Relaxed Semantics of
Concurrent Programs

G. Boudol, G. Petri and B. Serpette
EXPRESS-SOS 2012

T he PROBLEM

» shared memory concurrency — aka multithreading = the concurrent
programming model in mainstream programming languages (e.g.
C/C++, JAVA), close to hardware multiprocessor architectures

» in shared memory multiprocessor (multicore) architectures,
memory accesses may be reordered (also with optimizing
compilers)

[1 there are behaviors of multithreaded programs that are not
explained by the standard interleaving semantics

Formalization of such relaxed semantics?

An EXAMPLE

Initially S(p) = ff = S(q)

p = tt; ‘ q = tt;
ro := lqg r1:=lIp

Possible outcomes with the interleaving semantics:

S(ro) = ff & S(r1) = tt
S(T‘o):tt & S(Tl):ﬁ
S(T‘o):tt & S(Tl):tt

On most multiprocessor machines, one may also observe

Stro)=ff & ()=

EXPLANATION

The two threads are executed on different processors

1. the write p := tt is issued and put in a write buffer, but not yet
performed on the shared memory

2. the read lq is performed, returning the value ff from the shared
memory

(O]

. the write q := tt is performed, then

4. the read !p is performed and returns ff from the shared memory,
since the second processor does not see the write buffer of the
first

[1 the write p := ¢t and the read lg appear to be reordered

ANOTHER (SIMILAR) EXAMPLE

Initially S(p) = ff = S(q)

p = tt; H ro := lq;
q:=tt ry:=Ip

On some multiprocessor machines, one may observe the outcome
S(T‘o) — it & S(’I“l) :ﬁ

Reordering of the writes p := ¢t and q := tt (conceptually: one
write buffer per memory location), or of the reads Iq and !p

MEMORY BARRIERS

Low level instructions to prevent reorderings: full fence, or weaker

wr, Ww, rr, rw, for instance

p = tt; q = tt;
W H WF;
ro =g (ff) — r=1Ip(ff)

is forbidden. However

p = tt; ro == lq; (tt)

is still possible (on some machines)

NoN ATomic VWRITES

The IRIW (Independent Reads of Independent Writes) example:

To -
p =t H q:=1t H rr; H rr;
ri1:=lq (ff) rs = Ip (ff)

lg; (it)

|
=S
~—~
N~
~
~—
=
(\V)
|

A possible explanation: the write p := ¢t is issued and made visible
to the third thread, but not to the fourth (the previous example is
similar). Notice: no reordering

ReLAXED M EMORY MODELS

According to Adve & Gharachorloo (Tutorial, 1996):

memory model = reordering, i.e. relaxation of program order, for
memory accesses (write/read)
+ write visibility
+ means to maintain program order in some cases
(memory barriers, acquire/release...)
Some examples:

» 15S0: relaxing write/read 4 read-own-write-early
» PSO: TSO + write/write relaxation

» RMO: PSO + read/write + read/read relaxations
» PowerPC: RMO + read-others'-write-early

SEMANTICS: APPROACHES

» axiomatic: an execution is a set of memory events, connected
by various relations (po, rf, co... 4+ various dependencies:
data, addr, ctrl...), subject to a number of axioms. Given
a set of events, one tentatively sets relations between them
and checks if the axioms are satisfied

» operational: an abstract machine with transitions from
configurations (shared memory, threads, interconnection
structure — write buffers, caches...) to configurations. Rules
to non-deterministically choose the next step

A LANGUAGE

Syntax — a call by value, imperative A-calculus:

p,q, r... € P poInters
b € B barriers
v, w... 2= p | x| Xxe | ()| - wvalues
e == v | (ve) eTPTessions
(o) [(v=w) [D] -
Evaluation contexts
E =1 | (vE)
Recall:
eo; €1 =det (Areieg) = (Azepleg))

(where x is not free in e;)

10

CONFIGURATIONS

(S,0,T) where

» S, the shared memory, is a mapping from a finite set of pointers

to closed values

» T’ the thread system, is a mapping from a finite set of thread
identifiers {t1,...,t,} to expressions, witten

(tren) |-l (tn; en)

» 0 is the temporary store, a sequence (i, ft1) - - - (ti,, [k)
of pending memory operations 1, ..., (g issued by the threads
tiys...,ti,, but not yet “globally performed” (i.e. not yet touching
the memory). An abtraction of the interconnection structure
between processors and the shared memory

11

MEMORY OPERATIONS

o= (vi=w)W | %o | b

» write operations (v := w)" where v is the location to update
(either a pointer or a variable, if not yet determined), w the new
value, W is the visibility of the write, a set of thread identifiers

» read operations v where v is the location to read and x the

place-holder for the value in the thread that reads (and in
subsequent memory operations)

T RANSITIONS (1/3)

From the threads:

(0, (t,e)) = (o', (', €))
(S,0,(t,e) | T) — (5,0, (', €) [| T)

M
where
(0, (L, E[(Azev)])) — (o, (t, E[{z—uv}e]))
(o, (L E[(10)])) — (o (&), (¢, Elz])) z fresh
(0, (& E[(v = w)])) — (0t (v:=w)"), (tE[)]))
(o, (&, E[D])])) — (o-(¢,0),(t E[(]))

13

MEemoRrY MODEL

M = (7, W) where

» 1, the commutability predicate, relates temporary stores o with
pending memory operations (¢,). If o 7 (¢, 1) then p may be
immediately performed, overtaking the operations in o — allowing
reorderings/relaxations of the program order

» WV, the write grain, is a set of sets of thread identifiers — the
allowed visibilities

subject to some requirements, e.g. € 1 (¢, ut) i.e. the empty temporary
store allows any memory operation to be performed,) € W, ...

T RANSITIONS (2/3)

From the temporary store:

(S,0) — (S',0’,Sub) = (S,0,T) v (57, Sub(c’,T))

where
(S,0) — (S,00-01,{r—0v}) read
if o=09-(t,!"p) o1&
oo 1(t,""p) & S(p) = v

(S,0) — (Slp:=v],00-01,0) write
if o=o00-(t,(p:=0)") 00 &
oo 1 (t, (p :=)W) & v closed

T RANSITIONS (3/3)

(S,0) — (S,00-01,0) barrier
if o=o09-(t,b) 01 & o9 T(t,0)

/

(S,0) — (S,00-(t,(v:=w)")-01,0) write early
if o=o09-(t,(v:i=uw)") 01 &
teW' &KW W eWw

(S,0) — (S,00-01,{r—w}) read early
if o=o09-(t,1"v) 01 &
o) — 50 . (t/, (U = UJ)W) . 51 &
te W & 51 T (t, 'xv) & 50 ﬁB (t, 'x’l})

16

MEMORY MoODELS: REQUIREMENTS

The commutability predicate should not be so relaxed that the
semantics of sequential programs could be broken. Then T must
satisfy

(t,pn) 4 (' u) = Vo,0'. =(o-(t,u)-o" T, w))

where the precedence relation <« is inductively given by

v~ v & (¢, (v : W) €« (U, 1%0) &
t’E{t}UW} - (¢, (v :

WY < (#, (v = w)W)
vy = (1) < (t (0 = w)Y)

w
w

where

Vv Sger v=20 orv & Varorv € Var

17

ExaMPLE 1

The initial configuration may evolve into

(S, (to,(p:=tt)") - (to,"q), (to, (1o := x)) ||(t1, €1))

With the relaxation of the write/read order:

(to, (p:==t£)?) 9 (to,!"q)

thus 1“q can be performed, returning {z+—[f}. Then ey is executed:
the write (q := tt)? commutes with (p := t£)?, as well as the read
1Yp (which does not see this write), and finally (p = #)? is
performed

18

MEMORY BARRIERS: SEMANTICS

By means of the commutability predicate:

(t, (v =w)") <« (t,ww) <« (¢t (v =)
(t, (v:=w)") <« (t,wr) <« (t, ("))

Notice: same thread

Global barrier: sync is a ww, wr, rw and rr (local) barrier, plus sees

the writes from other threads:

teW = (t,(v:=w)") < (¥,sync)

19

EXAMPLE 2

From the temporary store

(to, (p := tt)?) - (to, ww) - (to, (¢ := tt)?)

the visibility of the last write is extended to the second thread:

(to, (p = tt)?) - (to, ww) - (to, (¢ := tt)170:f1})

Then t1 proceeds: "q returns {x it} from the temporary store,
the barrier rr vanishes, and Yp returns {y—ff} from the shared
memory. Replacing rr with sync prevents this behavior

20

In the PAPER

» a more refined abstract machine to deal with the (subtle) lwsync

barrier (PowerPC)
o 9 (t,p) # V(1) ino =((t, 1) «(t,p))

» extension with speculation — branch prediction: from a conditional
branching (if v then eq else e1) one issues a prediction [v = tt]
or [u = ff] in the temporary store. A correct prediction [v = v]
vanishes, while a prediction blocks memory updates:

(t,[v=w]) < (t, (v :=w")")

» a software simulator that allows us to run a (large) number of
itmus tests, despite state explosion — trying to explore these
without the simulator is highly error prone!

