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Two Principles for Coinduction 

• Tarski’s Fixed Point Theorem 

+ Simple & Robust 

-  Inconvenient to use 

 

• Syntactically Guarded Coinduction 

-  Complex & Fragile due to “Guardedness Checking” 

+ More convenient to use 
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(Tarski’s Theorem) 
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   + Simple & Easy to Understand 

   - Have to Find a Consistent Set Up Front 
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Summary: 

Pros and Cons of Two Principles 

• Tarski’s Fixed Point Theorem 

+ Simple & Robust 

-  Inconvenient  to use 

 

• Syntactically Guarded Coinduction 

-  Complex & Fragile due to “Guardedness Checking” 

+ More Convenient to use 
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