The Power of Parameterization in Coinductive Proof

Chung-Kil Hur

Microsoft Research Cambridge

Georg Neis, Derek Dreyer, Viktor Vafeiadis MPI-SWS

> POPL 2013 23 Jan 2013

Two Principles for Coinduction

- Tarski's Fixed Point Theorem
 - + Simple & Robust
 - Inconvenient to use
- Syntactically Guarded Coinduction
 - Complex & Fragile due to "Guardedness Checking"
 - + More convenient to use

Our Contribution

- Parameterized Coinduction
 - + Simple & Robust
 - + Most convenient to use

Key Idea

Semantic Guardedness

- Parameterized Coinduction
 - + Simple & Robust
 - + Most convenient to use

Talk Outline

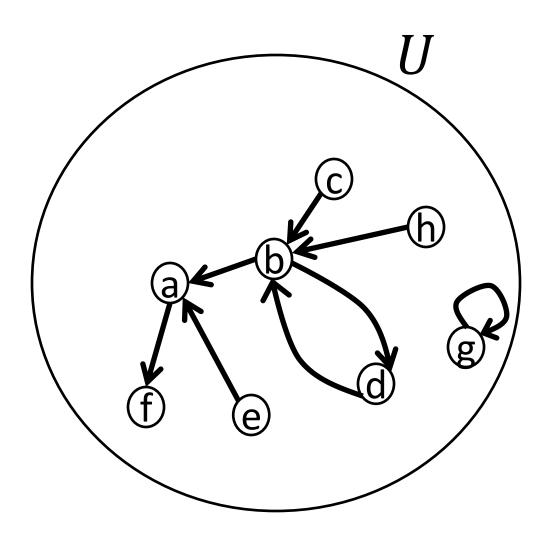
Previous Approaches

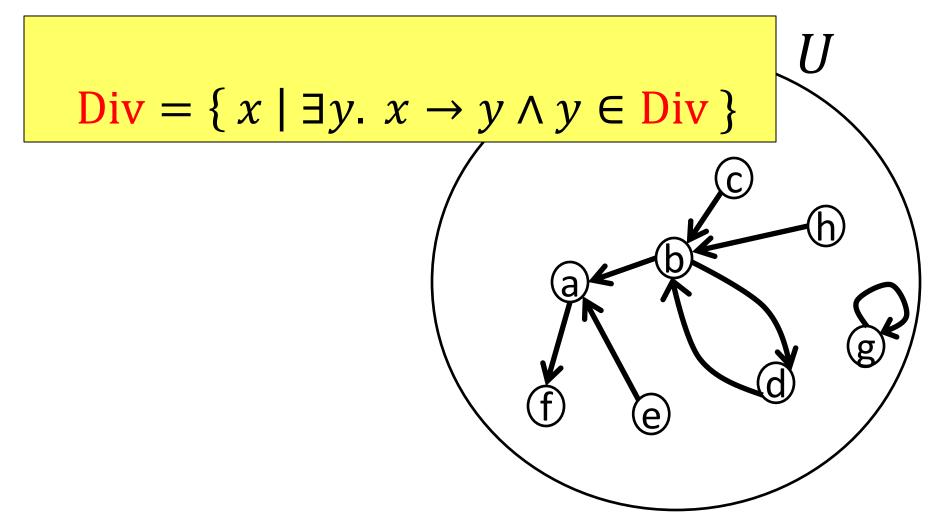
Tarski's Fixed Point Theorem

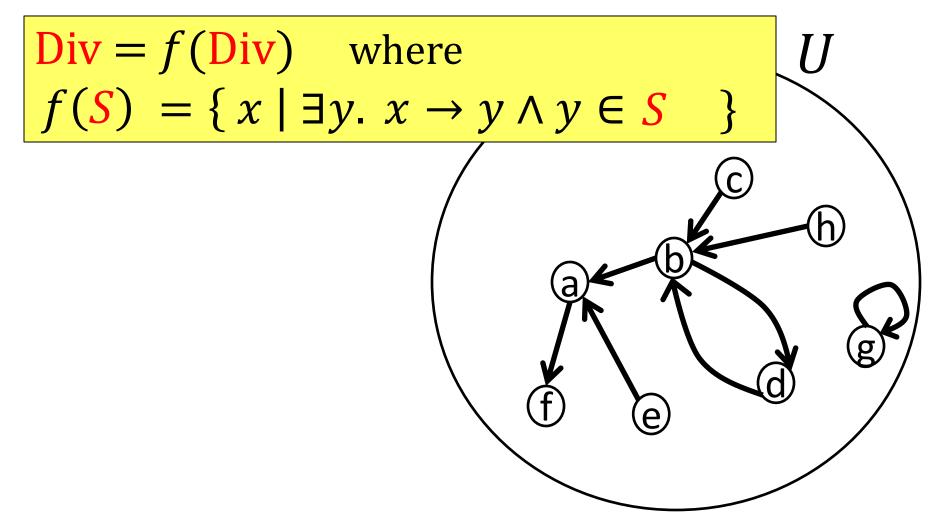
Syntactically Guarded Coinduction

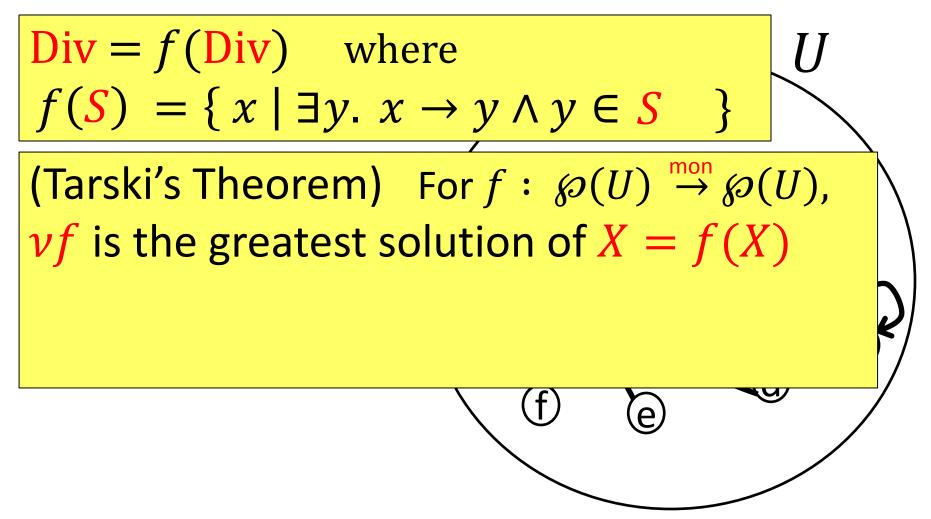
Our Approach

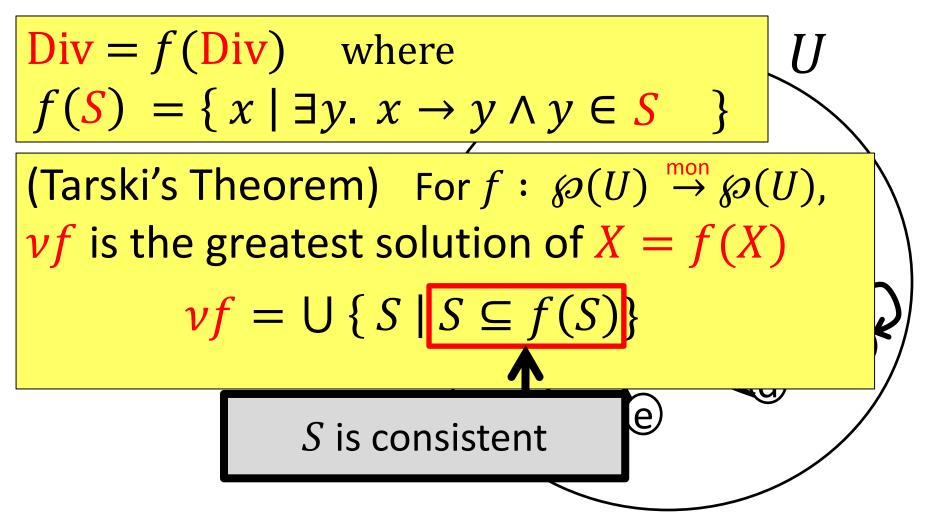
Parameterized Coinduction

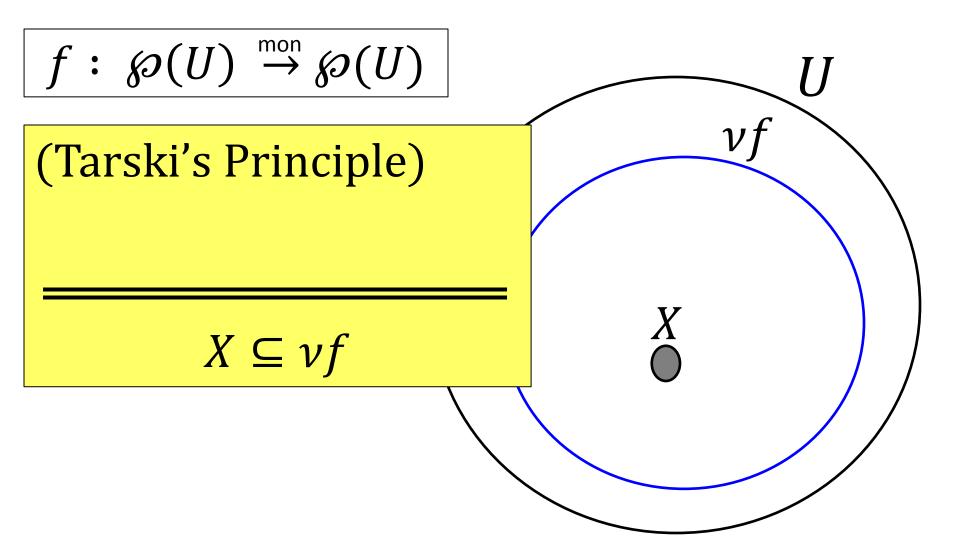


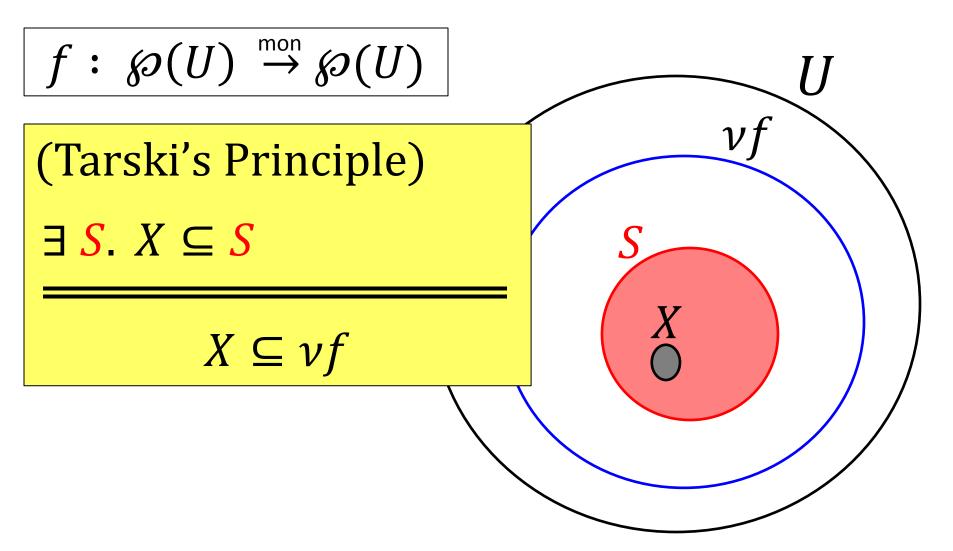




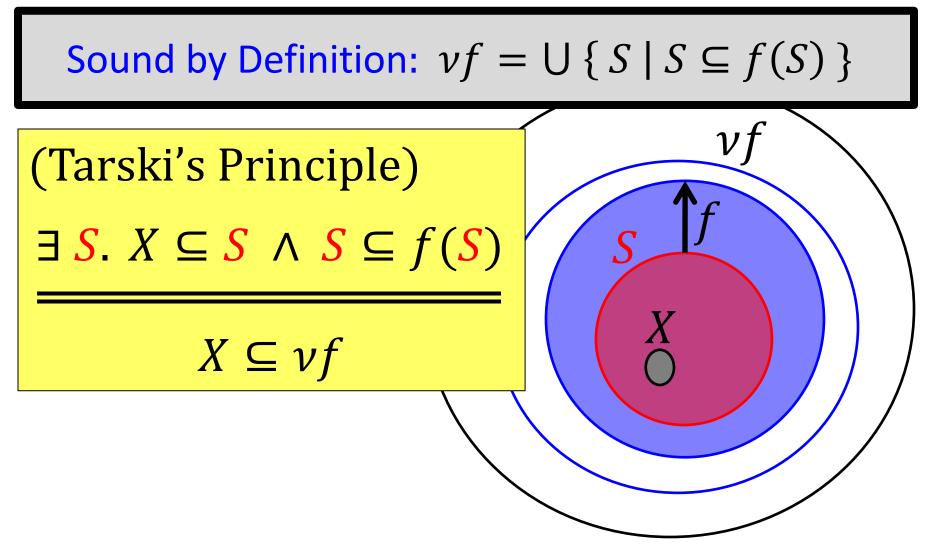








 $f: \mathscr{O}(U) \xrightarrow{\text{mon}} \mathscr{O}(U)$ (Tarski's Principle) $\exists S. X \subseteq S \land S \subseteq f(S)$ $X \subseteq \nu f$



$$f(S) = \{ x \mid \exists y. \ x \to y \land y \in S \} \qquad U$$

$$f(S) = \{ x \mid \exists y. \ x \to y \land y \in S \} \qquad U$$

$$\downarrow vf \qquad 0$$

$$\exists c \} \subseteq vf$$

$$f(S) = \{ x \mid \exists y. \ x \to y \land y \in S \} \qquad U$$
$$\{c\} \not\subseteq f(\{c\}) = \emptyset$$
$$vf$$

$$f(S) = \{x \mid \exists y. \ x \to y \land y \in S \} \qquad U$$
$$\{c\} \subseteq \{c, b, d\}$$
$$\{c\} \subseteq vf$$

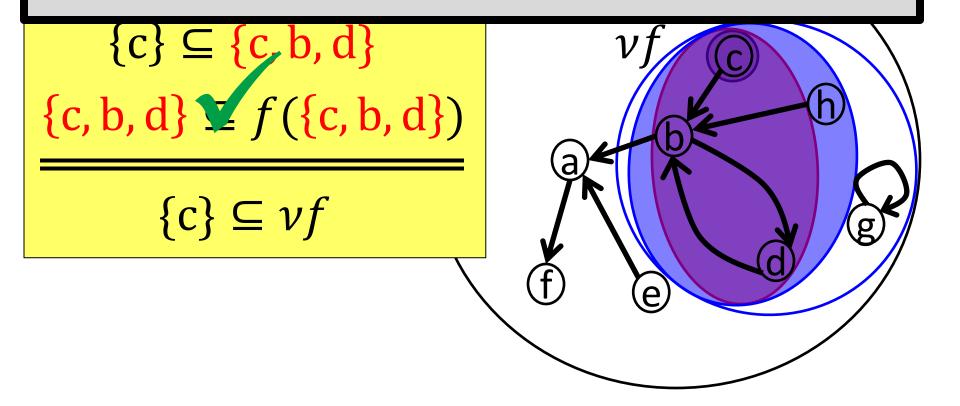
$$f(S) = \{x \mid \exists y. \ x \to y \land y \in S \} \qquad U$$
$$\{c\} \subseteq \{c, b, d\}$$
$$\{c, b, d\} \subseteq f(\{c, b, d\})$$
$$\{c\} \subseteq vf$$

$$f(S) = \{x \mid \exists y. \ x \to y \land y \in S \} \qquad U$$
$$\{c\} \subseteq \{c, b, d\}$$
$$\{c, b, d\} \subseteq f(\{c, b, d\})$$
$$\{c\} \subseteq vf$$

$$f(S) = \{x \mid \exists y. \ x \to y \land y \in S \} \qquad U$$
$$\{c\} \subseteq \{c, b, d\} \not\subseteq f(\{c, b, d\})$$
$$\{c\} \subseteq vf$$
$$f(\{c, b, d\}) = f(\{c, b, d\})$$

+ Simple & Easy to Understand

- Have to Find a Consistent Set Up Front



Talk Outline

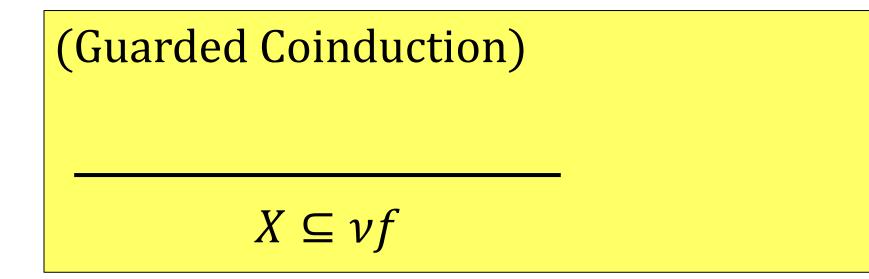
Previous Approaches

Tarski's Fixed Point Theorem

Our Approach

Parameterized Coinduction

$$f: \mathscr{O}(U) \xrightarrow{\text{mon}} \mathscr{O}(U)$$



$$f: \wp(U) \xrightarrow{\text{mon}} \wp(U)$$

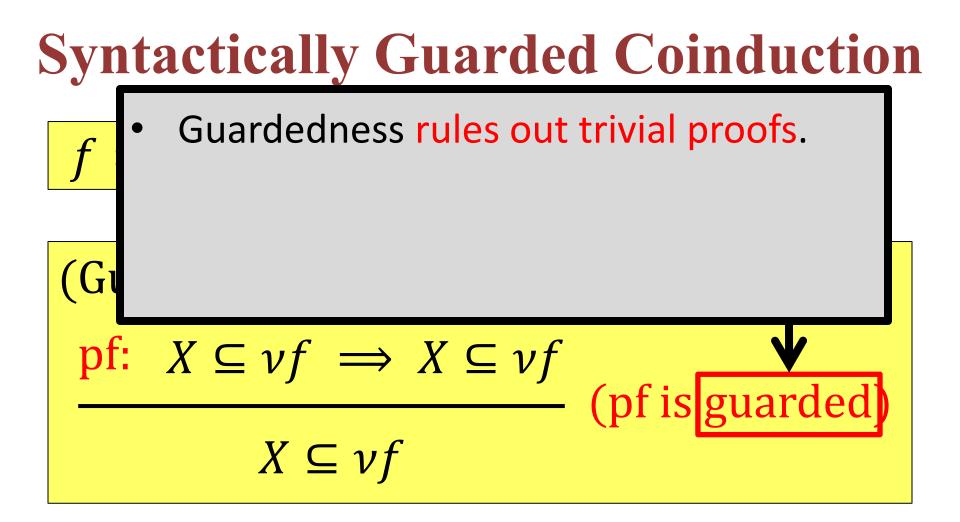
(Guarded Coinduction)
$$X \subseteq \nu f \implies X \subseteq \nu f$$
$$X \subseteq \nu f$$

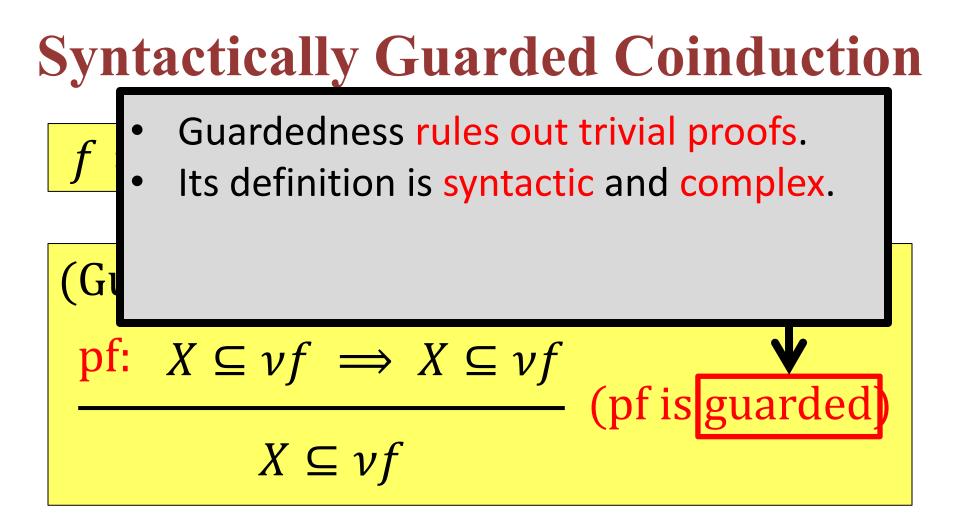
$$f: \wp(U) \xrightarrow{\text{mon}} \wp(U)$$

(Guarded Coinduction)

$$\frac{\text{pf:} \quad X \subseteq \nu f \implies X \subseteq \nu f}{X \subseteq \nu f} \quad \text{(pf is guarded)}$$

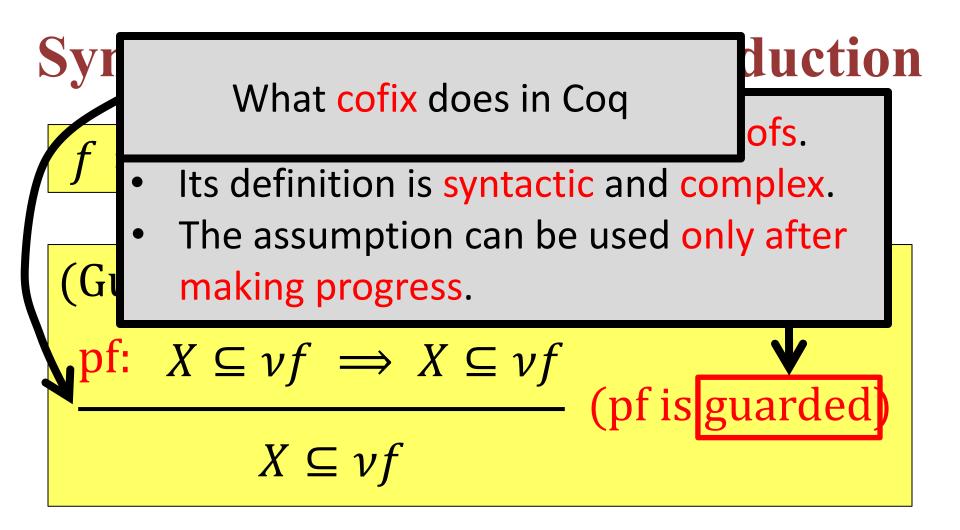
$$X \subseteq \nu f$$

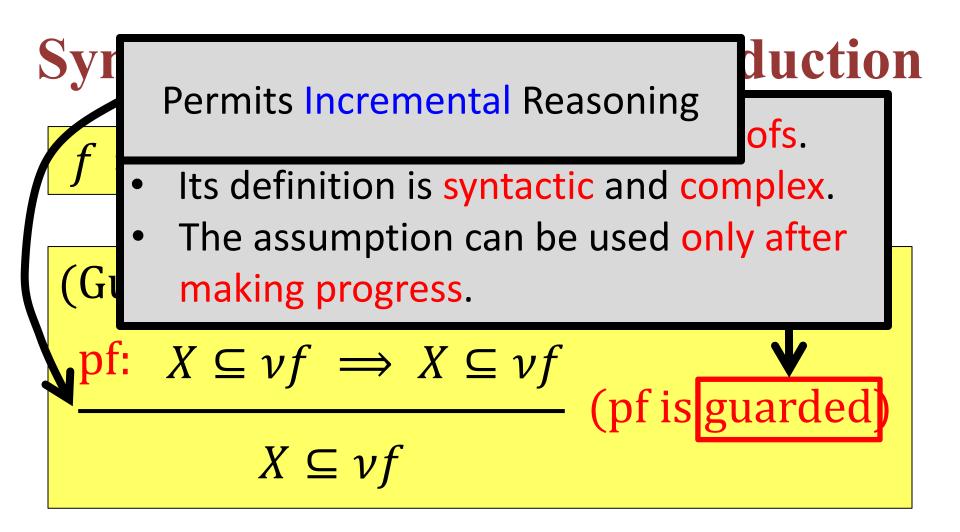


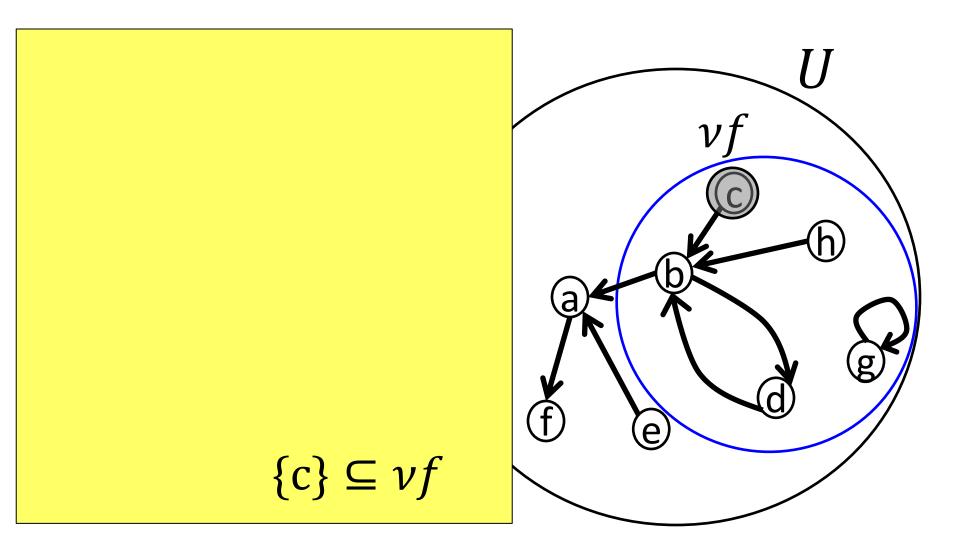


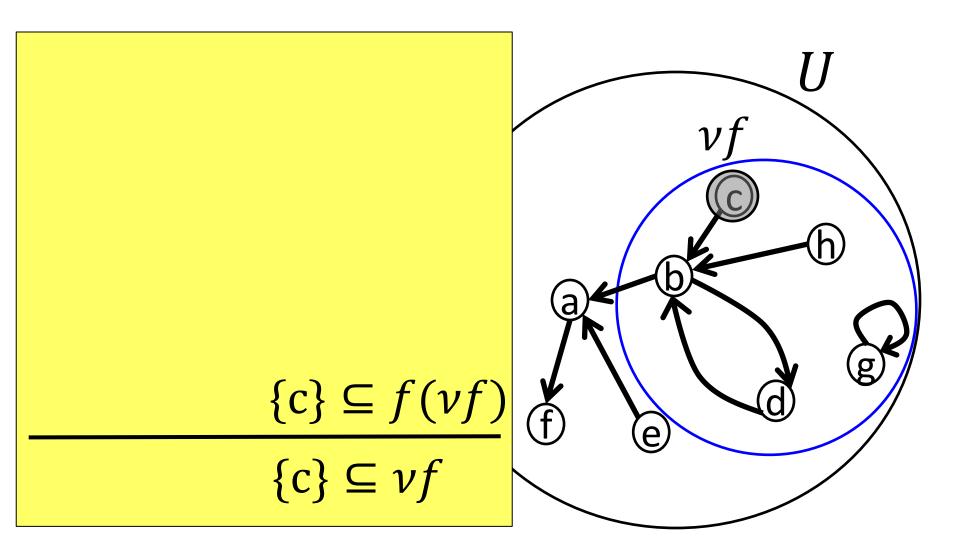
- Guardedness rules out trivial proofs.
- Its definition is syntactic and complex.
- The assumption can be used only after making progress.

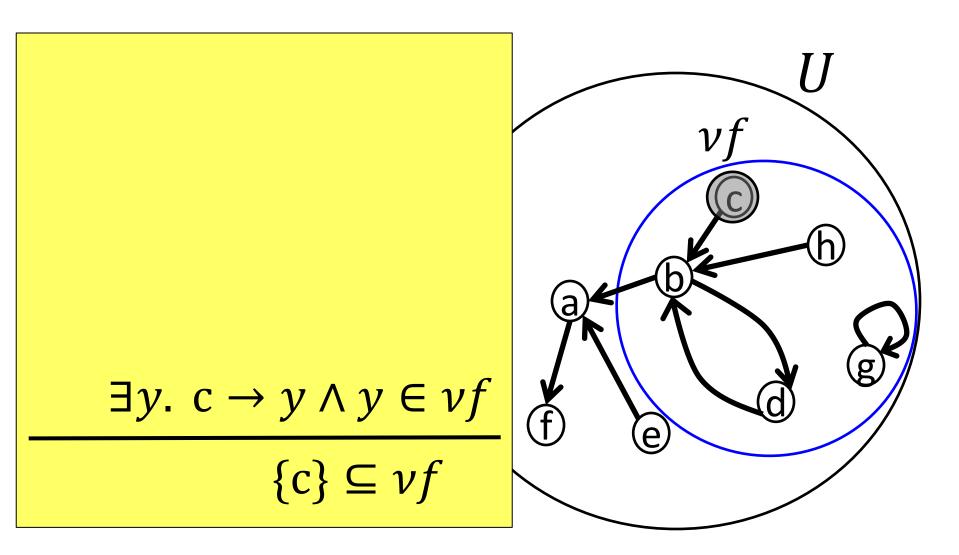
pf:
$$X \subseteq \nu f \implies X \subseteq \nu f$$
 (pf is guarded)
 $X \subseteq \nu f$

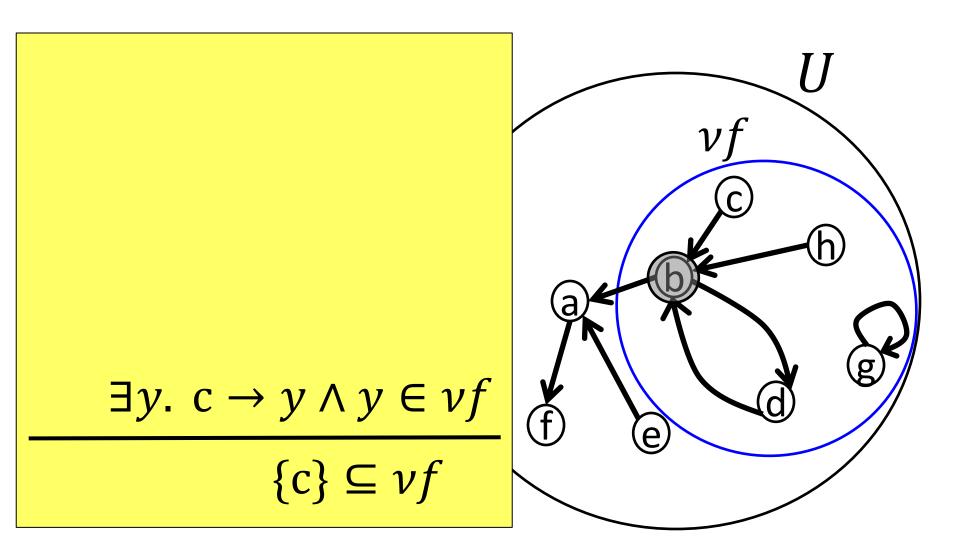


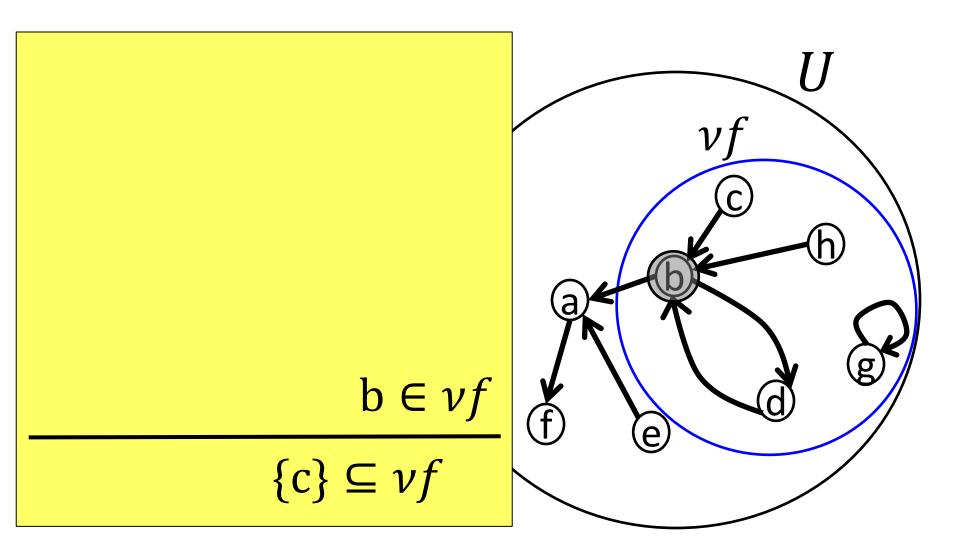




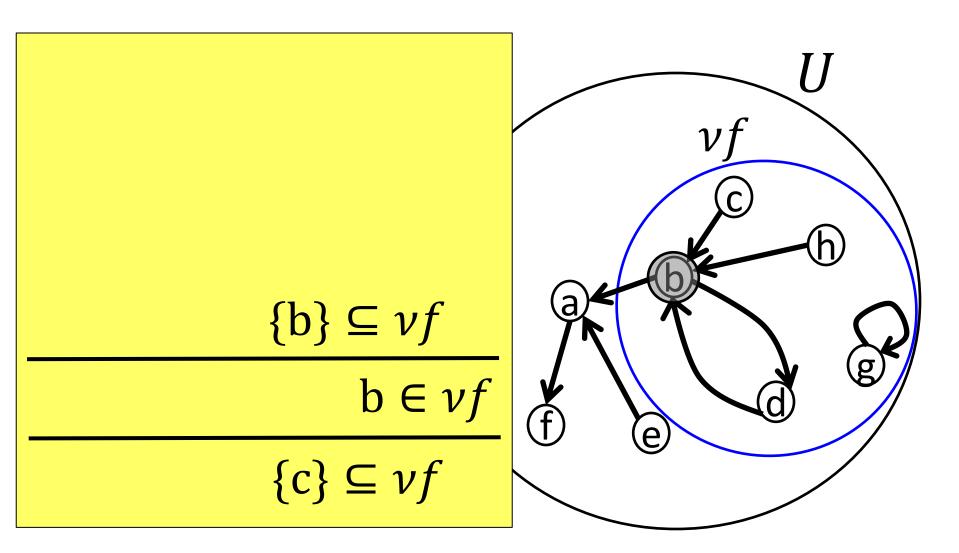


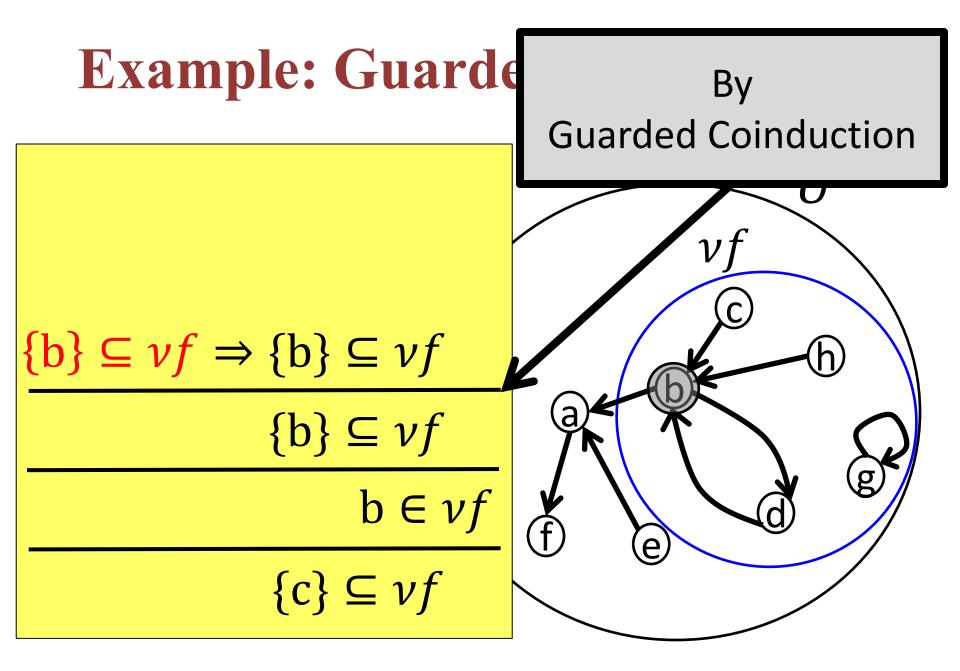


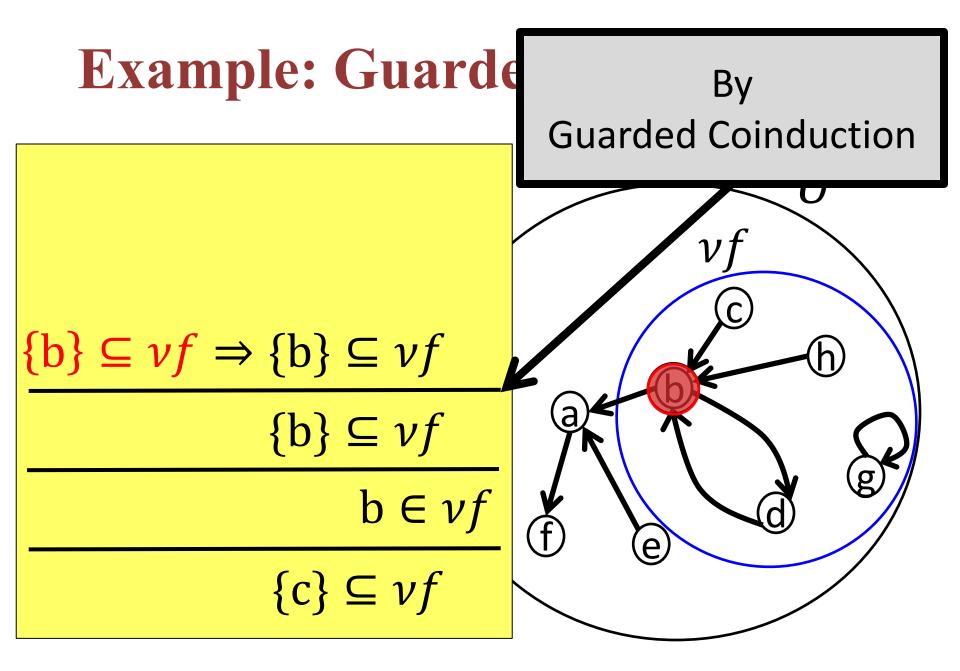


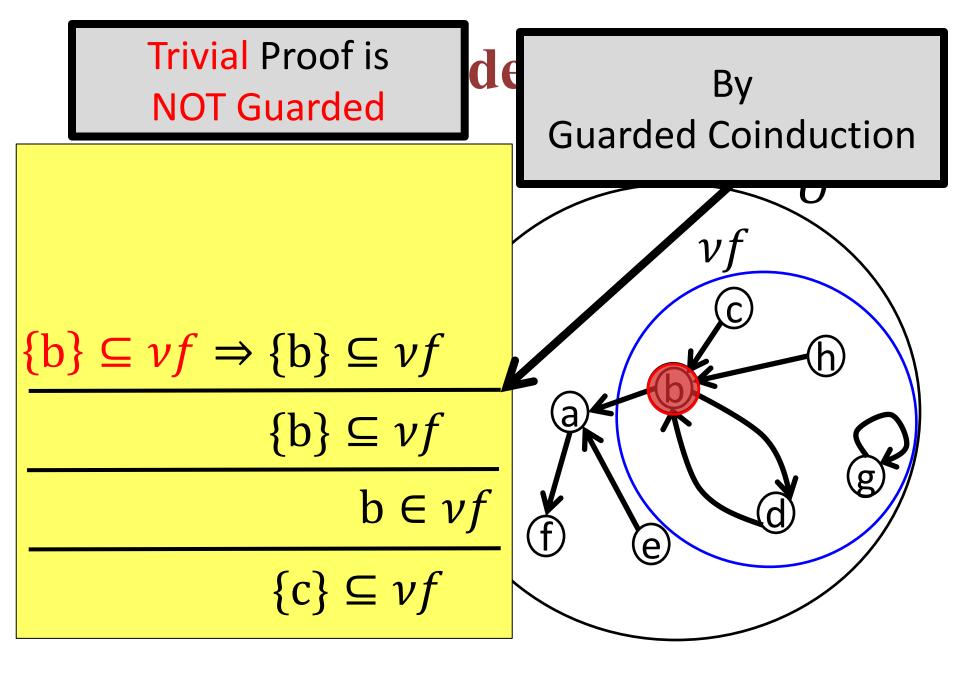


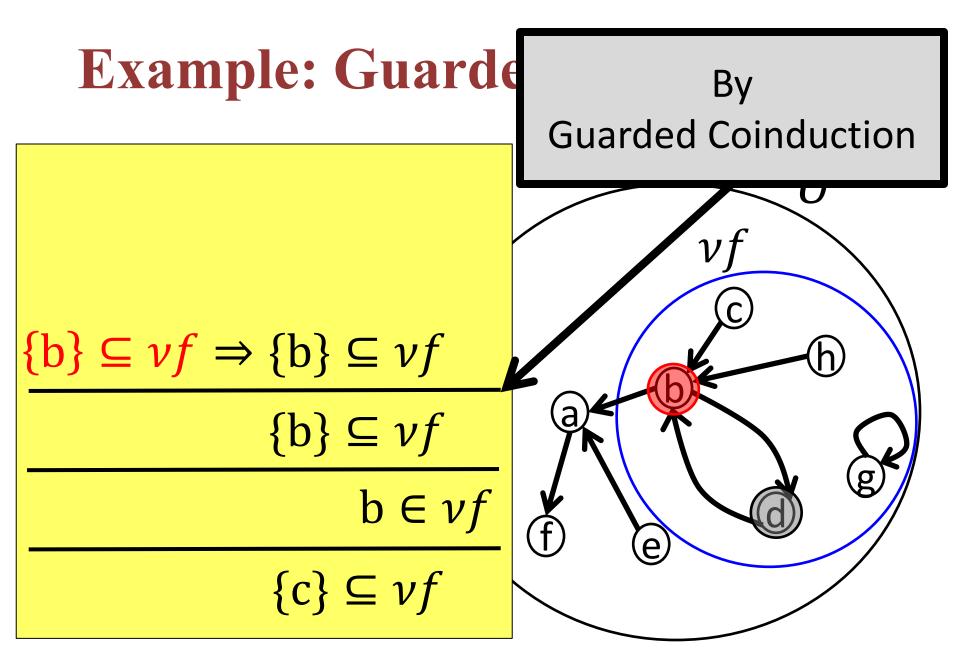
Example: Guarded Coinduction

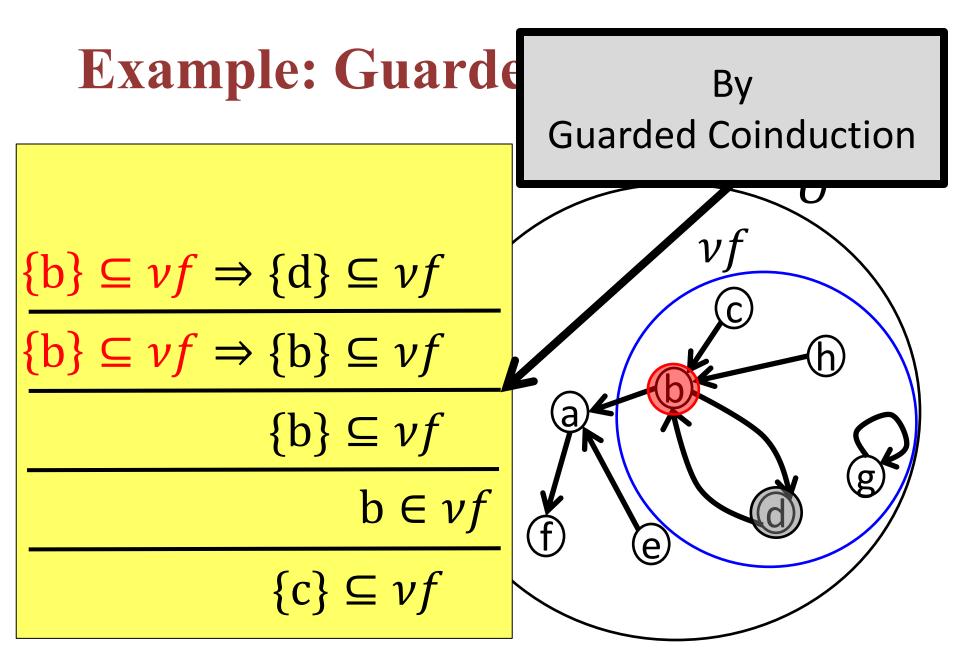










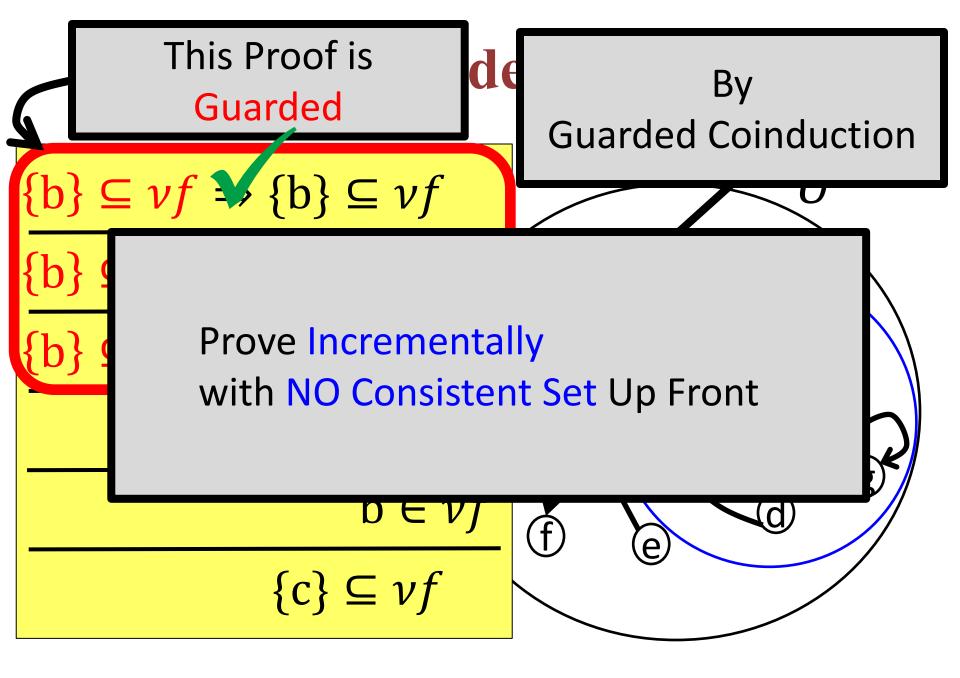




Example: GuardeBy
Guarded Coinduction
$$\{b\} \subseteq vf \Rightarrow \{b\} \subseteq vf$$
 vf $\{b\} \subseteq vf \Rightarrow \{b\} \subseteq vf$ vf $\{b\} \subseteq vf \Rightarrow \{b\} \subseteq vf$ 0 $\{b\} \subseteq vf$ vf $\{b\} \subseteq vf$ vf $\{c\} \subseteq vf$ vf

This Proof is
GuardedBy
Guarded Coinduction
$$\{b\} \subseteq vf \Rightarrow \{b\} \subseteq vf$$
 vf $\{b\} \subseteq vf \Rightarrow \{d\} \subseteq vf$ vf $\{b\} \subseteq vf \Rightarrow \{b\} \subseteq vf$ vf $\{b\} \subseteq vf$ $b \in vf$ $\{c\} \subseteq vf$ vf

This Proof is
GuardedBy
Guarded Coinduction
$$\{b\} \subseteq vf \Rightarrow \{b\} \subseteq vf$$
 vf $\{b\} \subseteq vf \Rightarrow \{d\} \subseteq vf$ vf $\{b\} \subseteq vf \Rightarrow \{b\} \subseteq vf$ vf $\{b\} \subseteq vf$ $b \in vf$ $\{c\} \subseteq vf$ vf



Example: Simulation between Programs

restart $h n := if n > \underline{0}$ then (output n; restart $h (n - \underline{1})$) else $h \underline{0}$

f
$$n := \text{output } (\underline{2} * n);$$

let $v = \text{input}()$ in
if $v = \underline{0}$ then restart f $(\underline{2} * n)$ else f $(v + n)$

g $n := \text{let } v = (\text{output } n; \text{input}()) * \underline{2} \text{ in}$ (if $v \neq \underline{0}$ then g else restart g) (v + n)

Example: Simulation between Programs

restart $h n := if n > \underline{0}$ then (output n; restart $h (n - \underline{1})$) else $h \underline{0}$

$$f_n := \text{output } (\underline{2} * n);$$

let $v = \text{input}()$ in
if $v = \underline{0}$ then restart $f(\underline{2} * n)$ else $f(v + n)$

$$g_n := \text{let } v = (\text{output } n; \text{input}()) * \underline{2} \text{ in} \\ (\text{if } v \neq \underline{0} \text{ then } g \text{ else } \text{restart } g) (v + n)$$

Proof using Tarski's Principle

```
| fgsim9: forall (m m0: nat), fgsim
nductive fgsim : exp -> exp -> Prop :=
fgsim1: forall (n m: nat) (EQ: n = 2 * m), fgsim
                                                                                ((If ble nat 1 (m0 * 1 + m0) then f else restart @ f) @
                                                                                (m0 * 1 + m0 + (m + (m + 0))))
    (f @ n)
                                                                                (If ble nat m0 0 then (restart @ g) @ (2 ~* m) else g @ (m0 ~+ m))
    (g @ m)
                                                                           fgsim10: forall (m: nat), fgsim
 fgsim2: forall (m: nat), fgsim
                                                                                ((restart @ f) @ m) ((restart @ g) @ m)
    (Let "v" := (Eoutput (m + (m + 0));; Einput) ~* 2
    in (If 1 \sim = vv then f else restart (f) (vv \sim + (m + (m + 0))) fgsim11: forall (m: nat), fgsim
                                                                               (Efix " " "n"
    (Eoutput (2 ~* m);;
                                                                                  (If "n" ~<= 0 then f @ 0
    (Let "v" := Einput
                                                                                   else Eoutput "n";; (restart 0 f) 0 ("n" ~- 1)) 0 m)
     in If "v" ~<= 0 then (restart @ g) @ (2 ~* m) else g @ ("v" ~+ m)))
                                                                                (Efix " " "n"
fgsim3: forall (m: nat), fgsim
                                                                                  (If "n" ~<= 0 then g @ 0
    (Let "v" := ((<>);; Einput) ~* 2
    in (If 1 ~<= "v" then f else restart @ f) @ ("v" ~+ (m + (m + 0))))
                                                                                   else Eoutput "n";; (restart @ q) @ ("n" ~- 1)) @ m)
                                                                           fgsim12: forall (m: nat), fgsim
   ((<>);;
                                                                               (If m ~<= 0 then f @ 0 else Eoutput m;; (restart @ f) @ (m ~- 1))
    (Let "v" := Einput
                                                                                (If m \sim <= 0 then q @ 0 else Eoutput m;; (restart @ q) @ (m \sim - 1))
     in If "v" ~<= 0 then (restart @ g) @ (2 ~* m) else g @ ("v" ~+ m)))
                                                                           fgsim13: forall (m: nat), fgsim
 fgsim4: forall (m: nat), fgsim
                                                                               (If ble nat m 0 then f @ 0 else Eoutput m;; (restart @ f)
    (Let "v" := Einput ~* 2
                                                                               (If ble nat m 0 then g @ 0 else Eoutput m;; (restart @ g) @ (m ~- 1)
    in (If 1 ~<= "v" then f else restart @ f) @ ("v" ~+ (m + (m + 0))))
                                                                           fgsim14: forall (m: nat), fgsim
    (Let "v" := Einput
                                                                                (Eoutput (S m);; (restart @ f) @ (S m ~- 1))
    in If "v" ~<= 0 then (restart @ g) @ (2 ~* m) else g @ ("v" ~+ m))
fgsim5: forall (m m0: nat), fgsim
                                                                               (Eoutput (S m);; (restart @ g) @ (S m ~- 1))
    (Let "v" := m0 ~* 2
                                                                           fgsim15: forall (m: nat), fgsim
    in (If 1 ~<= "v" then f else restart @ f) @ ("v" ~+ (m + (m + 0))))
                                                                               ((<>);; (restart @ f) @ (S m ~- 1))
                                                                               ((<>);; (restart @ g) @ (S m ~- 1))
   (Let "v" := m0
    in If "v" ~<= 0 then (restart @ g) @ (2 ~* m) else g @ ("v" ~+ m)) | _fgsiml6: forall (m: nat), fgsim
fgsim6: forall (m m0: nat), fgsim
                                                                                ((restart @ f) @ (S m ~- 1))
                                                                               ((restart @ g) @ (S m ~- 1))
    (Let "v" := m0 * 1 + m0
    in (If 1 ~<= "v" then f else restart @ f) @ ("v" ~+ (m + (m + 0))
                                                                         Lemma rsp simulated tarski:
    (If m0 ~<= 0 then (restart @ g) @ (2 ~* m) else g @ (m0 ~+ m))
                                                                           forall n m (EQ: n = 2 * m), similarity (f @ n) (g @ m).
fgsim7: forall (m m0: nat), fgsim
                                                                         Proof.
    ((If 1 ~<= (m0 * 1 + m0) then f else restart @ f) @

    eapply (@simul tarski fgsim); [clear n m EQ|by eauto].

    ((m0 * 1 + m0) \sim + (m + (m + 0))))
                                                                           i; destruct PR; subst; try by unfold rfg; simul step 1; fold rfg.
    (If ble nat m0 0 then (restart @ g) @ (2 ~* m) else g @ (m0 ~+ m))

    by simul step 0; fold rfg; eauto.

 fgsim8: forall (m m0: nat), fgsim

    by simul step 0; fold rfg; eauto.

   ((If 1 ~<= (m0 * 1 + m0) then f else restart 0 f) 0

    by destruct m0; simul step 2; eauto.

    (m0 * 1 + m0 + (m + (m + 0))))

    by destruct m; simul step 1; eauto.

    (If ble nat m0 0 then (restart @ g) @ (2 ~* m) else g @ (m0 ~+ m))
                                                                         Ded.
```

Proof using Tarski's Principle

```
| fgsim9: forall (m m0: nat), fgsim
nductive fgsim : exp -> exp -> Prop :=
                                                                                ((If ble_nat 1 (m0 * 1 + m0) then f else restart @ f) @
fgsim1: forall (n m: nat) (EQ: n = 2 * m), fgsim
    (f @ n)
                                                                                 (m0 * 1 + m0 + (m + (m + 0))))
                                                                                (If ble nat m0 0 then (restart @ g) @ (2 ~* m) else g @ (m0 ~+ m))
    (g @ m)
                                                                           | fgsim10: forall (m: nat), fgsim
 fgsim2: forall (m: nat), fgsim
    (Let "v" := (Eoutput (m + (m + 0));; Einput) ~* 2
                                                                                ((restart @ f) @ m) ((restart @ g) @ m)
    in (If 1 ~<= "v" then f else restart 0 f) 0 ("v" ~+ (m + (m + 0)))) | _fgsim11: forall (m: nat), fgsim
                                                                                (Efix " " "n"
    (Eoutput (2 ~* m);;
                                                                                   (If "n" ~<= 0 then f @ 0
    (Let "v" := Einput
                                                                                   else Eoutput "n";; (restart @ f) @ ("n" ~- 1)) @ m)
     in If "v" ~<= 0 then (restart @ g) @ (2 ~* m) else g @ ("v" ~+ m)))
                                                                                (Efix " " "n"
 fgsim3: forall (m: nat), fgsim
                                                                                   (If "n" ~<= 0 then g @ 0
    (Let "v" := ((<>);; Einput) ~* 2
    in (If 1 ~<= "v" then f else restart @ f) @ ("v" ~+ (m + (m + 0))))
                                                                                   else Eoutput "n";; (restart @ g) @ ("n" ~- 1)) @ m)
                                                                           fgsim12: forall (m: nat), fgsim
    ((<>);;
                                                                                (If m ~<= 0 then f @ 0 else Eoutput m;; (restart @ f) @ (m ~- 1))</p>
    (Let "v" := Einput
     in If "v" ~<= 0 then (restart @ g) @ (2 ~* m) else g @ ("v" ~+ m)))
                                                                                (If m ~<= 0 then g @ 0 else Eoutput m;; (restart @ g) @ (m ~- 1))</pre>
 fgsim4: forall (m: nat), fgsim
                                                                           fgsim13: forall (m: nat), fgsim
    (Let "v" := Einput ~* 2
                                                                                (If ble nat m 0 then f 0 0 else Eoutput m;; (restart 0 f) 0 (m ~- 1)
    in (If 1 ~<= "v" then f else restart @ f) @ ("v" ~+ (m + (m + 0))))
                                                                                (If ble nat m 0 then g @ 0 else Eoutput m;; (restart @ g) @ (m ~- 1)
                                                                            fgsim14: forall (m: nat), fgsim
    (Let "v" := Einput
    in If "v" ~<= 0 then (restart @ g) @ (2 ~* m) else g @ ("v" ~+ m))
                                                                                (Eoutput (S m);; (restart @ f) @ (S m ~- 1))
 fgsim5: forall (m m0: nat), fgsim
                                                                                (Eoutput (S m);; (restart @ g) @ (S m ~- 1))
                                                                           | fgsim15: forall (m: nat), fgsim
    (Let "v" := m0 ~* 2
                                                                               ((<>);; (restart @ f) @ (S m ~- 1))
    in (If 1 ~<= "v" then f else restart @ f) @ ("v" ~+ (m + (m + 0))))
    (Let "v" := m0
                                                                                ((<>);; (restart 0 g) 0 (S m ~- 1))
    in If "v" ~<= 0 then (restart @ g) @ (2 ~* m) else g @ ("v" ~+ m)) | _fgsim16: forall (m: nat), fgsim
                                                                                ((restart @ f) @ (S m ~- 1))
 fgsim6: forall (m m0: nat), fgsim
    (Let "v" := m0 * 1 + m0
                                                                                ((restart @ σ) @ (S m ~- 1))
    in (If 1 ~<= "v" then f else restart @ f) @ ("v" ~+ (m + (m + 0))
                                                                          emma rsp simulated tarski:
    (If m0 ~<= 0 then (restart 0 g) 0 (2 ~* m) else g 0 (m0 ~+ m))
                                                                           forall n m (EQ: n = 2 * m), similarity (f @ n) (g @ m).
fgsim7: forall (m m0: nat), fgsim
                                                                         Proof.
    ((If 1 ~<= (m0 * 1 + m0) then f else restart @ f) @

    eapply (@simul tarski fgsim); [clear n m EQ|by eauto].

     ((m0 * 1 + m0) \sim + (m + (m + 0))))
                                                                           i; destruct PR; subst; try by unfold rfg; simul step 1; fold rfg.
    (If ble_nat m0 0 then (restart @ g) @ (2 ~* m) else g @ (m0 ~+ m)

    by simul step 0; fold rfg; eauto.

 fgsim8: forall (m m0: nat), fgsim

    by simul step 0; fold rfg; eauto.

    ((If 1 ~<= (m0 * 1 + m0) then f else restart @ f) @

    by destruct m0; simul step 2; eauto.

     (m0 * 1 + m0 + (m + (m + 0))))

    by destruct m; simul step 1; eauto.

    (If ble nat m0 0 then (restart @ g) @ (2 ~* m) else g @ (m0 ~+ m))
```

Proof using Guarded Coinduction

```
lemma rsp_simulated_cofix:
forall n m (EQ: n = 2 * m), similarity (f @ n) (g @ m).
Proof.
cofix CIH.
intros; subst; do 6 csimul_step 1; do 2 csimul_step 0.
destruct m0; csimul_step 2; [|by eauto].
fold_rfg; generalize (m+(m+0)).
cofix CIH'.
intros; do 3 csimul_step 1.
destruct n; csimul_step 1; [by eauto]].
do 3 csimul_step 1; eauto.
```

3

Proof using Guarded Coinduction

Thanks to Incremental Proof + Simple Automation

```
emma rsp_simulated_cofix:
forall n m (EQ: n = 2 * m), similarity (f @ n) (g @ m).
Proof.
cofix CIH.
intros; subst; do 6 csimul_step 1; do 2 csimul_step 0.
destruct m0; csimul_step 2; [|by eauto].
fold_rfg; generalize (m+(m+0)).
cofix CIH'.
intros; do 3 csimul_step 1.
destruct n; csimul_step 1; [by eauto]].
do 3 csimul_step 1; eauto.
```

3

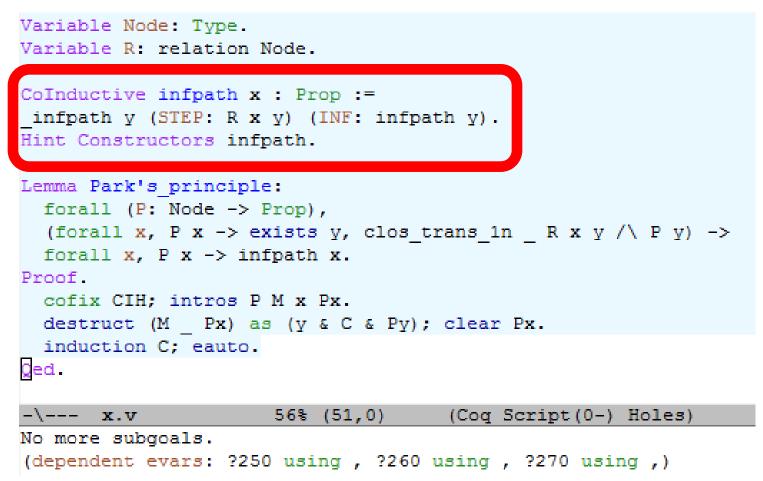
Proof using Guarded Coinduction

Thanks to Incremental Proof + Simple Automation BUT!!!

```
emma rsp_simulated_cofix:
forall n m (EQ: n = 2 * m), similarity (f @ n) (g @ m).
Proof.
cofix CIH.
intros; subst; do 6 csimul_step 1; do 2 csimul_step 0.
destruct m0; csimul_step 2; [|by eauto].
fold_rfg; generalize (m+(m+0)).
cofix CIH'.
intros; do 3 csimul_step 1.
destruct n; csimul_step 1; [by eauto]].
do 3 csimul_step 1; eauto.
Md.
```

3

```
Variable Node: Type.
Variable R: relation Node.
CoInductive infpath x : Prop :=
infpath y (STEP: R x y) (INF: infpath y).
Hint Constructors infpath.
Lemma Park's principle:
  forall (P: Node -> Prop),
 (forall x, P x -> exists y, clos trans 1n R x y /\ P y) ->
 forall x, P x \rightarrow infpath x.
Proof.
  cofix CIH; intros P M x Px.
  destruct (M Px) as (y & C & Py); clear Px.
 induction C: eauto.
Qed.
-\--- x.v
                      56% (51,0)
                                      (Cog Script(0-) Holes)
No more subgoals.
(dependent evars: ?250 using , ?260 using , ?270 using ,)
```

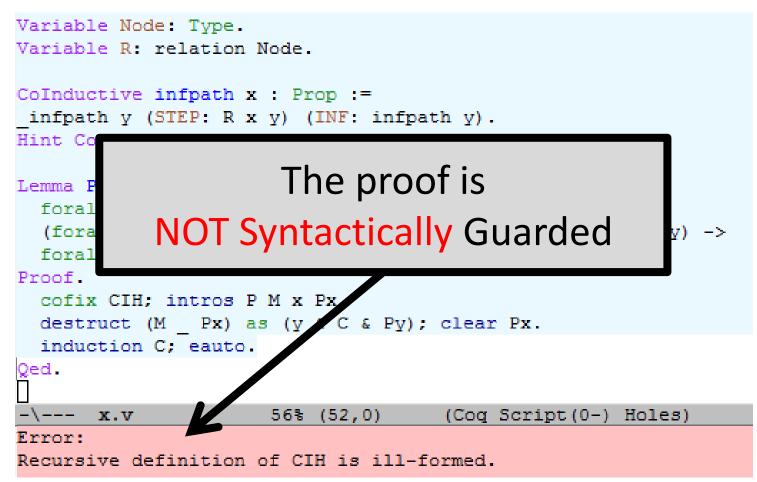


```
Variable Node: Type.
Variable R: relation Node.
CoInductive infpath x : Prop :=
infpath y (STEP: R x y) (INF: infpath y).
Hint Constructors infpath.
Lemma Park's principle:
  forall (P: Node -> Prop),
 (forall x, P x -> exists y, clos trans 1n R x y /\ P y) ->
  forall x, P x \rightarrow infpath x.
Proor.
 cofix CIH: intros P M x Px.
  destruct (M Px) as (y & C & Py); clear Px.
 induction C: eauto.
Qed.
-\--- x.v
                      56% (51,0)
                                      (Cog Script(0-) Holes)
No more subgoals.
```

(dependent evars: ?250 using , ?260 using , ?270 using ,)

```
Variable Node: Type.
Variable R: relation Node.
CoInductive infpath x : Prop :=
infpath y (STEP: R x y) (INF: infpath y).
Hint Constructors infpath.
Lemma Park's principle:
  forall (P: Node -> Prop),
  (forall x, P x -> exists y, clos trans 1n R x y /\ P y) ->
  forall x, P x \rightarrow infpath x.
Proof
  cofix CIH intros P M x Px.
  destruct (M Px) as (y & C & Py); clear Px.
  induction C; eauto.
Oed.
-\--- x.v
                      56% (51,0)
                                      (Cog Script(0-) Holes)
No more subgoals.
(dependent evars: ?250 using , ?260 using , ?270 using ,)
```

```
Variable Node: Type.
Variable R: relation Node.
CoInductive infpath x : Prop :=
infpath y (STEP: R x y) (INF: infpath y).
Hint Constructors infpath.
Lemma Park's principle:
  forall (P: Node -> Prop),
 (forall x, P x -> exists y, clos trans 1n R x y /\ P y) ->
 forall x, P x \rightarrow infpath x.
Proof.
  cofix CIH; intros P M x Px.
  destruct (M Px) as (y & C & Py); clear Px.
 induction C: eauto.
Qed.
                      56% (51,0)
                                      (Cog Script(0-) Holes)
 \--- x.v
No more subgoals.
(dependent evarse 250 using , 2260 using , 2270 using ,)
```



Guardedness NOT Expressed in the Logic

- 1. Far from complete
- 2. Bad interaction with automation
- 3. Hard to debug
- 4. Slow

Proor.				
cofix CIH; intros P	M x Px.			
destruct (M _ Px) as	з (у & С & Ру);	clear Px.		
induction C; eauto.				
Qed.				
-\ x.v	56% (52,0)	(Coq Script(0-) Holes)		
Error:				
Recursive definition of CIH is ill-formed.				

- 1. Far from complete
- 2. Bad interaction with automation
- 3. Hard to debug
- 4. Slow

FIODI.				
cofix CIH; intros	PMxPx.			
destruct (M Px)	as (y & C & Py);	clear Px.		
induction C: auto	.			
Qed.				
Π				
-\ x.v	56% (52,0)	(Coq Script(0-) Holes)		
Error:				
Recursive definition of CIH is ill-formed.				

Summary: Pros and Cons of Two Principles

- Tarski's Fixed Point Theorem
 - + Simple & Robust
 - Inconvenient to use
- Syntactically Guarded Coinduction
 - Complex & Fragile due to "Guardedness Checking"
 - + More Convenient to use

Talk Outline

Previous Approaches

Tarski's Fixed Point Theorem

Syntactically Guarded Coinduction

Our Approach

Parameterized Coinduction

Syntactically Guarded Coinduction

$$f: \mathscr{O}(U) \xrightarrow{\text{mon}} \mathscr{O}(U)$$

Semantically Guarded Coinduction

Guardedness Expressed Directly Within the Logic

Semantically Guarded Coinduction $X \subseteq \nu f \xrightarrow{G} X \subseteq \nu f$ $X \subseteq \nu f$

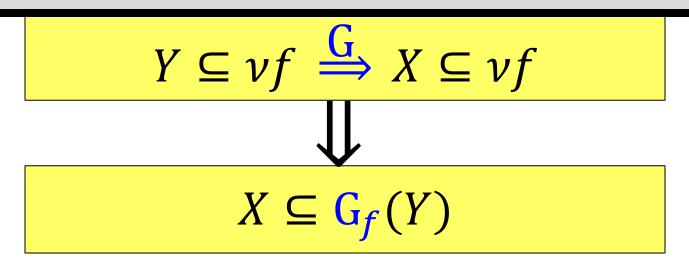
 $Y \subseteq \nu f \xrightarrow{\mathbf{G}} X \subseteq \nu f$

Do **NOT** want to **EXTEND** the logic

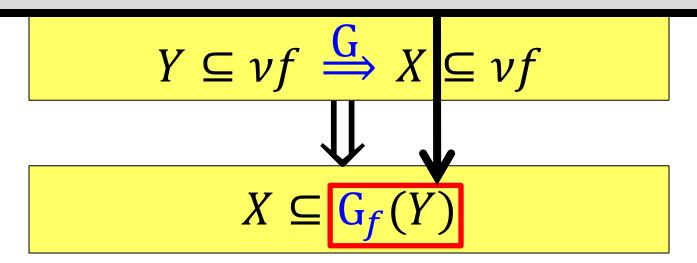
$$Y \subseteq \nu f \xrightarrow{\mathsf{G}} X \subseteq \nu f$$

Instead, Define G_f

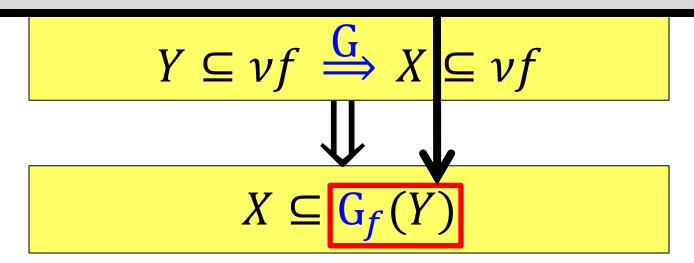
Called "Parameterized Greatest Fixed Point" of f



Greatest Fixed Point of fUnder Guarded Assumption of $Y \subseteq \nu f$



Greatest Fixed Point of fUnder Guarded Assumption of $Y \subseteq \nu f$

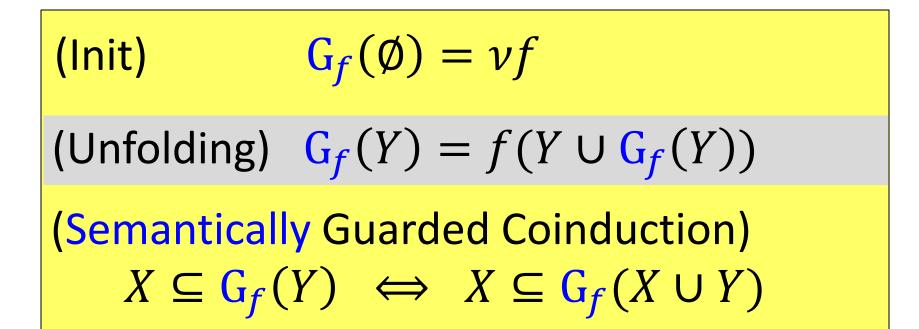


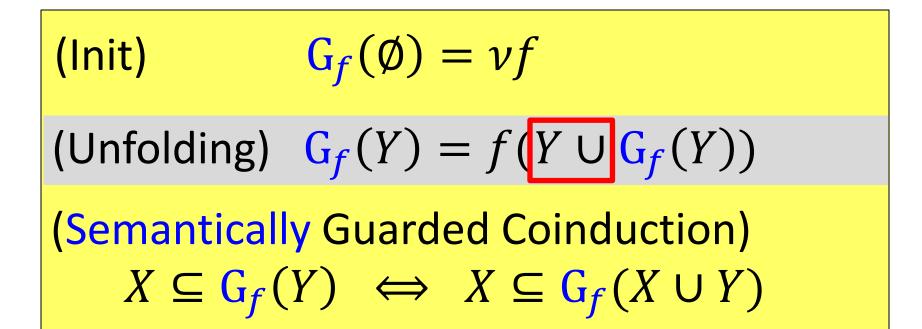
$$\mathbf{G}_{f}(Y) \stackrel{\text{\tiny def}}{=} \nu(\lambda S.f(Y \cup S))$$

Properties of G_f

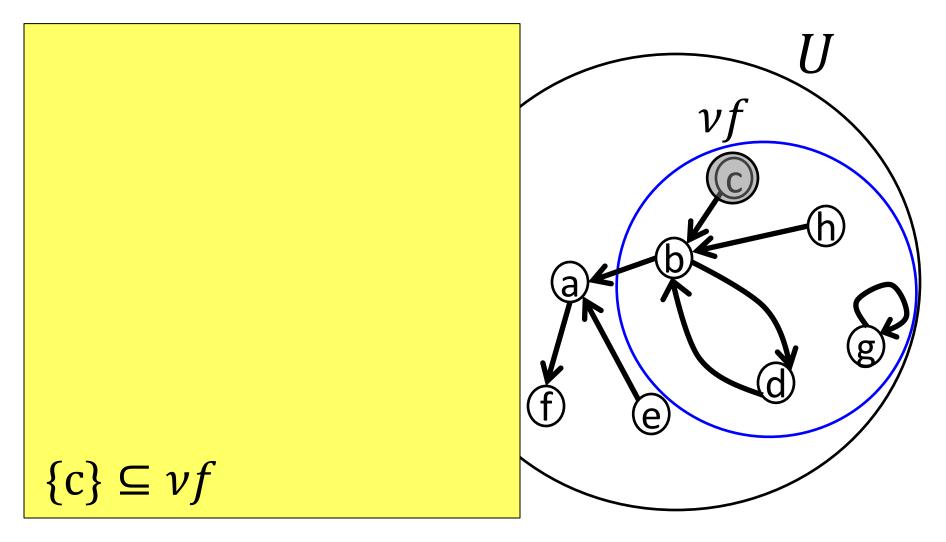
(Init) $G_f(\emptyset) = \nu f$ (Unfolding) $G_f(Y) = f(Y \cup G_f(Y))$ (Semantically Guarded Coinduction) $X \subseteq G_f(Y) \iff X \subseteq G_f(X \cup Y)$

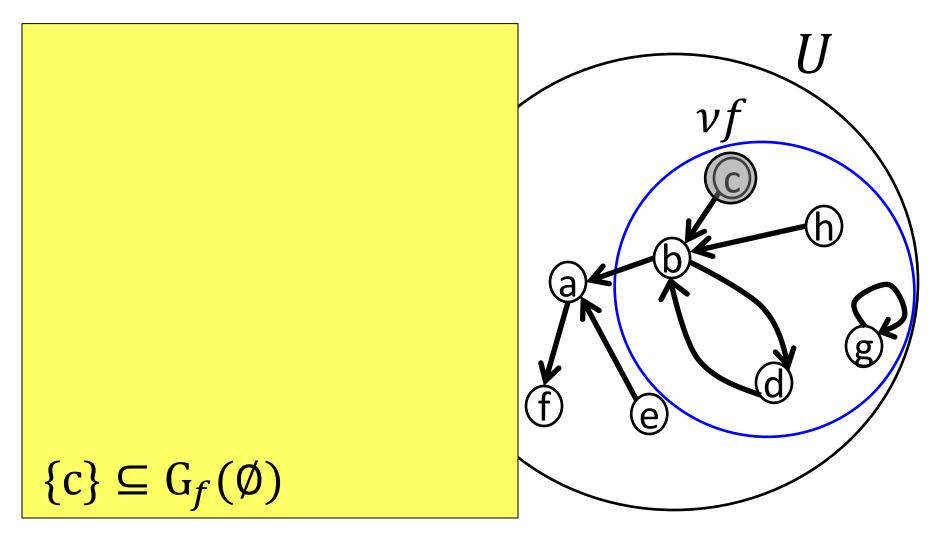
(Init) $G_f(\emptyset) = \nu f$ (Unfolding) $G_f(Y) = f(Y \cup G_f(Y))$ (Semantically Guarded Coinduction) $X \subseteq G_f(Y) \iff X \subseteq G_f(X \cup Y)$

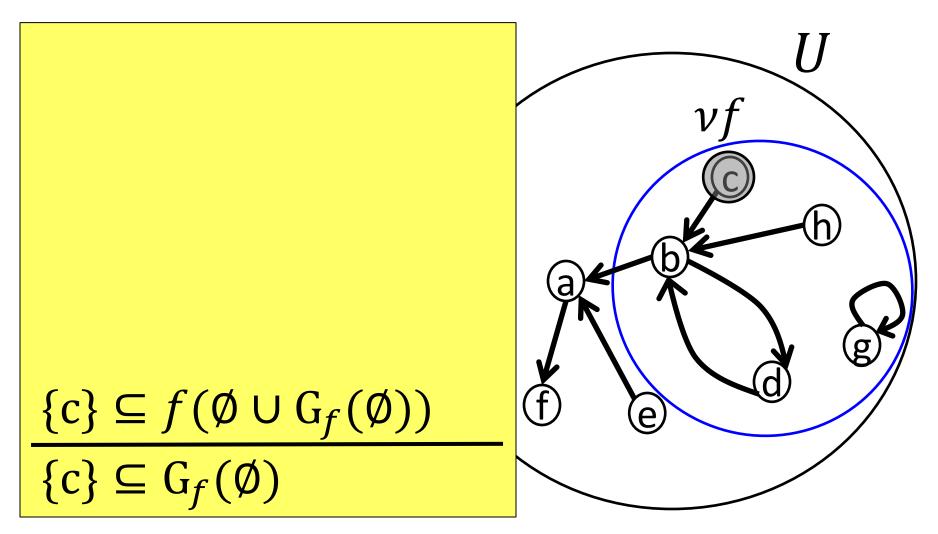


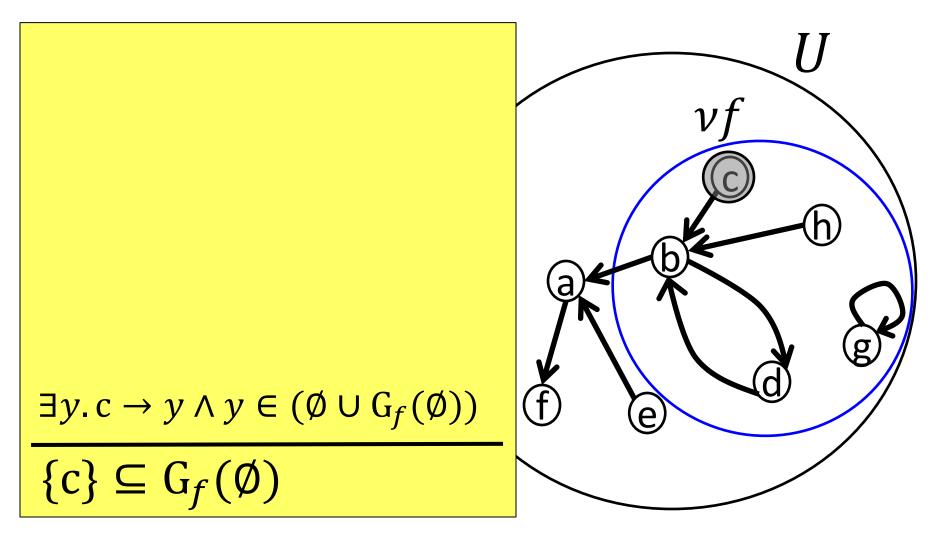


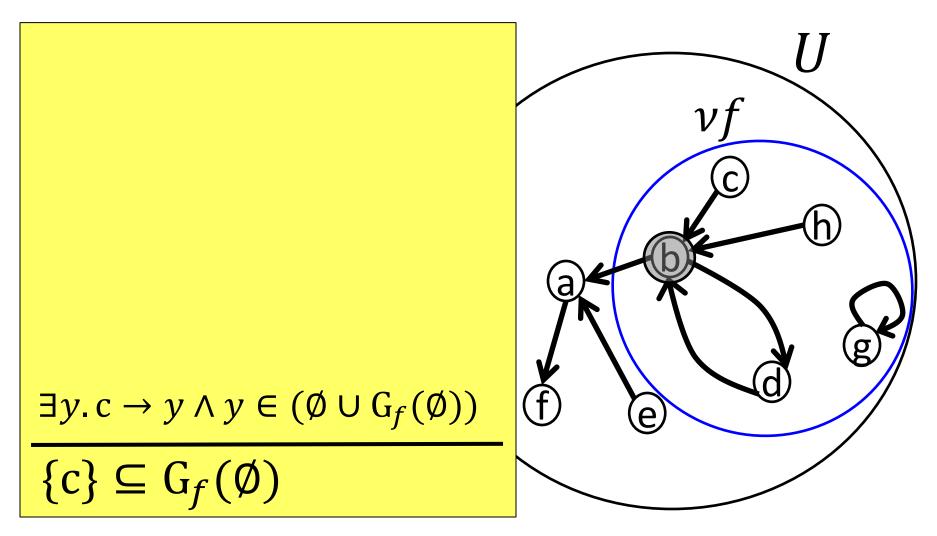
(Init) $G_f(\emptyset) = \nu f$ (Unfolding) $G_f(Y) = f(Y \cup G_f(Y))$ (Semantically Guarded Coinduction) $X \subseteq G_f(Y) \iff X \subseteq G_f(X \cup Y)$

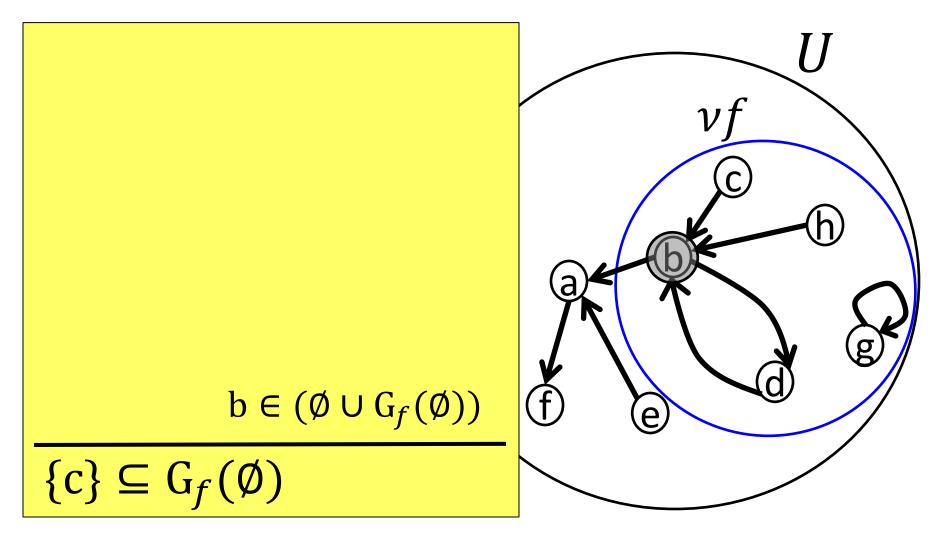


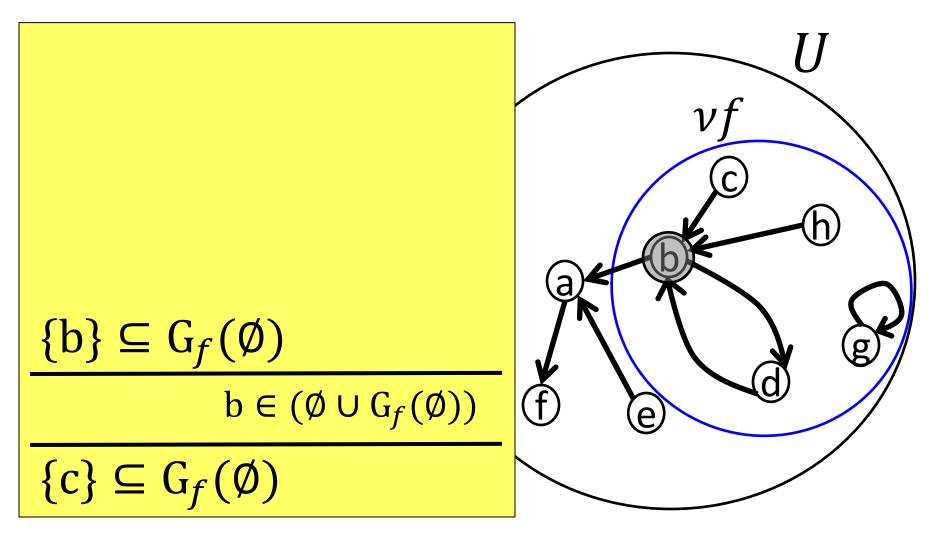


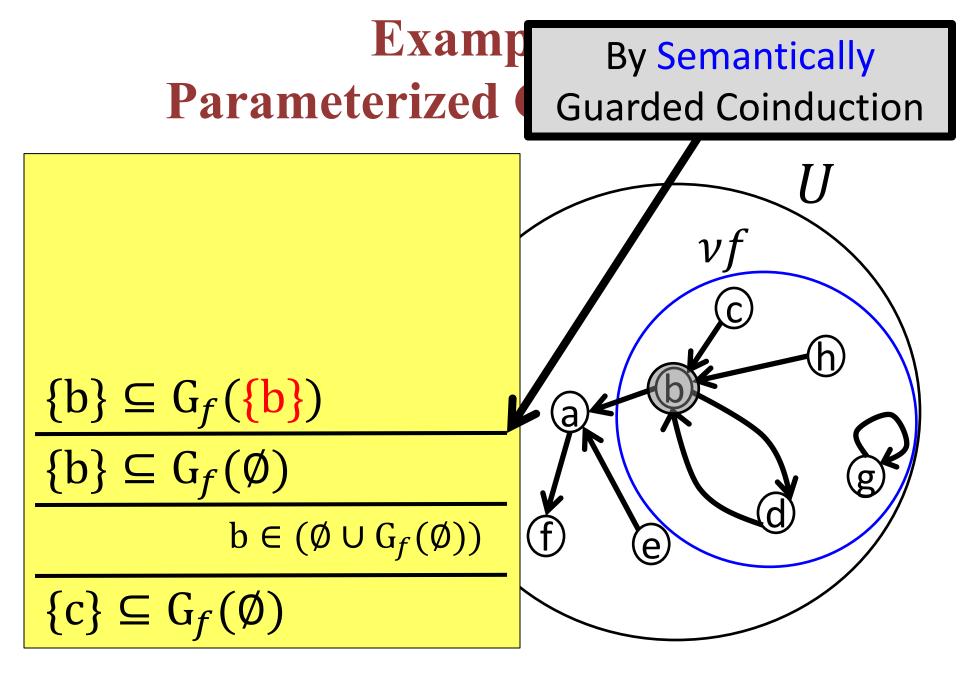


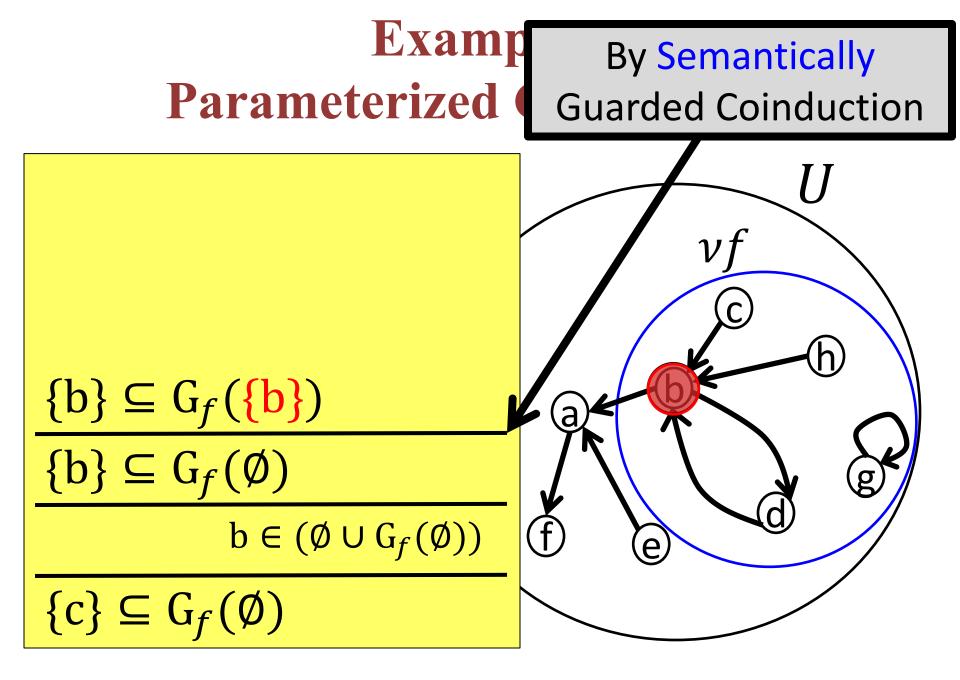


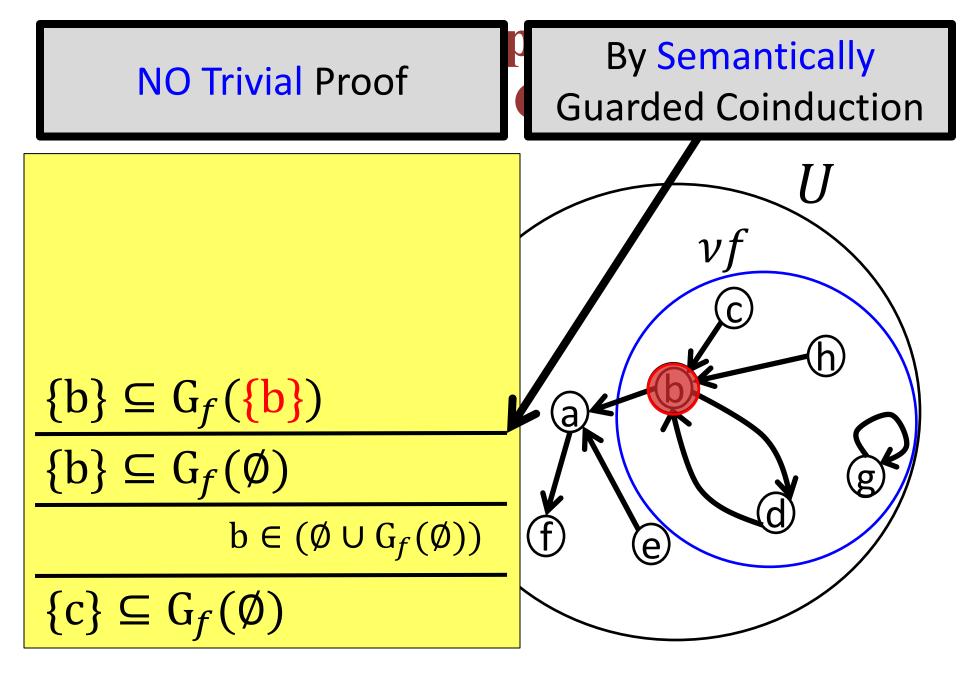


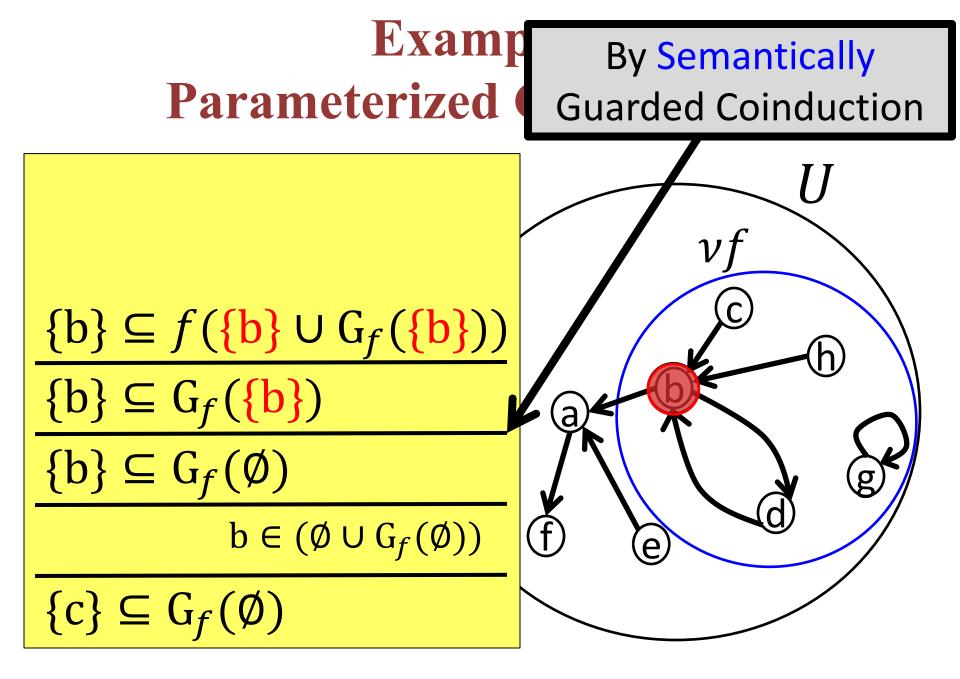


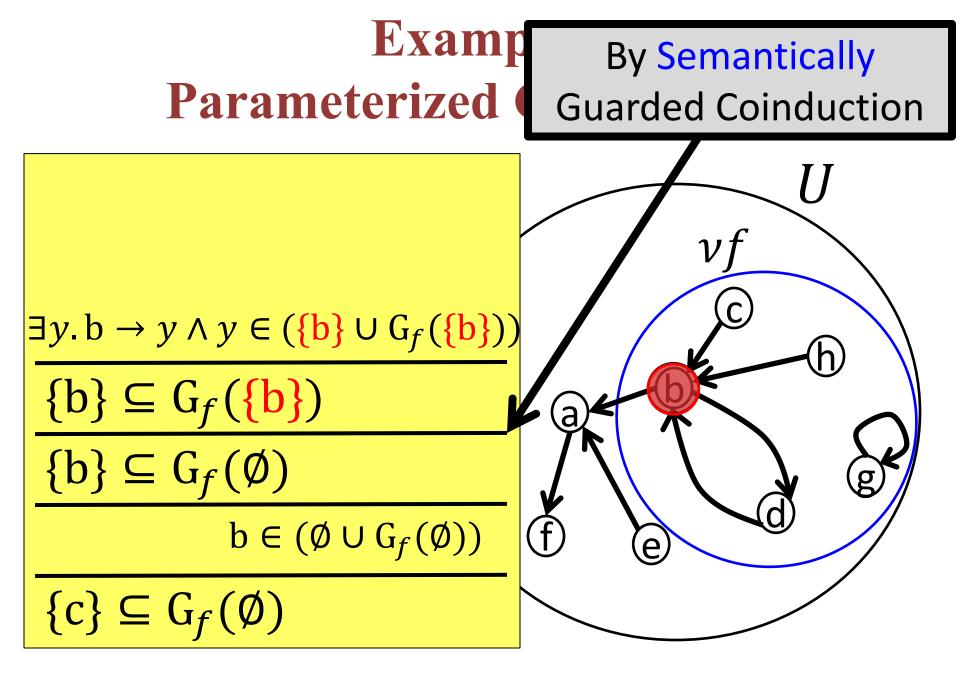


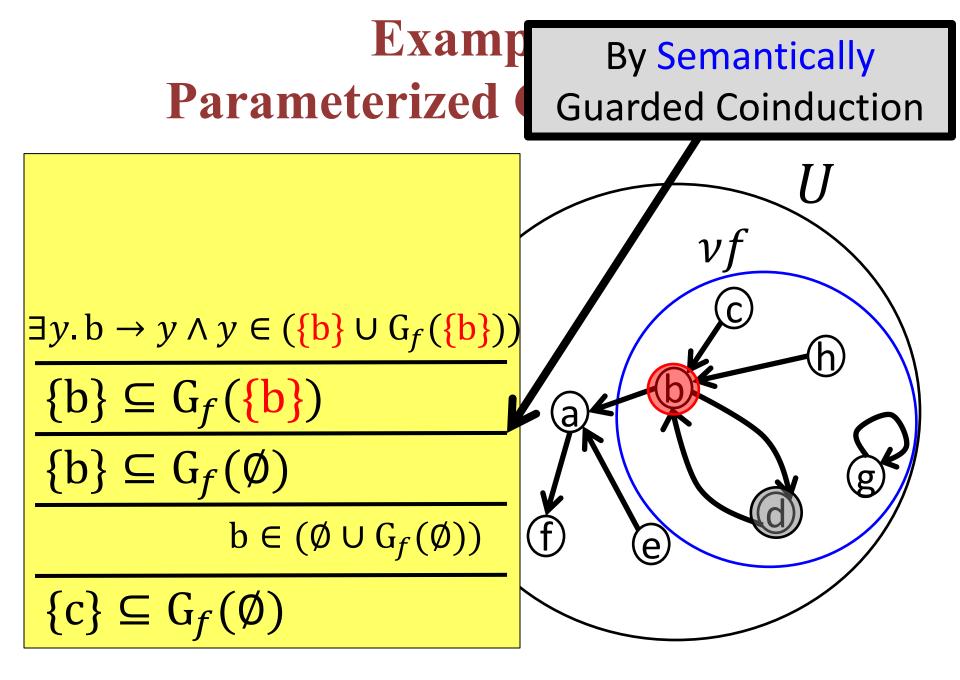


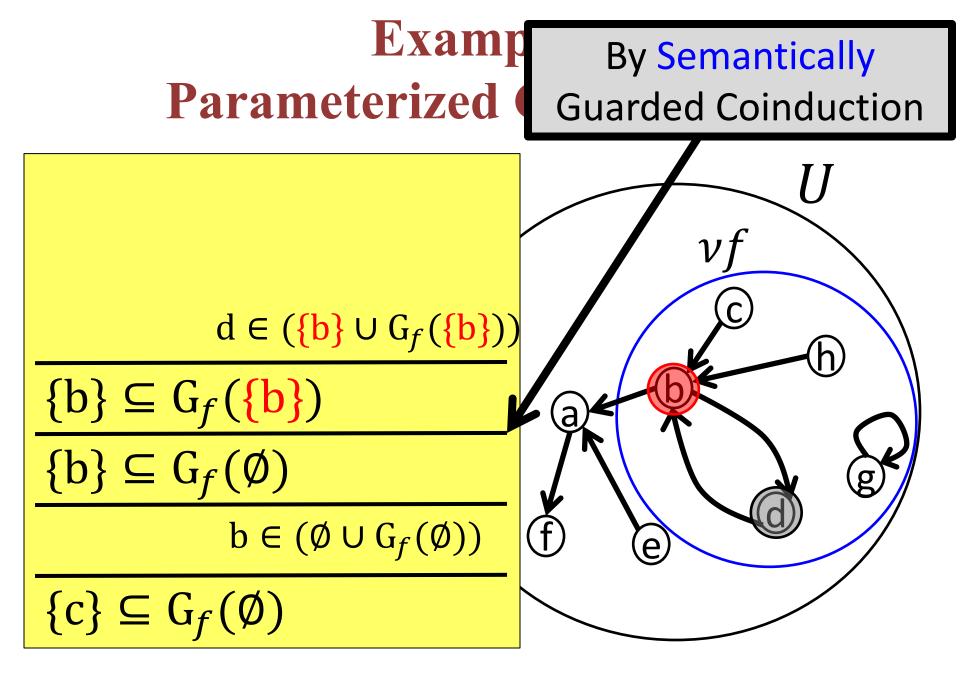


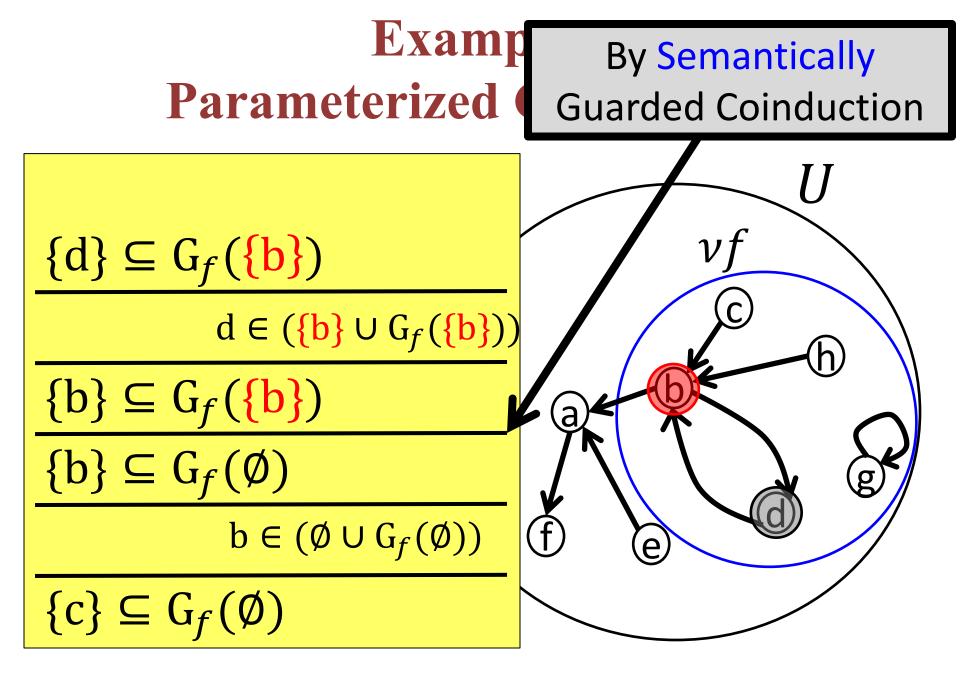


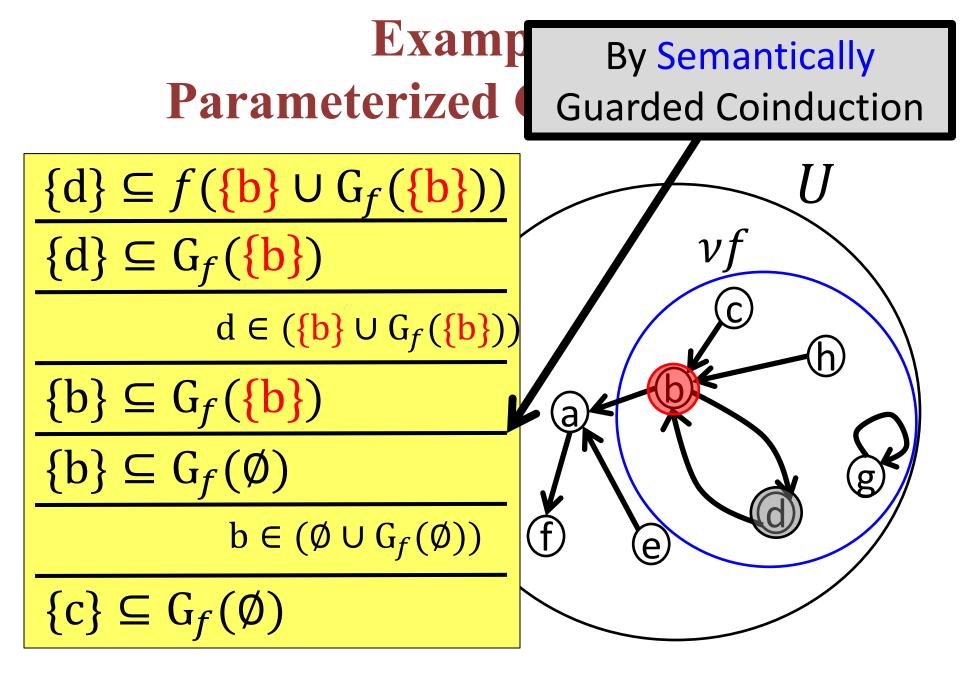










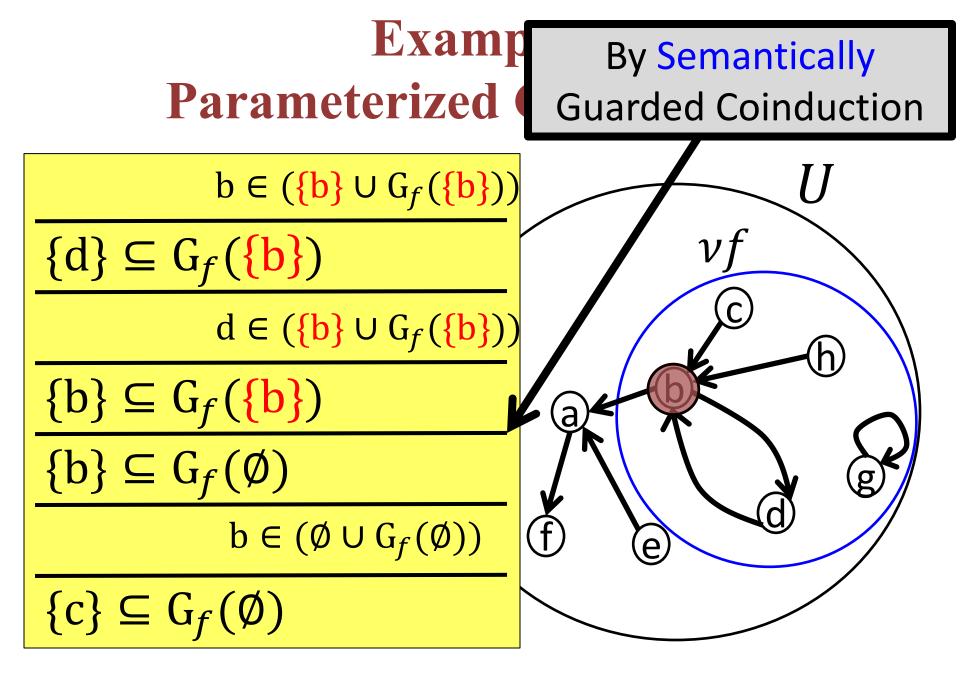


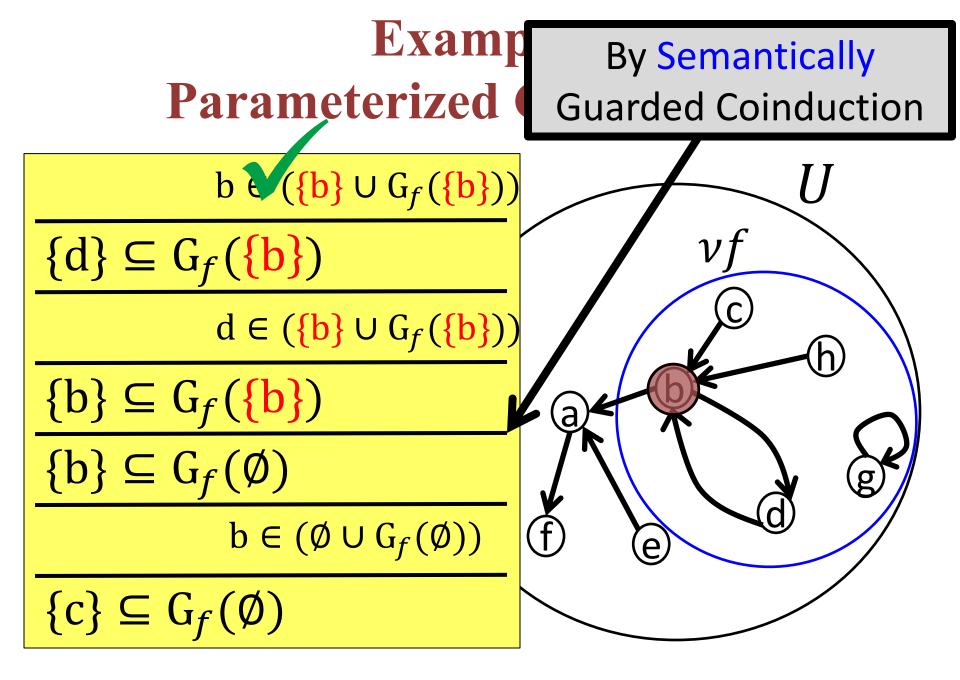
Examp
ParameterizedBy Semantically
Guarded Coinduction
$$\exists y. d \rightarrow y \land y \in (\{b\} \cup G_f(\{b\}))$$

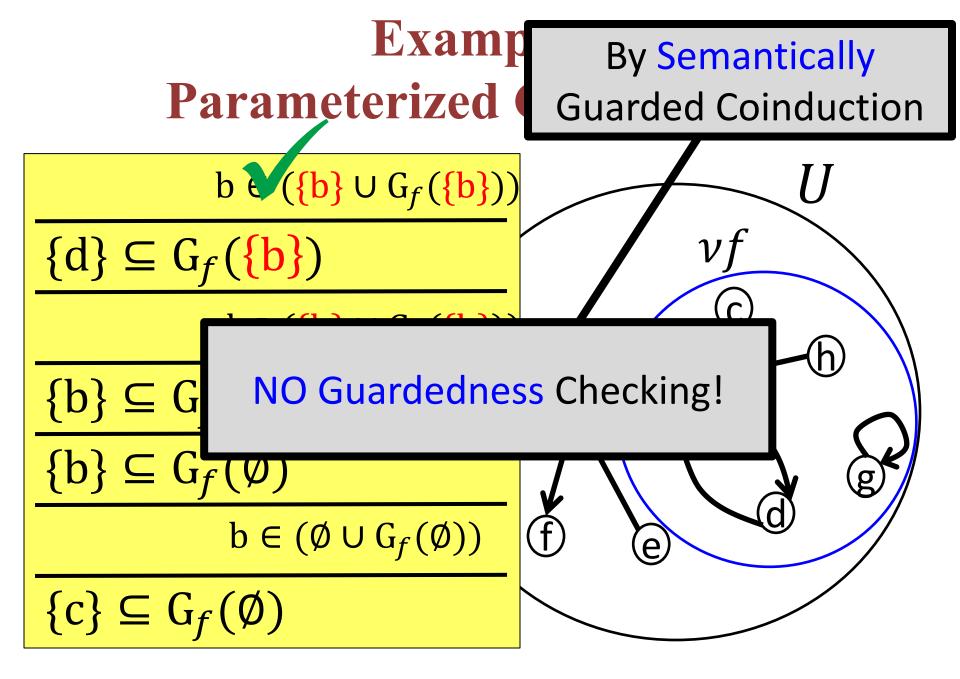
 $\{d\} \subseteq G_f(\{b\})$
 $d \in (\{b\} \cup G_f(\{b\}))$
 $\{b\} \subseteq G_f(\{b\})$
 $b \in (\emptyset \cup G_f(\emptyset))$
 $\{c\} \subseteq G_f(\emptyset)$ $\bigvee U$
 $\forall f$
 0
 f
 e

Examp
ParameterizedBy Semantically
Guarded Coinduction
$$\exists y. d \rightarrow y \land y \in (\{b\} \cup G_f(\{b\}))$$

 $\{d\} \subseteq G_f(\{b\})$
 $d \in (\{b\} \cup G_f(\{b\}))$
 $\{b\} \subseteq G_f(\{b\})$
 $b \in (\emptyset \cup G_f(\emptyset))$
 $b \in (\emptyset \cup G_f(\emptyset))$
 $\{c\} \subseteq G_f(\emptyset)$ vf
 vf
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0







Paco: A Coq Library for Parameterized Coinduction http://plv.mpi-sws.org/paco/

Syntactic Guardedness

Semantic Guardedness

```
Lemma rsp_simulated_cofix:
  forall n m (EQ: n = 2 * m), similarity (f @ n) (g @ m).
Proof.
  cofix CIH.
  intros; subst; do 6 csimul_step 1; do 2 csimul_step 0.
  destruct m0; csimul_step 2; [|by eauto].
  fold_rfg; generalize (m+(m+0)).
  cofix CIH'.
  intros; do 3 csimul_step 1.
  destruct n; csimul_step 1; [by eauto|].
  do 3 csimul_step 1; eauto.
Qed.
```

```
Lemma rsp_simulated_paco:
forall n m (EQ: n = 2 * m), paco2 sim bot2 (f @ n) (g @ m).
Proof.
pcofix CIH.
intros; subst; do 6 psimil_step 1; do 2 psimil_step 0.
destruct m0; psimil_step 2; [|by eauto].
left; fold_rfg; generalize (m+(m+0)).
pcofix CIH'.
intros; do 3 psimil_step 1.
destruct n; psimil_step 1; [by eauto]].
do 3 psimil_step 1; eauto.
Oed.
```

Paco: A Coq Library for Parameterized Coinduction http://plv.mpi-sws.org/paco/

Syntactic Guardedness

Semantic Guardedness

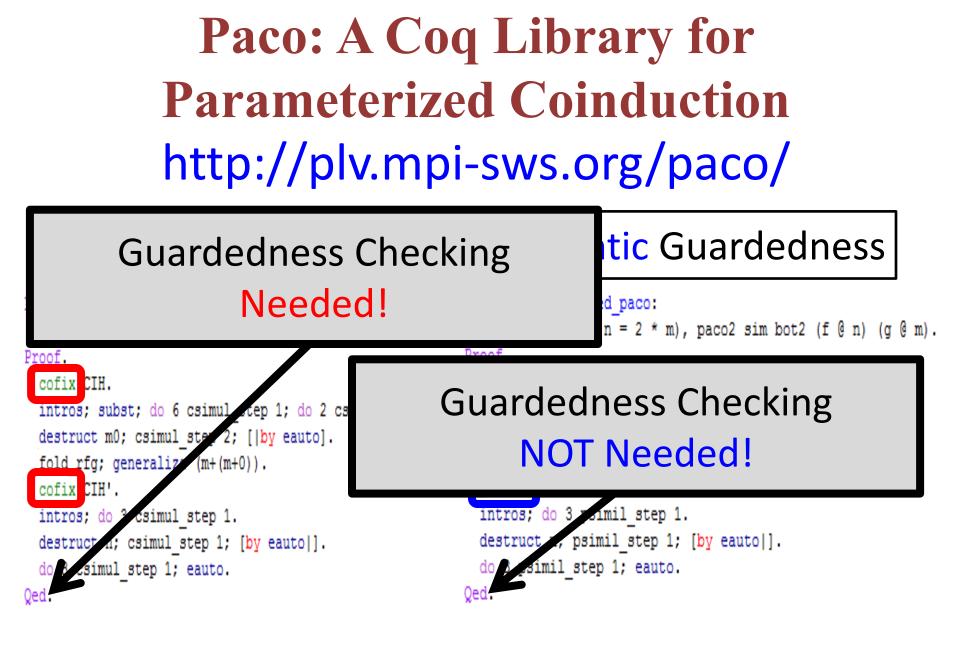
```
Lemma rsp_simulated_cofix:
```

```
forall n m (EQ: n = 2 * m), similarity (f @ n) (g @ m).
Proof.
```

```
cofix CIH.
```

```
intros; subst; do 6 csimul_step 1; do 2 csimul_step 0.
destruct m0; csimul_step 2; [|by eauto].
fold rfg; generalize (m+(m+0)).
cofix CIH'.
intros; do 3 csimul_step 1.
destruct n; csimul_step 1; [by eauto]].
do 3 csimul_step 1; eauto.
Qed.
```

```
Lemma rsp_simulated_paco:
forall n m (EQ: n = 2 * m), paco2 sim bot2 (f @ n) (g @ m).
Proof.
pcofix IH.
intros; subst; do 6 psimil_step 1; do 2 psimil_step 0.
destruct m0; psimil_step 2; [|by eauto].
left; fold_rfg; generalize (m+(m+0)).
pcofix IH'.
intros; do 3 psimil_step 1.
destruct n; psimil_step 1; [by eauto]].
do 3 psimil_step 1; eauto.
Oed.
```



Failed Proof using Syntactically Guarded Coinduction

```
Variable Node: Type.
Variable R: relation Node.
CoInductive infpath x : Prop :=
infpath y (STEP: R x y) (INF: infpath y).
Hint Constructors infpath.
Lemma Park's principle:
  forall (P: Node -> Prop),
  (forall x, P x -> exists y, clos trans 1n R x y /\ P y) ->
  forall x, P x \rightarrow infpath x.
Proof
 cofix CIH; intros P M x Px.
 destruct (M Px) as (y & C & Py); clear Px.
  induction C: eauto.
Qed.
                                      (Cog Script(0-) Holes)
 ·\--- x.v
                       56% (52,0)
Error:
Recursive definition of CIH is ill-formed.
```

Successful Proof using Semantically Guarded Coinduction

```
Variable Node: Type.
Variable R: relation Node.
Inductive step (X: Node -> Prop) (x: Node) : Prop :=
| step intro: forall y, R x y -> X y -> step X x.
Hint Constructors step.
Definition infpath := paco1 step bot1.
Lemma step mon : monotonel step. Proof. pmonauto. Qed.
Hint Resolve step mon : paco.
Lemma Park's principle:
  forall (P: Node -> Prop),
 (forall x, P x -> exists y, clos trans 1n R x y /\ P y) ->
  forall x, P x \rightarrow infpath x.
Proof
  pcofix CIH intros P M x Px.
 uestruct (M Px) as (y & C & Py); clear Px.
  induction C; pfold; eauto.
Oed.
                      50% (56,0)
                                      (Cog Script(0-) Holes)
 -\--- y.v
Park's principle is defined
```

Successful Proof using Semantically Guarded Coinduction

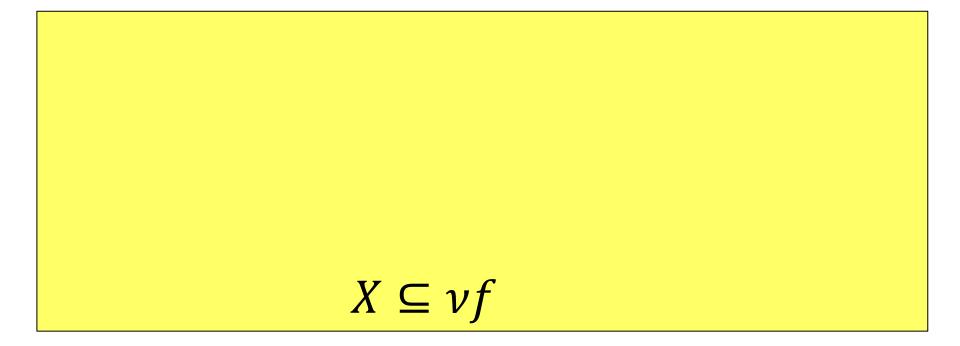
```
Variable Node: Type.
Variable R: relation Node.
Inductive step (X: Node -> Prop) (x: Node) : Prop :=
| step intro: forall y, R x y -> X y -> step X x.
Hint Constructors step.
Definition infpath := paco1 step bot1.
Lemma step mon : monotonel step. Proof. pmonauto. Qed.
Hint Resolve step mon : paco.
Lemma Park's principle:
  forall (P: Node -> Prop),
  (forall x, P x -> exists y, clos trans 1n R x y /\ P y) ->
  forall x, P x \rightarrow infpath x.
Proof
  pcofix CIH intros P M x Px.
  destruct (M Px) as (y & C & Py); clear Px.
  induction C; pfold; eauto.
Oed.
                                      (Coq Script(0-) Holes)
                      50% (5.0)
       y.v
Park's principle is defined
```

Successful Proof using Semantically Guarded Coinduction

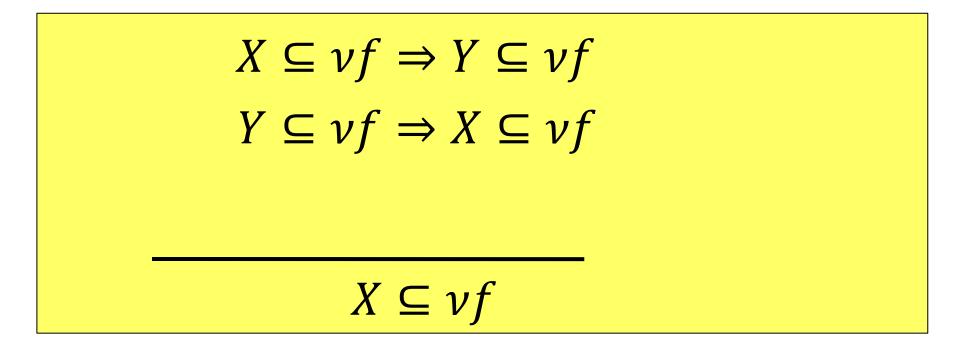
Possible because of NO Syntactic Guardedness Checking

```
Definition infpath := pacol step bot1.
Lemma step_mon : monotonel step. Proof. pmonauto. Qed.
Hint Resolve step_mon : paco.
Lemma Park's_principle:
   forall (P: Node -> Prop),
    (forall x, P x -> exists y, clos_trans_1n _ R x y /\ P y) ->
   forall x, P x -> infpath x.
Proof.
   pcofix CIH intros P M x Px.
   uestruct (M _ Px) as (y & C & Py); clear Px.
   induction C; pfold; eauto.
Qed.
-\--- y.v 50% (50.0) (Coq Script(0-) Holes)
Park's_principle is defined
```

Syntactic Guardedness is NOT Compositional



Syntactic Guardedness is NOT Compositional



Syntactic Guardedness is NOT Compositional

$pf_{1}: X \subseteq \nu f \Rightarrow Y \subseteq \nu f \text{ (pf}_{1} \text{ is guarded)}$ $pf_{2}: Y \subseteq \nu f \Rightarrow X \subseteq \nu f \text{ (pf}_{2} \text{ is guarded)}$

$$X \subseteq \nu f$$

Not Expressible in the logic

$pf_{1}: X \subseteq \nu f \Rightarrow Y \subseteq \nu f \text{ (pf}_{1} \text{ is guarded)}$ $pf_{2}: Y \subseteq \nu f \Rightarrow X \subseteq \nu f \text{ (pf}_{2} \text{ is guarded)}$ $X \subseteq \nu f$

Make Proofs Transparent

 $pf_1: X \subseteq \nu f \Rightarrow Y \subseteq \nu f$ $pf_2: Y \subseteq \nu f \Rightarrow X \subseteq \nu f$ $X \subseteq \nu f$

Make Proofs Transparent

$$pf_{1}: X \subseteq \nu f \Rightarrow Y \subseteq \nu f$$

$$pf_{2}: Y \subseteq \nu f \Rightarrow X \subseteq \nu f$$

$$pf_{2} \circ pf_{1}: X \subseteq \nu f \Rightarrow X \subseteq \nu f$$

$$X \subseteq \nu f$$

Make Proofs Transparent

$$pf_{1}: X \subseteq \nu f \Rightarrow Y \subseteq \nu f$$

$$pf_{2}: Y \subseteq \nu f \Rightarrow X \subseteq \nu f$$

$$pf_{2} \circ pf_{1}: X \subseteq \nu f \Rightarrow X \subseteq \nu f \text{ (pf}_{2} \circ pf_{1}$$

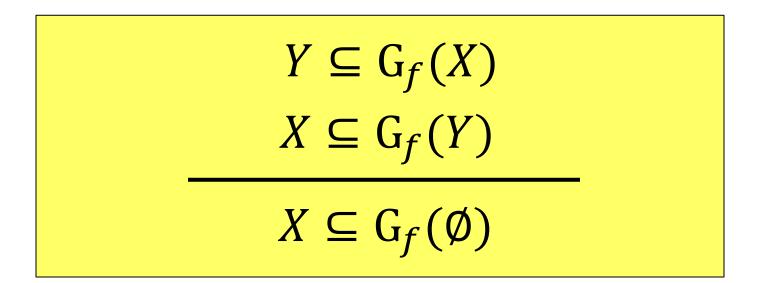
$$X \subseteq \nu f \text{ is guarded)}$$

Two Problems with Transparent Proofs
1. Slowdown
2. NO Abstraction

$$pf_1: X \subseteq \nu f \Rightarrow Y \subseteq \nu f$$

 $pf_2: Y \subseteq \nu f \Rightarrow X \subseteq \nu f$
 $pf_2 \circ pf_1: X \subseteq \nu f \Rightarrow X \subseteq \nu f$ ($pf_2 \circ pf_1$
 $X \subseteq \nu f$ is guarded)

Semantic Guardedness is Compositional



Possible because Guardedness can be expressed in the Logic!

$$Y \subseteq G_f(X)$$
$$X \subseteq G_f(Y)$$
$$X \subseteq G_f(\emptyset)$$

Problems with Syntactic Guardedness

- 1. Non-Compositional
- 2. Far from complete
- 3. Bad interaction with automation
- 4. Hard to debug
- 5. Slow

Problems with

Semantic Guardedness

- 1. Non-Compositional
- 2. Far from complete
- 3. Bad interaction with automation
- 4. Hard to debug
- 5. Slow

What else is in the paper?

- Related Work
 - Glynn Winskel (1989)
 - Lawrence Moss (2001)
- Combination with Up-To Techniques
- Mechanization in Coq
 Using Mendler-style recursion