Loader and Urzyczyn are Logically Related

Giulio Manzonetto

Joint work with Henk Barendregt, Mai Gehrke and Sylvain Salvati

giulio.manzonetto@lipn.univ-paris13.fr

Laboratoire LIPN Université Paris Nord – Villetaneuse

Rencontre Chocola, ENS-Lyon - Valentine's Day 2013

In the beginning was untyped λ -calculus...

 $\Lambda : \quad M, N ::= x \mid \lambda x.M \mid MN$ (\beta) $(\lambda x.M)N = M[N/x]$ (\beta) $\lambda x.Mx = M$ where $x \notin fv(M)$

Church'40 Simply Typed Lambda Calculus In the beginning was untyped λ -calculus...

$$\Lambda: \quad M, N ::= x \mid \lambda x.M \mid MN$$

$$(\beta) \quad (\lambda x.M)N = M[N/x]$$

(
$$\eta$$
) $\lambda x.Mx = M$ where $x \notin fv(M)$

Church'40 Simply Typed Lambda Calculus In the beginning was untyped λ -calculus...

$$\Lambda: \quad M, N ::= x \mid \lambda x.M \mid MN$$

$$(\beta) \quad (\lambda x.M)N = M[N/x]$$

(
$$\eta$$
) $\lambda x.Mx = M$ where $x \notin fv(M)$

Church'40 Simply Typed Lambda Calculus

Simply Typed Lambda Calculus $\Lambda_{\!\rightarrow}$

Simple Types:

 $\mathbb{T}^{o}: A, B, C ::= o \mid A \rightarrow B$

Derivation Rules:

$$x_{1} : A_{1}, \dots, x_{n} : A_{n} \vdash x_{i} : A_{i}$$

$$\Delta \vdash M : A \to B \quad \Delta \vdash N : A \quad \Delta, x : A \vdash M : B$$

$$\Delta \vdash MN : B \quad \Delta \vdash \lambda x.M : A \to B$$

A λ -term *M* is simply typable if $\exists \Delta$, *A* such that $\Delta \vdash M : A$.

Basic Properties

- *M* is simply typable entails *M* is strongly normalizable (SN),
- But there are SN terms that are not simply typable: $\lambda x.xx$

$$\lambda x^C \cdot x^{A \to B} x^A$$
, one needs $C = A$ and $C = A \to B$

Simply Typed Lambda Calculus Λ_{\rightarrow}

Simple Types:

$$\mathbb{T}^{o}: A, B, C ::= o \mid A \rightarrow B$$

Derivation Rules:

$$\begin{array}{c} x_1 : A_1, \dots, x_n : A_n \vdash x_i : A_i \\ \underline{\Delta \vdash M} : A \to \underline{B} \quad \underline{\Delta \vdash N} : A \\ \underline{\Delta \vdash MN} : B \end{array} \qquad \qquad \underbrace{\begin{array}{c} \Delta, x : A \vdash M : B \\ \underline{\Delta \vdash \lambda x.M} : A \to B \end{array}}_{\underline{\Delta \vdash \lambda x.M} : A \to B} \end{array}$$

A λ -term *M* is simply typable if $\exists \Delta$, *A* such that $\Delta \vdash M : A$.

Basic Properties

- M is simply typable entails M is strongly normalizable (SN),
- But there are SN terms that are not simply typable: $\lambda x.xx$

$$\lambda x^C \cdot x^{A \to B} x^A$$
, one needs $C = A$ and $C = A \to B$

Simply Typed Lambda Calculus $\Lambda_{\!\rightarrow}$

Simple Types:

$$\mathbb{T}^{o}: A, B, C ::= o \mid A \rightarrow B$$

Derivation Rules:

$$\begin{array}{c} x_1 : A_1, \dots, x_n : A_n \vdash x_i : A_i \\ \underline{\Delta \vdash M} : A \to \underline{B} \quad \underline{\Delta \vdash N} : A \\ \underline{\Delta \vdash MN} : B \end{array} \qquad \qquad \underbrace{\begin{array}{c} \Delta, x : A \vdash M : B \\ \underline{\Delta \vdash \lambda x.M} : A \to B \end{array}}_{\underline{\Delta \vdash \lambda x.M} : A \to B} \end{array}$$

A λ -term *M* is simply typable if $\exists \Delta$, *A* such that $\Delta \vdash M : A$.

Basic Properties

- *M* is simply typable entails *M* is strongly normalizable (SN),
- But there are SN terms that are not simply typable: $\lambda x.xx$

$$\lambda x^{C} \cdot x^{A \to B} x^{A}$$
, one needs $C = A$ and $C = A \to B$

The Full Model of $\Lambda_{\!\rightarrow}$

The full model over a finite set X is given by

 $\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$

where $\mathcal{F}_X(A)$ is defined inductively as • $\mathcal{F}_X(o) = X \neq \emptyset$,

The Full Model of $\Lambda_{\!\rightarrow}$

The full model over a finite set X is given by

 $\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$

where $\mathcal{F}_X(A)$ is defined inductively as • $\mathcal{F}_X(o) = X \neq \emptyset$,

The Full Model of $\Lambda_{\!\rightarrow}$

The full model over a finite set X is given by

 $\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$

where $\mathcal{F}_X(A)$ is defined inductively as

- $\mathcal{F}_X(o) = X \neq \emptyset$,
- $\mathcal{F}_X(A \to B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$.

$\mathcal{F}_X(A \rightarrow B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$
$\mathcal{F}_X(A)$
÷
$\mathcal{F}_X(B)$
:
$\mathcal{F}_X(o o o) = X^X$
$\mathcal{F}_X(o) = X$

ŝ

The Full Model of $\Lambda_{\!\rightarrow}$

The full model over a finite set X is given by

 $\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$

where $\mathcal{F}_X(A)$ is defined inductively as

• $\mathcal{F}_X(o) = X \neq \emptyset$, • $\mathcal{F}_X(A \to B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$.

Interpretation $\llbracket M \rrbracket_{\nu} \in \mathcal{F}_X(A)$ of $\Delta \vdash M : A$

$\mathcal{F}_X(A \! ightarrow B)$		
÷		
$\llbracket M \rrbracket \mathcal{F}_X(A)$		
:		
$\mathcal{F}_X(B)$		
÷		
$\mathcal{F}_X(o o o) = X^X$		
$\mathcal{F}_X(o) = X$		

ŝ

The Full Model of $\Lambda_{\!\rightarrow}$

The full model over a finite set X is given by

 $\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$

where $\mathcal{F}_X(A)$ is defined inductively as

• $\mathcal{F}_X(o) = X \neq \emptyset$, • $\mathcal{F}_X(A \rightarrow B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$.

Interpretation $\llbracket M \rrbracket_{\nu} \in \mathcal{F}_X(A)$ of $\Delta \vdash M : A$ Given $\nu : \operatorname{Var} \times \mathbb{T}^o \to \mathcal{F}_X$.

• $\llbracket X^A \rrbracket_{\nu} = \nu(X)$

•
$$\llbracket \lambda x^{\mathcal{A}}.M \rrbracket_{\nu} = \lambda a \in \mathcal{F}_{X}(\mathcal{A}) \mapsto \llbracket M \rrbracket_{\nu[x:=a]}$$

•
$$\llbracket M^{A \to B} N^A \rrbracket_{\nu} = \llbracket M \rrbracket_{\nu} \llbracket N \rrbracket_{\nu}$$

 $\mathcal{F}_X(A \rightarrow B)$ $\nu(\mathbf{x}^{A}) \quad \mathcal{F}_{X}(A)$ $\mathcal{F}_X(B)$ $\mathcal{F}_X(o \to o) = X^X$ $\mathcal{F}_X(o) = X$

The Full Model of $\Lambda_{\!\rightarrow}$

The full model over a finite set X is given by

 $\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$

where $\mathcal{F}_X(A)$ is defined inductively as

• $\mathcal{F}_X(o) = X \neq \emptyset$, • $\mathcal{F}_X(A \rightarrow B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$.

Interpretation $\llbracket M \rrbracket_{\nu} \in \mathcal{F}_X(A)$ of $\Delta \vdash M : A$ Given $\nu : \operatorname{Var} \times \mathbb{T}^o \to \mathcal{F}_X$.

•
$$\llbracket x^{\mathsf{A}} \rrbracket_{\nu} = \nu(x)$$

•
$$\llbracket \lambda x^{\mathcal{A}}.M \rrbracket_{\nu} = \lambda a \in \mathcal{F}_{X}(\mathcal{A}) \mapsto \llbracket M \rrbracket_{\nu[x:=a]}$$

•
$$\llbracket M^{A \to B} N^A \rrbracket_{\nu} = \llbracket M \rrbracket_{\nu} \llbracket N \rrbracket_{\nu}$$

 $\lambda x.M \mathcal{F}_X(A \rightarrow B)$ $\mathcal{F}_X(A)$ $\mathcal{F}_X(B)$ $\mathcal{F}_X(o \to o) = X^X$ $\mathcal{F}_{X}(o) = X$

•

The Full Model of $\Lambda_{\!\rightarrow}$

The full model over a finite set X is given by

 $\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$

where $\mathcal{F}_X(A)$ is defined inductively as

• $\mathcal{F}_X(o) = X \neq \emptyset$, • $\mathcal{F}_X(A \rightarrow B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$.

Interpretation $\llbracket M \rrbracket_{\nu} \in \mathcal{F}_X(A)$ of $\Delta \vdash M : A$ Given $\nu : \operatorname{Var} \times \mathbb{T}^o \to \mathcal{F}_X$.

•
$$\llbracket x^{A} \rrbracket_{\nu} = \nu(x)$$

• $\llbracket \lambda x^{A}.M \rrbracket_{\nu} = \lambda a \in \mathcal{F}_{X}(A) \mapsto \llbracket M \rrbracket_{\nu[x:=a]}$

 $\bullet \ \llbracket M^{A \to B} N^A \rrbracket_{\nu} = \llbracket M \rrbracket_{\nu} \llbracket N \rrbracket_{\nu}$

 $M \mathcal{F}_X(A \rightarrow B)$ [N] $\mathcal{F}_{X}(A)$ **MN** $\mathcal{F}_X(B)$ $\mathcal{F}_X(o \to o) = X^X$ $\mathcal{F}_{X}(o) = X$

•

The Full Model of $\Lambda_{\!\rightarrow}$

The full model over a finite set X is given by

 $\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$

where $\mathcal{F}_X(A)$ is defined inductively as

• $\mathcal{F}_X(o) = X \neq \emptyset$, • $\mathcal{F}_X(A \to B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$.

Interpretation $\llbracket M \rrbracket_{\nu} \in \mathcal{F}_X(A)$ of $\Delta \vdash M : A$

Given $\nu : \operatorname{Var} \times \mathbb{T}^o \to \mathcal{F}_X$.

•
$$\llbracket x^{A} \rrbracket_{\nu} = \nu(x)$$

• $\llbracket \lambda x^{A} . M \rrbracket_{\nu} = \lambda a \in \mathcal{F}_{X}(A) \mapsto \llbracket M \rrbracket_{\nu[x:=a]}$
• $\llbracket M^{A \to B} N^{A} \rrbracket_{\nu} = \llbracket M \rrbracket_{\nu} \llbracket N \rrbracket_{\nu}$

Lambda Definability

An element $f \in \mathcal{F}_X$ is λ -definable if $\exists M \in \Lambda_{\rightarrow}$ closed such that $\llbracket M \rrbracket = f$.

Plotkin'73

DP: "Given an element *f* of any (finite) full model, is $f \lambda$ -definable?"

Conjecture by Plotkin'73 and Statman'82: DP is decidable

Plotkin'73

DP: "Given an element *f* of any (finite) full model, is $f \lambda$ -definable?"

Conjecture by Plotkin'73 and Statman'82: DP is decidable Loader'93: NOPE!

Plotkin'73

DP: "Given an element *f* of any (finite) full model, is $f \lambda$ -definable?"

Conjecture by Plotkin'73 and Statman'82: DP is decidable Loader'93: NOPE!

Theorem [Loader'01]

Loader: DP is undecidable,

WRP:two letters Word Rewriting Problem \leq_T DP:Definability Problem

Plotkin'73

DP: "Given an element *f* of any (finite) full model, is $f \lambda$ -definable?"

Let \mathcal{F}_n be the full model over $X = \{x_1, \ldots, x_n\}$ for some n > 0.

 DP_n : "Given an element $f \in \mathcal{F}_n$, is $f \lambda$ -definable?"

Conjecture by Plotkin'73 and Statman'82: DP is decidable Loader'93: NOPE!

Theorem [Loader'01,Joly'03]

- Loader: DP is undecidable,
- Loader: DP_n is undecidable for every n > 6,
- Joly: DP_n is undecidable for every n > 1.

WRP:two letters Word Rewriting Problem \leq_T DP:Definability Problem

Giulio Manzonetto	(LIPN)
-------------------	--------

Intersection Type Disciplines

More permissive type systems have been proposed...

CDV: Coppo, Dezani, Venneri'81

Logical characterization of Strong Normalization

Intersection Type Disciplines

More permissive type systems have been proposed...

CDV: Coppo, Dezani, Venneri'81

Logical characterization of Strong Normalization

CDV: Intersection Type System

Types:

Derivation Rules:

$$\begin{array}{c} x_{1}:\sigma_{1},\ldots,x_{n}:\sigma_{n}\vdash_{\wedge}x_{i}:\sigma_{i} \quad (ax) \\ \hline \Gamma\vdash_{\wedge}M:\tau \to \sigma \quad \Gamma\vdash_{\wedge}N:\tau \\ \hline \Gamma\vdash_{\wedge}MN:\sigma \quad (\rightarrow_{I}) \quad \qquad \frac{\Gamma,x:\sigma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}\lambda x.M:\sigma \to \tau} (\rightarrow_{E}) \\ \hline \frac{\Gamma\vdash_{\wedge}M:\sigma \quad \Gamma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}M:\sigma \wedge \tau} (\wedge_{I}) \quad \qquad \frac{\Gamma\vdash_{\wedge}M:\sigma \quad \sigma \leq \tau}{\Gamma\vdash_{\wedge}M:\tau} (\wedge_{E}) \end{array}$$

Subtyping:

$$\sigma \leq \sigma \text{ (refl)} \qquad \sigma \wedge \tau \leq \sigma \text{ (incl}_L) \qquad \sigma \wedge \tau \leq \tau \text{ (incl}_R) \\ (\sigma \to \tau) \wedge (\sigma \to \tau') \leq \sigma \to (\tau \wedge \tau') \quad (\to_{\wedge}) \\ \frac{\sigma \leq \gamma \quad \gamma \leq \tau}{\sigma \leq \tau} \text{ (trans)} \qquad \frac{\sigma \leq \tau \quad \sigma \leq \tau'}{\sigma \leq \tau \wedge \tau'} \text{ (glb)} \qquad \frac{\sigma' \leq \sigma \quad \tau \leq \tau'}{\sigma \to \tau \leq \sigma' \to \tau'} \text{ (} \to)$$

CDV: Intersection Type System

Types:

Derivation Rules:

$$\begin{array}{c} x_{1}:\sigma_{1},\ldots,x_{n}:\sigma_{n}\vdash_{\wedge}x_{i}:\sigma_{i} \quad (ax) \\ \hline \Gamma\vdash_{\wedge}M:\tau \rightarrow \sigma \quad \Gamma\vdash_{\wedge}N:\tau \\ \hline \Gamma\vdash_{\wedge}MN:\sigma \quad (\rightarrow_{I}) \quad \qquad \frac{\Gamma,x:\sigma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}\lambda x.M:\sigma \rightarrow \tau} \quad (\rightarrow_{E}) \\ \hline \frac{\Gamma\vdash_{\wedge}M:\sigma \quad \Gamma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}M:\sigma \wedge \tau} \quad (\wedge_{I}) \quad \qquad \frac{\Gamma\vdash_{\wedge}M:\sigma \quad \sigma \leq \tau}{\Gamma\vdash_{\wedge}M:\tau} \quad (\wedge_{E}) \end{array}$$

Subtyping:

$$\sigma \leq \sigma \text{ (refl)} \qquad \sigma \wedge \tau \leq \sigma \text{ (incl}_{L}) \qquad \sigma \wedge \tau \leq \tau \text{ (incl}_{R}) \\ (\sigma \to \tau) \wedge (\sigma \to \tau') \leq \sigma \to (\tau \wedge \tau') \quad (\to_{\wedge}) \\ \frac{\sigma \leq \gamma \quad \gamma \leq \tau}{\sigma \leq \tau} \text{ (trans)} \qquad \frac{\sigma \leq \tau \quad \sigma \leq \tau'}{\sigma \leq \tau \wedge \tau'} \text{ (glb)} \qquad \frac{\sigma' \leq \sigma \quad \tau \leq \tau'}{\sigma \to \tau \leq \sigma' \to \tau'} \text{ (}\to)$$

CDV: Intersection Type System

Types:

Derivation Rules:

$$\begin{array}{c} x_{1}:\sigma_{1},\ldots,x_{n}:\sigma_{n}\vdash_{\wedge}x_{i}:\sigma_{i} \quad (ax) \\ \hline \Gamma\vdash_{\wedge}M:\tau \rightarrow \sigma \quad \Gamma\vdash_{\wedge}N:\tau \\ \hline \Gamma\vdash_{\wedge}MN:\sigma \quad (\rightarrow_{I}) \quad \qquad \frac{\Gamma,x:\sigma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}\lambda x.M:\sigma \rightarrow \tau} \quad (\rightarrow_{E}) \\ \hline \frac{\Gamma\vdash_{\wedge}M:\sigma \quad \Gamma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}M:\sigma \wedge \tau} \quad (\wedge_{I}) \quad \qquad \frac{\Gamma\vdash_{\wedge}M:\sigma \quad \sigma \leq \tau}{\Gamma\vdash_{\wedge}M:\tau} \quad (\wedge_{E}) \end{array}$$

Subtyping:

$$\sigma \leq \sigma \text{ (refl)} \qquad \sigma \wedge \tau \leq \sigma \text{ (incl}_{L}) \qquad \sigma \wedge \tau \leq \tau \text{ (incl}_{R}) \\ (\sigma \to \tau) \wedge (\sigma \to \tau') \leq \sigma \to (\tau \wedge \tau') \quad (\to_{\wedge}) \\ \frac{\sigma \leq \gamma \quad \gamma \leq \tau}{\sigma \leq \tau} \text{ (trans)} \qquad \frac{\sigma \leq \tau \quad \sigma \leq \tau'}{\sigma \leq \tau \wedge \tau'} \text{ (glb)} \qquad \frac{\sigma' \leq \sigma \quad \tau \leq \tau'}{\sigma \to \tau \leq \sigma' \to \tau'} \text{ (} \to)$$

CDV: Intersection Type System

A λ -term *M* is typable in CDV if $\exists \Gamma, \sigma$ such that $\Gamma \vdash_{\wedge} M : \sigma$.

Properties

• *M* is typable in CDV \iff *M* is strongly normalizable

$$\lambda x^{\alpha \wedge (\alpha \to \beta)} . x^{\alpha \to \beta} x^{\alpha}$$

Type Inhabitation

An intersection type σ is inhabited if $\exists M$ closed such that $\vdash_{\wedge} M : \sigma$.

IHP: "Given an intersection type σ , is σ inhabited?"

IHP: "Given an intersection type σ , is σ inhabited?"

Theorem [Urzyczyn'99]

• Urzyczyn: IHP is undecidable.

IHP: "Given an intersection type σ , is σ inhabited?"

Theorem [Urzyczyn'99]

• Urzyczyn: IHP is undecidable.

Urzyczyn's Proof

	EQA	Emptiness Problem for Queue Automata;
\leq_T	ETW	Emptiness Problem for Typewriter Automata;
\leq_T	WTG	Problem of winning a Tree Game (game types)
\leq_T	IHP	Inhabitation Problem for CDV

IHP: "Given an intersection type σ , is σ inhabited?"

Theorem [Urzyczyn'99]

• Urzyczyn: IHP is undecidable.

Urzyczyn's Proof

	EQA	Emptiness Problem for Queue Automata;
\leq_T	ETW	Emptiness Problem for Typewriter Automata;
\leq_{T}	WTG	Problem of winning a Tree Game (game types)
\leq_T	IHP	Inhabitation Problem for CDV

Refinement of IHP:

IHP_n: "Given an intersection type σ with at most *n* atoms, is σ inhabited?"

IHP: Inhabitation Problem for Game Types

Game Types: $\mathcal{G} = \mathbb{A} \cup \mathcal{B} \cup \mathcal{C}$

$$\begin{array}{rcl} \mathcal{A} & = & \mathbb{A}^{\wedge} \\ \mathcal{B} & = & (\mathcal{A} \to \mathcal{A})^{\wedge} \\ \mathcal{C} & = & (\mathcal{D} \to \mathcal{A})^{\wedge} \text{ for } \mathcal{D} = (\mathcal{B} \to \mathbb{A}) \wedge (\mathcal{B} \to \mathbb{A}) \end{array}$$

where
$$X^{\wedge} = \{\sigma_1 \wedge \cdots \wedge \sigma_k : k > 0, \sigma_i \in X\}$$
 and $(X \to Y) = \{\sigma \to \tau : \sigma \in X, \tau \in Y\}$

Theorem [Urzyczyn'99]

- Urzyczyn: IHP is undecidable.
- Urzyczyn: IHP is already undecidable for game types.

DP $\Lambda_{\!\rightarrow}$ vs IHP $\Lambda_{\!\wedge}$

Apparently, two unrelated problems:

- Simply typed λ -calculus
- Denotational models
- Definability

- system CDV
- Intersection types
- Inhabitation

Salvati's "external" viewpoint brought an unexpected link:

 $\mathsf{DP}\simeq_{\mathcal{T}}\mathsf{IHP}$

Ingredients:

- Uniform Intersection Types
- Monotone Finite Models
- Logical Relations

DP $\Lambda_{\!\rightarrow}$ vs IHP $\Lambda_{\!\wedge}$

Apparently, two unrelated problems:

Definability Problem	Inhabitation Problem
----------------------	----------------------

- Simply typed λ -calculus
- Denotational models
- Definability

- system CDV
- Intersection types
- Inhabitation
- Salvati's "external" viewpoint brought an unexpected link:

 $\mathsf{DP} \simeq_{\mathcal{T}} \mathsf{IHP}$

Ingredients:

- Uniform Intersection Types
- Monotone Finite Models
- Logical Relations

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma,\tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Intersection Types Uniform with A

• $\mathcal{U}(o) = \mathbb{A}^{\wedge}$

•
$$\mathcal{U}(B \rightarrow C) = (\mathcal{U}(B) \rightarrow \mathcal{U}(C))^{\wedge}$$

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Intersection Types Uniform with A

• $\mathcal{U}(o) = \mathbb{A}^{\wedge}$

•
$$\mathcal{U}(B \rightarrow C) = (\mathcal{U}(B) \rightarrow \mathcal{U}(C))^{\wedge}$$

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Intersection Types Uniform with A

- $\mathcal{U}(o) = \mathbb{A}^{\wedge}$
- $\mathcal{U}(B \to C) = (\mathcal{U}(B) \to \mathcal{U}(C))^{\wedge}$

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Intersection Types Uniform with A

- $\mathcal{U}(o) = \mathbb{A}^{\wedge}$
- $\mathcal{U}(B \to C) = (\mathcal{U}(B) \to \mathcal{U}(C))^{\wedge}$

Remark Game types are uniform:

•
$$\mathcal{A} = \mathbb{A}^{\wedge} \subseteq \mathcal{U}(o)$$

• $\mathcal{B} = (\mathcal{A} \to \mathcal{A})^{\wedge} \subseteq \mathcal{U}(o \to o),$
• $\mathcal{C} = (\mathcal{D} \to \mathcal{A})^{\wedge}$
 $\subseteq \mathcal{U}(((o \to o) \to o) \to o)$

Uniform Intersection Types

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \land \tau$$

"follow the structure" of simple types.

Intersection Types Uniform with A

•
$$\mathcal{U}(o) = \mathbb{A}^{\wedge}$$

• $\mathcal{U}(B \to C) = (\mathcal{U}(B) \to \mathcal{U}(C))^{\wedge}$

Remark Game types are uniform:

•
$$\mathcal{A} = \mathbb{A}^{\wedge} \subseteq \mathcal{U}(o)$$

• $\mathcal{B} = (\mathcal{A} \to \mathcal{A})^{\wedge} \subseteq \mathcal{U}(o \to o),$
• $\mathcal{C} = (\mathcal{D} \to \mathcal{A})^{\wedge}$
 $\subseteq \mathcal{U}(((o \to o) \to o) \to o)$

Corollary

IHP is undecidable also for Uniform Intersection Types.

 $\mathbf{C}\mathbf{D}\mathbf{V}^{\omega}$

$$\mathbb{T}^{\omega}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau \mid \omega$$

Intersection Types with ω Uniform with A:

• $\mathcal{U}^{\omega}(\mathbf{0}) = (\mathbb{A} \cup \{\omega\})^{\wedge}$

•
$$\mathcal{U}^{\omega}(B
ightarrow C) = (\mathcal{U}^{\omega}(B)
ightarrow \mathcal{U}^{\omega}(C))^{\wedge}$$

Define

 $\omega_{o} = \omega \qquad \omega_{A \to B} = \omega_{A} \to \omega_{B}$

We add to the subtyping relation of CDV:

$$\frac{\sigma \in \mathcal{U}^{\omega}(A)}{\sigma \leq \omega_A} \ (\leq_A)$$

Type judgments of CDV^{ω}: $\Gamma \vdash^{\omega}_{\wedge} M : \sigma$.

${\rm CDV}^\omega$ is NOT the usual Intersection Type System with ω

 $\mathbf{C}\mathbf{D}\mathbf{V}^{\omega}$

$$\mathbb{T}^{\omega}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau \mid \omega$$

Intersection Types with ω Uniform with A:

•
$$\mathcal{U}^{\omega}(o) = (\mathbb{A} \cup \{\omega\})^{\wedge}$$

• $\mathcal{U}^{\omega}(B \to C) = (\mathcal{U}^{\omega}(B) \to \mathcal{U}^{\omega}(C))^{\wedge}$

Define

 $\omega_o = \omega \qquad \omega_{A \to B} = \omega_A \to \omega_B$

We add to the subtyping relation of CDV:

$$\frac{\sigma \in \mathcal{U}^{\omega}(A)}{\sigma \leq \omega_A} \ (\leq_A)$$

Type judgments of CDV $^{\omega}$: $\Gamma \vdash^{\omega}_{\wedge} M : \sigma$

${\rm CDV}^\omega$ is NOT the usual Intersection Type System with ω

 $\mathbf{C}\mathbf{D}\mathbf{V}^{\omega}$

$$\mathbb{T}^{\omega}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau \mid \omega$$

Intersection Types with ω Uniform with A:

• $\mathcal{U}^{\omega}(o) = (\mathbb{A} \cup \{\omega\})^{\wedge}$ • $\mathcal{U}^{\omega}(B \to C) = (\mathcal{U}^{\omega}(B) \to \mathcal{U}^{\omega}(C))^{\wedge}$

Define

$$\omega_{\rm O} = \omega \qquad \omega_{{\rm A} \rightarrow {\rm B}} = \omega_{\rm A} \rightarrow \omega_{\rm B}$$

We add to the subtyping relation of CDV:

$$\frac{\sigma \in \mathcal{U}^{\omega}(A)}{\sigma \leq \omega_{A}} \ (\leq_{A})$$

Type judgments of CDV^{ω} : $\Gamma \vdash^{\omega}_{\wedge} M : \sigma$.

${\sf CDV}^\omega$ is NOT the usual Intersection Type System with ω

 $\mathbf{C}\mathbf{D}\mathbf{V}^{\omega}$

$$\mathbb{T}^{\omega}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau \mid \omega$$

Intersection Types with ω Uniform with A:

• $\mathcal{U}^{\omega}(o) = (\mathbb{A} \cup \{\omega\})^{\wedge}$ • $\mathcal{U}^{\omega}(B \to C) = (\mathcal{U}^{\omega}(B) \to \mathcal{U}^{\omega}(C))^{\wedge}$

Define

$$\omega_{o} = \omega \qquad \omega_{A \to B} = \omega_{A} \to \omega_{B}$$

We add to the subtyping relation of CDV:

$$\frac{\sigma \in \mathcal{U}^{\omega}(\boldsymbol{A})}{\sigma \leq \omega_{\boldsymbol{A}}} \ (\leq_{\boldsymbol{A}})$$

Type judgments of CDV^{ω} : $\Gamma \vdash^{\omega}_{\wedge} M : \sigma$.

CDV^ω is NOT the usual Intersection Type System with ω

 $\mathbf{C}\mathbf{D}\mathbf{V}^{\omega}$

$$\mathbb{T}^{\omega}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau \mid \omega$$

Intersection Types with ω Uniform with A:

• $\mathcal{U}^{\omega}(o) = (\mathbb{A} \cup \{\omega\})^{\wedge}$ • $\mathcal{U}^{\omega}(B \to C) = (\mathcal{U}^{\omega}(B) \to \mathcal{U}^{\omega}(C))^{\wedge}$

Define

$$\omega_{\rm O} = \omega \qquad \omega_{\rm A \rightarrow B} = \omega_{\rm A} \rightarrow \omega_{\rm B}$$

We add to the subtyping relation of CDV:

$$\frac{\sigma \in \mathcal{U}^{\omega}(\boldsymbol{A})}{\sigma \leq \omega_{\boldsymbol{A}}} \ (\leq_{\boldsymbol{A}})$$

Type judgments of CDV^{ω} : $\Gamma \vdash^{\omega}_{\wedge} M : \sigma$.

CDV and CDV $^{\omega}$ are NOT restricted to uniform types

• Let $\sigma \in \mathcal{U}^{\omega}(A)$ and $\tau \in \mathcal{U}^{\omega}(A')$, then:

 $\sigma \leq \tau \quad \Rightarrow \quad \mathbf{A} = \mathbf{A}'.$

3 Given $\sigma \in \mathcal{U}^{\omega}(A)$ and *M* normal and closed:

 $\vdash^{\omega}_{\wedge} M : \sigma \quad \Rightarrow \quad \vdash M : A$

■ Given *ω*-free $\sigma \in U(A)$ and *M* normal and closed: $\vdash_{\land} M : \sigma \iff \vdash_{\land}^{\omega} M : \sigma$

Remark: Only true for normal terms

$$\frac{\vdash^{\omega}_{\wedge} (\lambda x y. y) : \gamma \to \alpha \to \alpha \quad \vdash^{\omega}_{\wedge} (\lambda z. zz) : \gamma}{\vdash^{\omega}_{\wedge} (\lambda x y. y) (\lambda z. zz) : \alpha \to \alpha}$$

• Let $\sigma \in \mathcal{U}^{\omega}(A)$ and $\tau \in \mathcal{U}^{\omega}(A')$, then:

 $\sigma \leq \tau \quad \Rightarrow \quad \mathbf{A} = \mathbf{A}'.$

2 Given $\sigma \in \mathcal{U}^{\omega}(A)$ and *M* normal and closed:

 $\vdash^{\boldsymbol{\omega}}_{\wedge} \boldsymbol{M} : \boldsymbol{\sigma} \quad \Rightarrow \quad \vdash \boldsymbol{M} : \boldsymbol{A}$

■ Given *ω*-free $\sigma \in U(A)$ and *M* normal and closed: $\vdash_{\land} M : \sigma \iff \vdash_{\land}^{\omega} M : \sigma$

Remark: Only true for normal terms

$$\frac{\vdash^{\omega}_{\wedge} (\lambda xy.y) : \gamma \to \alpha \to \alpha \quad \vdash^{\omega}_{\wedge} (\lambda z.zz) : \gamma}{\vdash^{\omega}_{\wedge} (\lambda xy.y)(\lambda z.zz) : \alpha \to \alpha}$$

• Let $\sigma \in \mathcal{U}^{\omega}(A)$ and $\tau \in \mathcal{U}^{\omega}(A')$, then:

 $\sigma \leq \tau \quad \Rightarrow \quad \mathbf{A} = \mathbf{A}'.$

2 Given $\sigma \in \mathcal{U}^{\omega}(A)$ and *M* normal and closed:

 $\vdash^{\boldsymbol{\omega}}_{\wedge} \boldsymbol{M} : \boldsymbol{\sigma} \quad \Rightarrow \quad \vdash \boldsymbol{M} : \boldsymbol{A}$

Siven ω -free $\sigma \in \mathcal{U}(A)$ and *M* normal and closed:

$$\vdash_{\wedge} \boldsymbol{M} : \sigma \iff \vdash_{\wedge}^{\boldsymbol{\omega}} \boldsymbol{M} : \sigma$$

Remark: Only true for normal terms

$$\frac{\vdash^{\omega}_{\wedge} (\lambda xy.y) : \gamma \to \alpha \to \alpha \quad \vdash^{\omega}_{\wedge} (\lambda z.zz) : \gamma}{\vdash^{\omega}_{\wedge} (\lambda xy.y)(\lambda z.zz) : \alpha \to \alpha}$$

• Let $\sigma \in \mathcal{U}^{\omega}(A)$ and $\tau \in \mathcal{U}^{\omega}(A')$, then:

 $\sigma \leq \tau \quad \Rightarrow \quad \mathbf{A} = \mathbf{A}'.$

2 Given $\sigma \in \mathcal{U}^{\omega}(A)$ and *M* normal and closed:

 $\vdash^{\boldsymbol{\omega}}_{\wedge} \boldsymbol{M} : \boldsymbol{\sigma} \quad \Rightarrow \quad \vdash \boldsymbol{M} : \boldsymbol{A}$

Siven ω -free $\sigma \in \mathcal{U}(A)$ and *M* normal and closed:

$$\vdash_{\wedge} \boldsymbol{M} : \sigma \iff \vdash_{\wedge}^{\boldsymbol{\omega}} \boldsymbol{M} : \sigma$$

Remark: Only true for normal terms

$$\frac{\vdash^{\omega}_{\wedge} (\lambda x y. y) : \gamma \to \alpha \to \alpha \quad \vdash^{\omega}_{\wedge} (\lambda z. zz) : \gamma}{\vdash^{\omega}_{\wedge} (\lambda x y. y) (\lambda z. zz) : \alpha \to \alpha}$$

Inhabitation Reduces to Definability

Inhabitation Reduces to Definability

Problem: the model \mathcal{F} is finite

Inhabitation Reduces to Definability

Problem: the model \mathcal{F} is finite Let us consider a finite set $X \subset \mathbb{A}$.

Inhabitation Reduces to Definability

Problem: the model \mathcal{F} is finite and very hard to study!

Let us consider a "simpler" model

The Monotone Model of $\Lambda_{\!\rightarrow}$

The monotone model over $(\mathcal{P}(X), \subseteq)$ is

 $\mathcal{D} = \{(\mathcal{D}_A, \sqsubseteq_A)\}_{A \in \mathbb{T}^o}$

where

• $\mathcal{D}(o) = \mathcal{P}(X)$ and $f \sqsubseteq_o g$ iff $f \subseteq g$,

The Monotone Model of $\Lambda_{\!\rightarrow}$

The monotone model over $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D} = \{(\mathcal{D}_A, \sqsubseteq_A)\}_{A \in \mathbb{T}^o}$$

where

• $\mathcal{D}(o) = \mathcal{P}(X)$ and $f \sqsubseteq_o g$ iff $f \subseteq g$,

The Monotone Model of $\Lambda_{\!\rightarrow}$

The monotone model over $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D} = \{(\mathcal{D}_{\mathcal{A}}, \sqsubseteq_{\mathcal{A}})\}_{\mathcal{A} \in \mathbb{T}^o}$$

where

- $\mathcal{D}(o) = \mathcal{P}(X)$ and $f \sqsubseteq_o g$ iff $f \subseteq g$,
- $\mathcal{D}_{B \to C} = [\mathcal{D}_B \to_m \mathcal{D}_C]$ $\sqsubseteq_{B \to C} = \text{pointwise ordering.}$

$[\mathcal{D}_B o_m \mathcal{D}_C]$
:
$\mathcal{D}_{\mathcal{C}}$
÷
\mathcal{D}_{B}
÷
$\mathcal{P}(X) o_m \mathcal{P}(X)$
$\mathcal{P}(X)$

The Monotone Model of Λ_{\rightarrow}

The monotone model over $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D} = \{(\mathcal{D}_{\mathcal{A}}, \sqsubseteq_{\mathcal{A}})\}_{\mathcal{A} \in \mathbb{T}^o}$$

where

•
$$\mathcal{D}(o) = \mathcal{P}(X)$$
 and $f \sqsubseteq_o g$ iff $f \subseteq g$,

•
$$\mathcal{D}_{B \to C} = [\mathcal{D}_B \to_m \mathcal{D}_C]$$

 $\sqsubseteq_{B \to C} = \text{pointwise ordering.}$

Step Functions

Let
$$f \in \mathcal{D}_A, g \in \mathcal{D}_B$$
, define $(f \mapsto g) \in \mathcal{D}_{A \to B}$:

$$(f\mapsto g)(h)=\left\{egin{array}{cc} g & ext{if } f\sqsubseteq_A h, \ ot_B & ext{otherwise.} \end{array}
ight.$$

$[\mathcal{D}_B o_m \mathcal{D}_C]$
÷
$\mathcal{D}_{\mathcal{C}}$
÷
\mathcal{D}_{B}
÷
$\mathcal{P}(X) o_m \mathcal{P}(X)$
$\mathcal{P}(X)$

The Monotone Model of Λ_{\rightarrow}

The monotone model over $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D} = \{(\mathcal{D}_{\mathcal{A}}, \sqsubseteq_{\mathcal{A}})\}_{\mathcal{A} \in \mathbb{T}^o}$$

where

•
$$\mathcal{D}(o) = \mathcal{P}(X)$$
 and $f \sqsubseteq_o g$ iff $f \subseteq g$,

•
$$\mathcal{D}_{B \to C} = [\mathcal{D}_B \to_m \mathcal{D}_C]$$

 $\sqsubseteq_{B \to C} = \text{pointwise ordering.}$

Step Functions

Let
$$f \in \mathcal{D}_A, g \in \mathcal{D}_B$$
, define $(f \mapsto g) \in \mathcal{D}_{A \to B}$:

$$(f\mapsto g)(h)=\left\{egin{array}{cc} g & ext{if } f\sqsubseteq_A h, \ ot_B & ext{otherwise.} \end{array}
ight.$$

$[\mathcal{D}_B o_m \mathcal{D}_C]$
÷
$\mathcal{D}_{\mathcal{C}}$
÷
\mathcal{D}_{B}
÷
$\mathcal{P}(X) \to_m \mathcal{P}(X)$
$\mathcal{P}(X)$

Step functions are generators

For every
$$f \in \mathcal{D}_{A \to B}$$
 we have $f = \sqcup_{g \in \mathcal{D}_A} (g \mapsto f(g))$.

 $(\cdot)^{ullet}:\mathcal{U}^{\omega}(\mathcal{A})
ightarrow\mathcal{D}_{\mathcal{A}}$

 $(\cdot)^{ullet}:\mathcal{U}^{\omega}(\mathcal{A})
ightarrow\mathcal{D}_{\mathcal{A}}$

$$\mathcal{U}^{\omega}(o)$$
 \mathcal{D}_{o}
• $\mathcal{U}^{\omega}(o) = X \cup \{\omega\}$ • $\mathcal{D}_{o} = \mathcal{P}(X)$

$$(\cdot)^{\bullet}: \mathcal{U}^{\omega}(\mathcal{A}) \to \mathcal{D}_{\mathcal{A}}$$
$$\mathcal{A} = 0 \qquad \qquad \alpha^{\bullet} = \{\alpha\} \qquad (\sigma \land \tau)^{\bullet} = \sigma^{\bullet} \cup \tau^{\bullet}$$

$$\mathcal{U}^{\omega}(o$$

•
$$\mathcal{U}^{\omega}(o) = X \cup \{\omega\}$$

•
$$\alpha_1 \wedge \cdots \wedge \alpha_k$$

•
$$\alpha \wedge \beta \leq \alpha$$

 \mathcal{D}_{o}

$$(\cdot)^{\bullet} : \mathcal{U}^{\omega}(A) \to \mathcal{D}_{A}$$

$$A = 0 \qquad \alpha^{\bullet} = \{\alpha\} \qquad (\sigma \land \tau)^{\bullet} = \sigma^{\bullet} \cup \tau^{\bullet}$$

$$A = B \to C \quad (\sigma \to \tau)^{\bullet} = \sigma^{\bullet} \mapsto \tau^{\bullet} \quad (\sigma \land \tau)^{\bullet} = \sigma^{\bullet} \sqcup \tau^{\bullet}$$

$$\mathcal{U}^{\omega}(o) \qquad \qquad \mathcal{D}_{o}$$

$$\bullet \mathcal{U}^{\omega}(o) = X \cup \{\omega\} \qquad \bullet \mathcal{D}_{o} = \mathcal{P}(X)$$

$$\bullet \alpha_{1} \land \cdots \land \alpha_{k} \qquad \bullet \{\alpha_{1}, \dots, \alpha_{k}\}$$

$$\bullet \alpha \land \beta \leq \alpha \qquad \bullet \{\alpha\} \subseteq \{\alpha \land \beta\}$$

$$\bullet \omega \text{ top} \qquad \bullet \emptyset \text{ bottom}$$

$$(\cdot)^{\bullet} : \mathcal{U}^{\omega}(A) \to \mathcal{D}_{A}$$

$$A = 0 \qquad \alpha^{\bullet} = \{\alpha\} \qquad (\sigma \land \tau)^{\bullet} = \sigma^{\bullet} \cup \tau^{\bullet}$$

$$A = B \to C \quad (\sigma \to \tau)^{\bullet} = \sigma^{\bullet} \mapsto \tau^{\bullet} \quad (\sigma \land \tau)^{\bullet} = \sigma^{\bullet} \sqcup \tau^{\bullet}$$

$$\mathcal{U}^{\omega}(o) \qquad \qquad \mathcal{D}_{o}$$

$$\bullet \mathcal{U}^{\omega}(o) = X \cup \{\omega\} \qquad \bullet \mathcal{D}_{o} = \mathcal{P}(X)$$

$$\bullet \alpha_{1} \land \cdots \land \alpha_{k} \qquad \bullet \{\alpha_{1}, \dots, \alpha_{k}\}$$

$$\bullet \alpha \land \beta \leq \alpha \qquad \bullet \{\alpha\} \subseteq \{\alpha \land \beta\}$$

$$\bullet \emptyset \text{ bottom}$$

Proposition

- For all $A, \sigma, \tau \in \mathcal{U}^{\omega}(A)$, we have $\sigma \leq \tau \iff \tau^{\bullet} \sqsubseteq \sigma^{\bullet}$.
- The map (·)[●] is an order-reversing bijection (U^ω(A)/≃) ≅ D_A

 $(\cdot)^{ullet}:\mathcal{U}^{\omega}(\mathcal{A})
ightarrow\mathcal{D}_{\mathcal{A}}$

 $A = 0 \qquad \qquad \alpha^{\bullet} = \{\alpha\} \qquad (\sigma \wedge \tau)^{\bullet} = \sigma^{\bullet} \cup \tau^{\bullet}$

$$\mathbf{A} = \mathbf{B} \to \mathbf{C} \quad (\sigma \to \tau)^{\bullet} = \sigma^{\bullet} \mapsto \tau^{\bullet} \quad (\sigma \land \tau)^{\bullet} = \sigma^{\bullet} \sqcup \tau^{\bullet}$$

Proposition

- For all $A, \sigma, \tau \in \mathcal{U}^{\omega}(A)$, we have $\sigma \leq \tau \iff \tau^{\bullet} \sqsubseteq \sigma^{\bullet}$.
- The map (·)[•] is an order-reversing bijection (U^ω(A)/≃) ≅ D_A

Theorem

Let *M* be normal, closed and such that $\vdash M : A$. Then for all $\sigma \in \mathcal{U}^{\omega}(A)$:

$$\vdash^{\omega}_{\wedge} \pmb{M} : \sigma \iff \sigma^{\bullet} \sqsubseteq \llbracket \pmb{M} \rrbracket^{\mathcal{D}}$$

We need a link between \mathcal{D} and $\mathcal{F}_{\mathcal{P}(X)}$:

We need a link between \mathcal{D} and $\mathcal{F}_{\mathcal{P}(X)}$: Logical Relations!

- $\mathcal{R}_o = Id$,
- $f \mathcal{R}_{A \to B} g \iff \forall h \in \mathcal{D}_A, h' \in \mathcal{F}_A [h \mathcal{R}_A h' \Rightarrow f(h) \mathcal{R}_B g(h')].$

We need a link between \mathcal{D} and $\mathcal{F}_{\mathcal{P}(X)}$: Logical Relations!

• Fundamental Lemma: For all $M \in \Lambda_{\rightarrow}$ closed we have $\llbracket M \rrbracket^{\mathcal{D}} \mathcal{R} \llbracket M \rrbracket^{\mathcal{F}}$
Ready to go: \vdash_{\wedge} ? : $\sigma \in \mathcal{U}$

Ready to go: \vdash_{\wedge} ? : $\sigma \in \mathcal{U}$

Ready to go: \vdash_{\wedge} ? : $\sigma \in \mathcal{U}$

 $[\]vdash_{\wedge} M : \sigma$

Ready to go: \vdash_{\wedge} ? : $\sigma \in \mathcal{U}$

 $\vdash_{\wedge} \boldsymbol{M} : \sigma \iff \vdash_{\wedge}^{\omega} \boldsymbol{M} : \sigma$

Ready to go: \vdash_{\wedge} ? : $\sigma \in \mathcal{U}$

 $\vdash_{\wedge} \boldsymbol{M} : \boldsymbol{\sigma} \quad \Longleftrightarrow \quad \vdash_{\wedge}^{\omega} \boldsymbol{M} : \boldsymbol{\sigma} \quad \Longleftrightarrow \quad \llbracket \boldsymbol{M} \rrbracket^{\mathcal{D}} \in \boldsymbol{\sigma}^{\bullet} \uparrow$

Ready to go: \vdash_{\wedge} ? : $\sigma \in \mathcal{U}$

 $\vdash_{\wedge} M : \sigma \iff \vdash_{\wedge}^{\omega} M : \sigma \iff \llbracket M \rrbracket^{\mathcal{D}} \in \sigma^{\bullet\uparrow} \iff \llbracket M \rrbracket^{\mathcal{F}} \in \mathcal{R}(\sigma^{\bullet\uparrow})$

If λ -definability is decidable, then IHP for (Uniform) Intersection Types is decidable $\frac{1}{2}$ by Urzyczyn

Giulio Manzonetto (LIPN)

Ready to go: \vdash_{\wedge} ? : $\sigma \in \mathcal{U}$

 $\vdash_{\wedge} M : \sigma \iff \vdash_{\wedge}^{\omega} M : \sigma \iff \llbracket M \rrbracket^{\mathcal{D}} \in \sigma^{\bullet} \uparrow \iff \llbracket M \rrbracket^{\mathcal{F}} \in \mathcal{R}(\sigma^{\bullet} \uparrow)$

Inhabitation Problem for CDV \leq_T Definability Problem

Giulio Manzonetto (LIPN)

Loader and Urzyczyn are Logically Related

Remark

- \mathcal{F}_X is over X
- \mathcal{D} is over $\mathcal{P}(X)$

Logical Relations

• $\mathcal{J}_o = \{(f, F) \mid f \in F\}$, auxiliary relation $\mathcal{I}_o = \{(f, \{f\}) \mid f \in X\}$

Logical Relations

- $\mathcal{J}_o = \{(f, F) \mid f \in F\}$, auxiliary relation $\mathcal{I}_o = \{(f, \{f\}) \mid f \in X\}$
- $\mathcal{J} =$ logical relation induced by \mathcal{J}_o and $\mathcal{I} =$ logical relation induced by \mathcal{I}_o

Every $f \in \mathcal{F}_X(A)$ represents a $\xi_f \in \mathcal{U}_X(A)$

- A = 0, then $\xi_f = f$,
- $A = B \rightarrow C$, then $\xi_f = \bigwedge_{g \in \mathcal{F}_X(B)} \xi_g \rightarrow \xi_{fg}$.

Idea: the construction "factorize"!

Ready to go: $[?] = f \in \mathcal{F}_X$

Ready to go: $[?] = f \in \mathcal{F}_X$

Ready to go: $[?] = f \in \mathcal{F}_X$

$$[\![M]\!]^{\mathcal{F}}=f$$

Focus on *M* simply typable and normal.

Giulio Manzonetto (LIPN)

Ready to go: $[?] = f \in \mathcal{F}_X$

 $\llbracket M \rrbracket^{\mathcal{F}} = f \quad \Longleftrightarrow \quad f \mathcal{J} \llbracket M \rrbracket^{\mathcal{D}}$

Ready to go: $[?] = f \in \mathcal{F}_X$

 $\llbracket M \rrbracket^{\mathcal{F}} = f \quad \Longleftrightarrow \quad f \mathcal{J} \llbracket M \rrbracket^{\mathcal{D}} \quad \Longleftrightarrow \quad \llbracket M \rrbracket^{\mathcal{D}} \in (\xi_f)^{\bullet} \uparrow$

Ready to go: $[?] = f \in \mathcal{F}_X$

 $\llbracket M \rrbracket^{\mathcal{F}} = f \quad \Longleftrightarrow \quad f \mathcal{J} \llbracket M \rrbracket^{\mathcal{D}} \quad \Longleftrightarrow \quad \llbracket M \rrbracket^{\mathcal{D}} \in (\xi_f)^{\bullet} \uparrow \quad \Longleftrightarrow \quad \vdash_{\wedge} M : \xi_f$

If IHP_n for (Uniform) Intersection Types is decidable, then λ -definability in \mathcal{F}_n is decidable $\frac{1}{2}$ (for n > 1 by Joly)

Ready to go: $[?] = f \in \mathcal{F}_X$

 $\llbracket M \rrbracket^{\mathcal{F}} = f \iff f \mathcal{J} \llbracket M \rrbracket^{\mathcal{D}} \iff \llbracket M \rrbracket^{\mathcal{D}} \in (\xi_f)^{\bullet} \uparrow \iff \vdash_{\wedge} M : \xi_f$ $\mathsf{DP}_n \leq_{\mathcal{T}} \mathsf{IHP}_n$

Ready to go: $[?] = f \in \mathcal{F}_X$

 $\llbracket M \rrbracket^{\mathcal{F}} = f \quad \Longleftrightarrow \quad f \mathcal{J} \llbracket M \rrbracket^{\mathcal{D}} \quad \Longleftrightarrow \quad \llbracket M \rrbracket^{\mathcal{D}} \in (\xi_f)^{\bullet} \uparrow \quad \Longleftrightarrow \quad \vdash_{\wedge} M : \xi_f$

Definability Problem $\leq_{\mathcal{T}}$ Inhabitation Problem for CDV

Refinement of Urzyczyin's Result

 IHP_n is undecidable for n > 1.

Degrees of Reduction

For Uniform Types:

- Inhabitation Problem ≤_T Definability Problem (proper Turing-reduction)
- Definability Problem \leq_T Inhabitation Problem (many-one reduction)

There exists a total computable function ϕ such that $IHP = \phi^{-1}(DP)$.

Are DP and IHP many-one equivalent?

What about non-uniform types?

Giulio Manzonetto (LIPN)

Loader and Urzyczyn are Logically Related

Refinement of Urzyczyin's Result

 IHP_n is undecidable for n > 1.

Degrees of Reduction

For Uniform Types:

- Inhabitation Problem \leq_T Definability Problem (proper Turing-reduction)
- Definability Problem \leq_{T} Inhabitation Problem (many-one reduction) Logically simpler!

There exists a total computable function ϕ such that $IHP = \phi^{-1}(DP)$.

Are DP and IHP many-one equivalent?

What about non-uniform types?

Giulio Manzonetto (LIPN)

Loader and Urzyczyn are Logically Related

Refinement of Urzyczyin's Result

 IHP_n is undecidable for n > 1.

Degrees of Reduction

For Uniform Types:

- Inhabitation Problem \leq_T Definability Problem (proper Turing-reduction)
- Definability Problem \leq_m Inhabitation Problem (many-one reduction) Logically simpler!

There exists a total computable function ϕ such that $IHP = \phi^{-1}(DP)$.

Are DP and IHP many-one equivalent?

What about non-uniform types?

Refinement of Urzyczyin's Result

 IHP_n is undecidable for n > 1.

Degrees of Reduction

For Uniform Types:

- Inhabitation Problem ≤_T Definability Problem (proper Turing-reduction)
- Definability Problem \leq_m Inhabitation Problem (many-one reduction) Logically simpler!

There exists a total computable function ϕ such that $IHP = \phi^{-1}(DP)$.

Are DP and IHP many-one equivalent?

What about non-uniform types?

Giulio Manzonetto (LIPN)

Loader and Urzyczyn are Logically Related

Thanks for your attention!

