
Relaxed Semantis ofConurrent Programs

G. Boudol, G. Petri and B. SerpetteEXPRESS-SOS 2012

1The PROBLEM

◮ shared memory onurreny � aka multithreading = the onurrentprogramming model in mainstream programming languages (e.g.C/C++, JAVA), lose to hardware multiproessor arhitetures

◮ in shared memory multiproessor (multiore) arhitetures,memory aesses may be reordered (also with optimizingompilers)

➥ there are behaviors of multithreaded programs that are notexplained by the standard interleaving semantis

Formalization of suh relaxed semantis?

2An EXAMPLE

Initially S(p) = ff = S(q)

p := tt;

r0 := !q ∥

∥

∥

q := tt;
r1 := !pPossible outomes with the interleaving semantis:

S(r0) = ff & S(r1) = tt

S(r0) = tt & S(r1) = ff

S(r0) = tt & S(r1) = ttOn most multiproessor mahines, one may also observe

S(r0) = ff & S(r1) = ff

3EXPLANATION

The two threads are exeuted on di�erent proessors1. the write p := tt is issued and put in a write bu�er, but not yetperformed on the shared memory2. the read !q is performed, returning the value ff from the sharedmemory3. the write q := tt is performed, then4. the read !p is performed and returns ff from the shared memory,sine the seond proessor does not see the write bu�er of the�rst

➥ the write p := tt and the read !q appear to be reordered

4ANOTHER (SIMILAR) EXAMPLE

Initially S(p) = ff = S(q)

p := tt;

q := tt

∥

∥

∥

r0 := !q;
r1 := !pOn some multiproessor mahines, one may observe the outome

S(r0) = tt & S(r1) = ffReordering of the writes p := tt and q := tt (oneptually: onewrite bu�er per memory loation), or of the reads !q and !p

5MEMORY BARRIERS

Low level instrutions to prevent reorderings: full fence, or weaker
wr, ww, rr, rw, for instane

p := tt;

wr;

r0 := !q (ff)

∥

∥

∥

q := tt;
wr;
r1 := !p (ff)is forbidden. However

p := tt;
ww;
q := tt

∥

∥

∥

r0 := !q ; (tt)

rr;
r1 := !p (ff)is still possible (on some mahines)

6NON ATOMICWRITES

The IRIW (Independent Reads of Independent Writes) example:
p := tt

∥

∥ q := tt

∥

∥

∥

r0 := !p ; (tt)

rr;
r1 := !q (ff)

∥

∥

∥

r2 := !q ; (tt)

rr;
r3 := !p (ff)

A possible explanation: the write p := tt is issued and made visibleto the third thread, but not to the fourth (the previous example issimilar). Notie: no reordering

7RELAXED MEMORYMODELSAording to Adve & Gharahorloo (Tutorial, 1996):memory model = reordering, i.e. relaxation of program order, formemory aesses (write/read)+ write visibility+ means to maintain program order in some ases(memory barriers, aquire/release...)Some examples:

◮ TSO: relaxing write/read + read-own-write-early

◮ PSO: TSO + write/write relaxation
◮ RMO: PSO + read/write + read/read relaxations

◮ PowerPC: RMO + read-others'-write-early

8SEMANTICS: APPROACHES

◮ axiomati: an exeution is a set of memory events, onnetedby various relations (po, rf, o... + various dependenies:data, addr, trl...), subjet to a number of axioms. Givena set of events, one tentatively sets relations between themand heks if the axioms are satis�ed
◮ operational: an abstrat mahine with transitions fromon�gurations (shared memory, threads, interonnetionstruture � write bu�ers, ahes...) to on�gurations. Rulesto non-deterministially hoose the next step

9A LANGUAGESyntax � a all by value, imperative λ-alulus:
p, q, r . . . ∈ P pointers

b ∈ B barriers
v, w . . . ::= p | x | λxe | () | · · · values

e ::= v | (ve) expressions

| (!v) | (v := w) | b | · · ·Evaluation ontexts
E ::= [] | (vE)Reall:

e0 ; e1 =def (λxe1 e0) = (λxe1[e0])(where x is not free in e1)

10CONFIGURATIONS

(S, σ, T) where

◮ S, the shared memory, is a mapping from a �nite set of pointersto losed values

◮ T , the thread system, is a mapping from a �nite set of threadidenti�ers {t1, . . . , tn} to expressions, witten
(t1, e1) ‖ · · · ‖ (tn, en)

◮ σ is the temporary store, a sequene (ti1, µ1) · · · (tik, µk)of pending memory operations µ1, . . . , µk issued by the threads

ti1, . . . , tik, but not yet �globally performed� (i.e. not yet touhingthe memory). An abtration of the interonnetion struturebetween proessors and the shared memory

11MEMORY OPERATIONS

µ ::= (v := w)W | !xv | b

◮ write operations (v := w)W where v is the loation to update(either a pointer or a variable, if not yet determined), w the newvalue, W is the visibility of the write, a set of thread identi�ers

◮ read operations !xv where v is the loation to read and x theplae-holder for the value in the thread that reads (and insubsequent memory operations)

12TRANSITIONS (1/3)

From the threads:

(σ, (t, e)) → (σ′, (t′, e′))

(S, σ, (t, e) ‖ T) −−→
M

(S, σ′, (t′, e′) ‖T)where

(σ, (t,E[(λxe v)])) → (σ, (t,E[{x 7→v}e]))

(σ, (t,E[(!v)])) → (σ · (t, !xv), (t,E[x])) x fresh

(σ, (t,E[(v := w)])) → (σ · (t, (v := w)∅), (t,E[()]))

(σ, (t,E[b])])) → (σ · (t, b), (t,E[()]))

13MEMORYMODEL

M = (�,W) where

◮ �, the ommutability prediate, relates temporary stores σ withpending memory operations (t, µ). If σ � (t, µ) then µ may beimmediately performed, overtaking the operations in σ � allowingreorderings/relaxations of the program order
◮ W , the write grain, is a set of sets of thread identi�ers � theallowed visibilitiessubjet to some requirements, e.g. ε � (t, µ) i.e. the empty temporarystore allows any memory operation to be performed, ∅ ∈ W, . . .

14TRANSITIONS (2/3)

From the temporary store:

(S, σ) →֒ (S′, σ′,Sub) ⇒ (S, σ, T) −−→
M

(S′,Sub(σ′, T))where

(S, σ) →֒ (S, σ0 · σ1, {x 7→v}) readif σ = σ0 · (t, !xp) · σ1 &

σ0 � (t, !xp) & S(p) = v

(S, σ) →֒ (S[p := v], σ0 · σ1, ∅) writeif σ = σ0 · (t, (p := v)W) · σ1 &

σ0 � (t, (p := v)W) & v losed

15TRANSITIONS (3/3)
(S, σ) →֒ (S, σ0 · σ1, ∅) barrierif σ = σ0 · (t, b) · σ1 & σ0 � (t, b)

(S, σ) →֒ (S, σ0 · (t, (v := w)W ′
) · σ1, ∅) write earlyif σ = σ0 · (t, (v := w)W) · σ1 &

t ∈ W ′ & W ⊂ W ′ ∈ W

(S, σ) →֒ (S, σ0 · σ1, {x 7→w}) read earlyif σ = σ0 · (t, !xv) · σ1 &

σ0 = δ0 · (t
′, (v := w)W) · δ1 &

t ∈ W & δ1 � (t, !xv) & δ0 �B (t, !xv)

16MEMORYMODELS: REQUIREMENTSThe ommutability prediate should not be so relaxed that thesemantis of sequential programs ould be broken. Then � mustsatisfy

(t, µ) ◭ (t′, µ) ⇒ ∀σ, σ′. ¬
(

σ · (t, µ) · σ′ � (t′, µ′)
)

where the preedene relation ◭ is indutively given by

v ≈ v′ &

t′ ∈ {t} ∪ W

}

⇒

{

(t, (v := w)W) ◭ (t′, !xv′) &

(t, (v := w)W) ◭ (t′, (v′ := w′)W ′
)

v ≈ v′ ⇒ (t, !xv) ◭ (t, (v′ := w)W)where

v ≈ v′ ⇔def v = v′ or v ∈ Var or v′ ∈ Var

17EXAMPLE 1

p := tt;

r0 := !q (ff)

∥

∥

∥

q := tt;
r1 := !p (ff)The initial on�guration may evolve into

(S, (t0, (p := tt)∅) · (t0, !xq), (t0, (r0 := x)) ‖(t1, e1))With the relaxation of the write/read order:
(t0, (p := tt)∅) � (t0, !xq)thus !xq an be performed, returning {x 7→ff }. Then e1 is exeuted:the write (q := tt)∅ ommutes with (p := tt)∅, as well as the read!yp (whih does not see this write), and �nally (p := tt)∅ isperformed

18MEMORY BARRIERS: SEMANTICS

By means of the ommutability prediate:
(t, (v := w)W) ◭ (t,ww) ◭ (t, (v′ := w′)W ′

)

(t, (v := w)W) ◭ (t,wr) ◭ (t, (!xv′))...Notie: same threadGlobal barrier: sync is a ww, wr, rw and rr (loal) barrier, plus seesthe writes from other threads:
t′ ∈ W ⇒ (t, (v := w)W) ◭ (t′, sync)

19EXAMPLE 2

p := tt;

ww;

q := tt

∥

∥

∥

r0 := !q ; (tt)

rr;

r1 := !p (ff)From the temporary store

(t0, (p := tt)∅) · (t0,ww) · (t0, (q := tt)∅)the visibility of the last write is extended to the seond thread:

(t0, (p := tt)∅) · (t0,ww) · (t0, (q := tt){t0,t1})Then t1 proeeds: !xq returns {x 7→tt} from the temporary store,the barrier rr vanishes, and !yp returns {y 7→ff } from the sharedmemory. Replaing rr with sync prevents this behavior

20In the PAPER

◮ a more re�ned abstrat mahine to deal with the (subtle) lwsyncbarrier (PowerPC)

σ � (t, µ) 6= ∀(t′, µ′) in σ. ¬
(

(t′, µ′) ◭ (t, µ)
)

◮ extension with speulation � branh predition: from a onditionalbranhing (if v then e0 else e1) one issues a predition [v = tt]or [v = ff] in the temporary store. A orret predition [v = v]vanishes, while a predition bloks memory updates:

(t, [v = w]) ◭ (t, (v′ := w′)W)

◮ a software simulator that allows us to run a (large) number oflitmus tests, despite state explosion � trying to explore thesewithout the simulator is highly error prone!

