$
- ► Confirm that partners are in agreement:
  - ▶ if YES, commit and report
  - ▶ if NO, abort&retry



# Example: programming a three-way rendezvous

$$P_1 || P_2 || P_3 || P_4$$

$$P_n \Leftarrow b! \langle n \rangle \mid b! \langle n \rangle \mid$$
 atomic  $[b?(y).b?(z).$   $s_y! \langle n,z \rangle.s_z! \langle n,y \rangle.$  proposing  $s_n?(y_1,z_1).s_n?(y_2,z_2).$  confirming if  $\{y,z\} = \{y_1,z_1\} = \{y_2,z_2\}$  then  $commit \mid out_n! \langle y,z \rangle$  else abrt&retry  $\|$ 



8/37

Intro TransCCS Properties Compositional semantics

# Communicating Transactions: Issues

- Language Design
  - ► Transaction Synchronisers (Luchangco et al 2005)
  - ► Transactional Events for ML (Fluet, Grossman et al. ICFP 2008)
  - ► Communication Memory Transactions (Lesani, Palsberg PPoPP 2011)
- ► Implementation strategies
  - See above
- ► Semantics Behavioural theory: what should happen when programs are run
  - ► TransCCS (Concur 2010, Aplas 2010)



# Communication Memory Transactions Lesani Palsberg

- ► Builds on optimistic semantics of memory transactions O'Herlihy et al 2010
- ► Adds asynchronous channel-based message passing as in Actors CML
- Formal reduction semantics
- Formal properties of semantics proved
- ► Implementation as a Scala library
- Performance evaluation using benchmarks



10/37

Intro TransCCS Properties Compositional semantics

## **TransCCS**

An extension of CCS with communicating transactions.

- 1. Simple language: 2 additional language constructs and 3 additional reduction rules.
- 2. Intricate concurrent and transactional behaviour:
  - encodes nested, restarting, and non-restarting transactions
  - does not limit communication between transactions
- 3. Simple behavioural theory: based on properties of systems:
  - Safety property: nothing bad happens
  - Liveness property: something good happens



## **TransCCS**

# Transaction $[P \triangleright_k Q]$

- execute P to completion ( co k)
- subject to random aborts
- ▶ if aborted roll back all effects of P and initiate Q
- ▶ roll back includes . . . environmental impact of P



13/37

Intro TransCCS Properties Compositional semantics

## Rollbacks and Commits

Co-operating actions:  $a \leftarrow \text{needs co-operation of} \rightarrow \overline{a}$ 

$$T_a \mid T_b \mid T_c \mid P_d \mid P_e$$

where

$$T_{a} = [\overline{d}.\overline{b}.(\operatorname{co} k_{1} \mid a) \triangleright_{k_{1}} \mathbf{0}]$$

$$T_{b} = [\overline{c}.(\operatorname{co} k_{2} \mid b) \triangleright_{k_{2}} \mathbf{0}]$$

$$T_{c} = [\overline{e}.c.\operatorname{co} k_{3} \triangleright_{k_{3}} \mathbf{0}]$$

$$P_{d} = d.R_{d}$$

$$P_{e} = e.R_{e}$$

- ightharpoonup if  $T_c$  aborts, what roll-backs are necessary?
- ▶ When can action *a* be considered permanent?
- $\triangleright$  When can code  $R_d$  be considered permanent?



## Reduction semantics main rules

$$\frac{a_i = \overline{b}_j}{\sum_{i \in I} a_i . P_i \mid \sum_{j \in J} b_j . Q_j \to P_i \mid Q_j}$$

Communication

R-Co

$$\llbracket P \mid \mathsf{co} \ k \, \triangleright_k \, Q \rrbracket \, \to P$$

Commit

R-AB

$$\llbracket P \rhd_k Q \rrbracket \to Q$$

Random abort

**R-**Емв

$$k \notin R$$

$$\llbracket P \rhd_k Q \rrbracket \mid R \to \llbracket P \mid R \rhd_k Q \mid R \rrbracket$$

**Embed** 



15/37

Intro TransCCS Properties Compositional semantics

## Simple Example

#### Convention:

- $\blacktriangleright$   $\omega$ : I am happy
- ▶ ത: I am sad

$$\begin{array}{c} a.c.\omega + e.\omega \mid \llbracket \overline{a}.\overline{c}.\operatorname{co} k + \overline{e} \triangleright_{k} r \rrbracket \\ \\ \hline \overset{\text{R-Emb}}{\longrightarrow} & \llbracket a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co} k + \overline{e} \triangleright_{k} a.c.\omega + e.\omega \mid r \rrbracket \\ \\ \hline \overset{\text{R-Comm}}{\longrightarrow} & \llbracket c.\omega \mid \overline{c}.\operatorname{co} k \mid \triangleright_{k} a.c.\omega + e.\omega \mid r \rrbracket \\ \\ \hline \overset{\text{R-Comm}}{\longrightarrow} & \llbracket \omega \mid \operatorname{co} k \mid \triangleright_{k} a.c.\omega + e.\omega \mid r \rrbracket \\ \\ \hline \xrightarrow{\text{R-Comm}} & \omega \end{array}$$



# Simple Example (a second trace)



17/37

Compositional semantics

# Simple Example (all traces)

Will never be sad: 0

assuming r does not contain  $\overline{e}$ 



## Aborting transactions



A commit step makes the effects of the transaction permanent (**Durability**)

An abort step:

- restarts the transaction
- rolls-back embedded processes to their state before embedding (Consistency)
- does not roll-back actions that happened before embedding
- does not affect non-embedded processes

The behavioural theory will show the **Atomicity** property.



19/37

Intro TransCCS Properties Compositional semantics

# Restarting transactions



Will never be sad:

 $\Theta$ 



## Double Embedding

$$\begin{bmatrix} a.\operatorname{co} k \mid b \triangleright_{k} & \mathbf{0} \end{bmatrix} \mid \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \\ \frac{\operatorname{R-EMB}}{} & \begin{bmatrix} a.\operatorname{co} k \mid b \mid \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \mid b_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \end{bmatrix} \\ \frac{\operatorname{R-EMB}}{} & \begin{bmatrix} b \mid \begin{bmatrix} a.\operatorname{co} k \mid \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \end{bmatrix} \\ \frac{\operatorname{R-COMM}}{} & \begin{bmatrix} b \mid \begin{bmatrix} \operatorname{co} k \mid \operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \end{bmatrix} \\ \frac{\operatorname{R-Co}}{} & \begin{bmatrix} b \mid \operatorname{co} k \mid c \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \end{bmatrix} \\ \frac{\operatorname{R-Co}}{} & b \mid c \end{bmatrix}$$



21/37

Intro TransCCS Properties Compositional semantics

## Safety properties

Safety: "Nothing bad will happen" [Lamport'77]

A safety property can be formulated as a safety test  $T^{\circ}$  which signals on channel  $\circ$  when it detects the bad behaviour

#### **Examples**:

- ullet  $\mu X.(a.X+e.m)$  can not perform e while performing any sequence of as
- $m{ au}=e.$ 0  $\mid \overline{a}.\overline{b}$  can not perform e when a followed by b is offered.
- ightharpoonup P passes the safety test  $T^{\circ}$  when  $P\mid T^{\circ}$  can not output on  $\circ$ 
  - ► This is the negation of passing a "may test" [DeNicola-Hennessy'84]

#### **Examples:**

- ▶  $I_3 = \mu X$ .  $[a.b.co k + \overline{e} \triangleright_k X]$  passes safety test  $T^{\circ \circ}$
- ▶  $I_4 = \mu X$ . [a.b.co  $k \mid \overline{e} \triangleright_k X$ ] does not pass safety test  $T^{\circ}$



# Safety

### Definition (Basic Observable)

 $P \Downarrow_{\mathfrak{G}}$  iff there exists P' such that  $P \to^* P' \mid \mathfrak{G}$ 

- ▶ Basic observable actions are *permanent*
- ► True:  $[a.b.co k | \overline{e} \triangleright_k \mathbf{0}] | (e.m | \overline{a}.\overline{b}) \Downarrow_m$
- ► False:  $[a.b.co k + \overline{e} \triangleright_k \mathbf{0}] \mid (e.m \mid \overline{a}.\overline{b}) \downarrow_m$

## Definition (P Passes safety test $T^{\circ}$ )

 $P \operatorname{cannot} T^{\circ}$  when  $P \mid T^{\circ} \not\downarrow_{\mathfrak{m}}$ 

## Definition (Safety Preservation)

 $S \sqsubseteq_{\text{safe}} I$  when  $\forall T^{\circ}$ .  $S \text{ cannot } T^{\circ}$  implies  $I \text{ cannot } T^{\circ}$ 



24/37

Intro TransCCS Properties Compositional semantic

# Safety preservation: Examples

$$S_{ab} = \mu X. [a.b.co k \triangleright_k X]$$

$$I_3 = \mu X$$
.  $[a.b.co k + \overline{e} \triangleright_k X]$ 

$$I_4 = \mu X$$
.  $[a.b.co k | \overline{e} \triangleright_k X]$ 

- ▶  $S_{ab} \sqsubseteq_{\text{safe}} I_3$  proof techniques required
- $lacksymbol{ au}$   $au.P + au.Q \mathrel{\bullet}_{ ext{safe}} \llbracket P 
  hd_k Q 
  rbracket$  , for any P,Q proof techniques rqd



### Liveness

Liveness: "Something good will eventually happen" [Lamport'77]

▶ A liveness property can be formulated as a *liveness test*  $T^{\omega}$  which detects and reports good behaviour on  $\omega$ .

#### **Examples:**

- ullet  $T^\omega=\overline{a}.\overline{b}.\omega$  can do an a then a b
- $\blacktriangleright$   $\mu X$ .  $\llbracket \overline{a}.\overline{b}.(\omega \mid \text{co } I) \triangleright_I X 
  rbracket$  can eventually do an a,b uninterrupted?
- ▶  $a.\mu X$ .  $\llbracket \overline{b}.\overline{c}.(\omega \mid \text{co } I) \triangleright_I X \rrbracket$  English?
- ightharpoonup P passes the liveness test  $T^{\omega}$  when  $\omega$  is eventually guaranteed

**Dilemma**: What does this mean?



26/37

Intro TransCCS Properties Compositional semantics

## **Dilemma**

Does  $\mu X$ .  $[a.b.co k \triangleright_k X]$  pass liveness test  $T_{ab}^{\omega} = \overline{a}.\overline{b}.\omega$ ?



- must-testing: NO because of infinite loop
- should-testing: YES



## Liveness testing

Definition (P Passes liveness test  $T^{\omega}$  [Rensink-Vogler'07])

 $P \operatorname{shd} T^{\omega}$  when  $\forall R. P \mid T^{\omega} \to^* R$  implies  $R \downarrow_{\omega}$ 

#### **Examples**:

- ▶  $\mu X$ .  $[a.b.co k \triangleright_k X]$  passes liveness test  $T_{ab}^{\omega} = \overline{a}.\overline{b}.\omega$
- ▶  $[a.b.co k \triangleright_k 0]$  does not pass test  $T_{ab}^{\omega}$

Definition (Liveness preservation)

 $S \sqsubseteq_{\text{live}} I$  when  $\forall T^{\omega}$ .  $S \operatorname{shd} T^{\varpi}$  implies  $I \operatorname{shd} T^{\omega}$ 



28/37

Intro TransCCS Properties Compositional semantic

## Liveness preservation: Examples

$$S_{ab} = \mu X$$
. [a.b.co  $k \triangleright_k X$ ]
$$I_2 = \mu X$$
. [a.b.0  $\triangleright_k X$ ]
$$I_3 = \mu X$$
. [a.b.co  $k + \overline{e} \triangleright_k X$ ]

- $S_{ab} \not \sqsubseteq_{\text{live}} I_2$  use test  $T^{\omega} = \overline{a}.\overline{b}.\omega$
- ►  $S_{ab} \sqsubseteq_{\text{live}} I_3$  proof techniques required
- $lacksquare \mu X. \ [\![P \mid \mathsf{co} \ k \, lacksquare _k \, X]\!] \ extstyle =_{\mathrm{live}} P, \ \mathsf{for \ any} \ P$  proof techniques rqd

#### Proof techniques:

Require characterisations using "traces" and "refusals"



## Compositional Semantics

- ▶ The embedding rule is simple but entangles the processes
- We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions:  $[P \triangleright_k Q]^\circ$



31/37

Intro TransCCS Properties Compositional semantics

## Compositional Semantics: safe-testing

The behaviour of processes in TransCCS can be understood by a *simple subset of the LTS traces*:

- where all actions are eventually committed
- that ignore transactional annotations on the traces

$$\mathsf{Tr}_{\mathsf{clean}}\left( \llbracket a.c.\operatorname{co} k \, \triangleright_k \, e \rrbracket \, \right) = \{ \epsilon, \, \operatorname{\mathbf{ac}}, \, \operatorname{\mathbf{e}} \}$$
 
$$\mathsf{Tr}_{\mathsf{clean}}\left( \mu X. \, \llbracket a.c.\operatorname{\mathbf{co}} k \, \triangleright_k \, X \rrbracket \, \right) = \{ \epsilon, \, \operatorname{\mathbf{ac}} \}$$

Set of clean traces not prefix closed: atomicity

#### Characterisation of Safe Testing:

$$P \mathrel{\mathop{\sqsubset}_{\operatorname{safe}}} Q \qquad \mathsf{iff} \qquad \mathsf{Tr}_{\mathsf{clean}}(P) \subseteq \mathsf{Tr}_{\mathsf{clean}}(Q)$$

▶ To understand the safe-testing behaviour of P we only need to consider the clean traces  $Tr_{clean}(P)$ .



# Compositional semantics: should-testing

Tree Failures: [Rensink-Vogler'07]

(t, Ref) where

- t is a clean trace
- ► *Ref* is a set of clean traces

can be non-prefixed closed

Tree failures of a process:

$$(t, Ref)$$
 is a tree failure of  $P$  when  $\exists P'. P \stackrel{t}{\Rightarrow}_{CL} P'$  and  $\mathcal{L}(P') \cap Ref = \emptyset$ 



$$\mathcal{F}(P) = \{(t, Ref) \text{ tree failure of } P\}$$

Characterisation of should-testing:

$$S \sqsubseteq_{\text{live}} I$$
 iff  $\mathcal{F}(S) \supseteq \mathcal{F}(I)$ 



33/37

Intro TransCCS Properties Compositional semantics

## Simple Examples

Let 
$$S_{ab} = \mu X$$
.  $\llbracket a.b. \operatorname{co} k \triangleright_k X \rrbracket$   $\mathcal{L}(S_{ab}) = \{\epsilon, ab\}$   $\mathcal{F}(S_{ab}) = \{(\epsilon, S \setminus ab), (ab, S) \mid S \subseteq A^*\}$ 

$$\begin{array}{ll} \blacktriangleright & S_{ab} \eqsim_{\text{safe}} I_1 = \llbracket a.b.\text{co } k \bowtie_k \mathbf{0} \rrbracket \\ & S_{ab} \not \succsim_{\text{live}} I_1 & \mathcal{F}(I_1) = \{(\epsilon, S), (ab, S) \mid S \subseteq A^*\} \end{array}$$

$$\begin{array}{ll} \blacktriangleright & S_{ab} \eqsim_{\text{safe}} \textit{I}_2 = \mu \textit{X}. \ \llbracket \textit{a.b.co} \ \textit{k} + \textit{e} \, \triangleright_{\textit{k}} \ \textit{X} \rrbracket \\ & S_{ab} \eqsim_{\text{live}} \textit{I}_2 \end{array} \qquad \qquad \mathcal{L}(\textit{I}_2) = \mathcal{L}(S_{ab}) \\ & \mathcal{F}(\textit{I}_2) = \mathcal{F}(S_{ab}) \end{array}$$



## Summary

- ► TransCCS: a language for communicating/co-operative transactions
- ▶ simple reduction semantics using an *embedding* rule
- behavioural theories for preservation of
  - safety properties
  - liveness properties
- characterisations which allow
  - proofs of equivalences
  - equational laws

#### References:

- Communicating Transactions, Concur 2010
- Liveness of Communicating Transactions, APLAS 2010

#### Current work:

- Extension to Haskell/CML
- prototype implementation
- Proof techniques based on traces, refusal trees, co-induction



35/37

Intro TransCCS Properties Compositional semantics

THANK YOU!



# Workshop announcement

1st Workshop on Optimistic Cooperation in Concurrent Programming (OCCP 2013)

- ▶ Location: Rome, Italy (co-located with ETAPS 2013)
- ▶ Date: Saturday March 16th, 2013
- ► Submissions: 14th Dec (abstracts) 21st Dec (Papers)

Details: http://www.cs.tcd.ie/Vasileios.Koutavas/occp-workshop

