
Linear types as a semantics for concurrency: passing messages and defining protocols.

Linear types as a semantics for concurrency:
passing messages and defining protocols.

J.R.B. Cockett

Department of Computer Science
University of Calgary

Alberta, Canada

robin@cpsc.ucalgary.ca

(work with Subashis Chakraborty)

Chocola Lyon: 14 March 2013

Linear types as a semantics for concurrency: passing messages and defining protocols.

What is a good semantics for concurrency?

1. Where are we? Where should we be?

2. Communication on a channel.

3. Polycategories and representability.

4. Communication on many channels.

5. Message passing.

6. Protocols.

Linear types as a semantics for concurrency: passing messages and defining protocols.

Where are we? Where should we be?

1.
Where are we?

Where should we be?

Linear types as a semantics for concurrency: passing messages and defining protocols.

Where are we? Where should we be?

Distributed computing: the reality ...
In the 1970’s networks, parallel, and distributed computing were
going to solve everything!
Practitioners pushed back with “the fallacies”
(Joy, Lyon, Deutsch, Gosling):
I The network is reliable.
I Latency is zero.
I Bandwidth is infinite
I The network is secure.
I Topology doesn’t change.
I Transport cost is zero.
I The network is homogeneous.

Computing had blindly entered a new world of expectation and
connectedness!

There was no turning back ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

Where are we? Where should we be?

Computing the reality ...

I In the 1960’s computing power and memory was expensive ...
measurement: bits and operations per second.
One GFLOP cost US1.1 trillion.

I By 2000 memory was dirt cheap and processors powerful ...
measurement: moved from bits to gigabytes
One GFLOP cost US1000.

I By 2013 multicore (4 or 8 cpu) is common ...
measurement: moved to terabytes (32 bit addressing)
One GFLOP cost US0.75.

I By 2050 kilocore and gigacore will be common ...

Computing has blindly entered a new era of power!

There is no turning back ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

Where are we? Where should we be?

Practice ahead of theory ...

Where is the theory?

I Where was the mathematics of processes, concurrency,
communication?

I Was the theory only develop in response to practice?

I Was theory simply modeling practice? Should it?

I Was there a need to develop new theory ...
.... or was it just taking time to link existing theory and
practice?

Does mathematics have anything insightful to say about communicating

processes?

Linear types as a semantics for concurrency: passing messages and defining protocols.

Where are we? Where should we be?

A brief history of process semantics ...

I Petri nets, C. A. Petri (1962).

I Communicating Sequential Processes, C. A. R. Hoare (1978).

I Calculus of Communicating Processes, R. Milner (1979) [book
(1989)].

I Algebra of Communicating Processes (ACP), J. Bergstra and
J. W. Klop (1982).

I Robin Milner’s quest to find the “λ-calculus of concurrency”
produced the π-calculus with J. Parrow (1992) [book (1999)].

I Others: ambient calculus (L. Cardelli, A.D. Gordon), PEPA
(J. Hillston), the fusion calculus (J. Parrow and B. Victor),
the spy calculus (M. Abadi and A. Gordon), ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

Where are we? Where should we be?

The complaint ...

What are the fundamental structures of concurrency?
We still don’t know!’

Is this profusion a scandal of our subject: I used to think so
... now I am not so sure.”

Samson Abramsky (2005)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Where are we? Where should we be?

The complaint

I No Church/Turing thesis for concurrency ...

I A tool kit: no unified theory ...

I Plasticity of definition, carvings in snow: no bedrock ...

I A profusion of syntax but no semantics ...

I Physics (quantum computing), biological computing, and
environmental modeling are at our gates: what do we have to
show?

Should we expect more than a tool kit?

I Tools are good: bisimulation, hiding, scope extrusion, ...

I The subject covers a wide range of phenomena ...

... of course we should expect more ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

Where are we? Where should we be?

So what is a good process semantics?

_ _ _ _ _ _ _ _ _ _ _ _�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _

Programming language

_ _ _ _ _ _ _ _ _ _ _�

�

�

�_ _ _ _ _ _ _ _ _ _ _
Operational behavior

OO

Term logic

66

oo //
hh

((RRRRRRRRRRRRR
Categorical theory
55

uukkkkkkkkkkkkkkk

��

ii

Proof theory //

OO

_ _ _ _ _�

�

�

�_ _ _ _ _
Models

Linear types as a semantics for concurrency: passing messages and defining protocols.

Where are we? Where should we be?

So what is a good process semantics?

I Proof theory: behaviour of the free term model:
I Term construction
I Type inference and checking.
I Compositional behaviour from cut elimination.

I A categorical semantics:
I Universal constructs (properties versus structure).
I Rules of equality: (localized) program transformations.
I Compositional semantics: allowing program construction.
I Modular description: allows controlled “feature” addition.
I Interface to mathematics: models with different properties.
I Term logic = programming language (Subashis).
I Operational semantics = abstract machines, efficient

evaluation.

Linear types as a semantics for concurrency: passing messages and defining protocols.

Where are we? Where should we be?

So where are we?

The mathematics is largely there!!

... BUT the Computer Science is not!
... this is where the rubber hits the road!

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

2.

Communication on a channel

(A first bit of bedrock!)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Products and coproducts

I Abelian groups, suplattices, relations: A + B = A× B
(biproducts)

I Sets, topoi, cartesian closed categories, extensive and
distributive categories

I A + B = A t B (disjoint union)
I A× B (cartesian product)
I A× (B + C) ∼= (A× B) + (A× C)

In all these settings the product and coproducts satisfy some very
special properties!

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Products and coproducts

But what does ΣΠ(A) the category with free products and
coproducts generated by the category A look like?

Andre Joyal: Free bicomplete categories.
Cockett and Seely: The logic of sums and products ΣΠ

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Products

Y1

X
(fi)i

//

f1

77ooooooooooooooooooo

fn
''OOOOOOOOOOOOOOOOOO

∏
i Yi

Π1

??~~~~~~~~~~

Πn

��@@@@@@@@@@

...

YN

Πk(f); g = Πk(f ; g)
f ; (gi)i∈I = (f ; gi)i∈I

(fi)i∈I ; Πk(g) = fk ; g

where ∏
i Yi

Πk //

Πk (f)
!!BBBBBBBBB
Yk

f

��
Z

Πk ; f = Πk(f) and Πk = Πk(1Yk
)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Coproducts

X1

q1
��??????????
g1

''OOOOOOOOOOOOOOOOOO

...
∐

i Xi 〈gi 〉
// Y

Xn

qn

??����������
gn

77oooooooooooooooooo

f ;qk(g) = qk(f ; g)
〈fj〉j∈J ; g = 〈fj ; g〉j∈J

qk(f); 〈gj〉j∈J = f ; gk

where

Xk
qk //
∐

j Yj

Z

f

OO

qk (f)

>>|||||||||

f ;qk = qk(f) and qk = qk(1Xk
)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Interactions

X1

...

h11

//

h1m

��<<<<<<<<<<<<<<<<<< Y1

...

Xn

hn1

@@������������������

hnm
// Yn

gives
∐

i Xi
〈(hij)i 〉j=(〈hij 〉j)i //

∏
j Yj

and the basic equalities:

Πi (qj(f)) = qj(Πi (f)) Πk((gi)i) = (Πk(gi))i

qk(〈fj〉j) = 〈qk(fj)〉j

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Logic of products and coproducts

A `1A A
id

{Xj `fj Y }j∈J∐
j Xj `〈fj 〉j∈J Y

cotuple
{X `gi Yi}i∈I

X `(gi)i∈I

∏
i Yi

tuple

X `f Yk

X `qk (f)

∐
i∈I Yi

coproj
Xk `f Y∏

i∈I Xi `Πk (f) Y
proj

X `f Y Y `g Z

X `f ;g Z
cut

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Cut elimination

... is rewriting modulo equations:

f ; 1 +3 f
1; f +3 f

f ;qk(g) +3 qk(f ; g)
Πk(f); g +3 Πk(f ; g)
〈fi 〉i ; g +3 〈fi ; g〉i
f ; (gi)i +3 (f ; gi)i

qk(f); 〈gi 〉i +3 f ; gk
(fi)i ; Πk(g) +3 fk ; g

qk(〈fj〉j)
�� �� 〈qk(fj)〉j

Πk((fi)i)
�� �� (Πk(fi))i

Πi (qj(f))
�� �� qj(Πi (f))

(〈fij〉i)j
�� �� 〈(fij)j〉i

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Process reading ...

�k

?>=<89:;f

Output “k” on the right = qk(f)

k�

?>=<89:;g
Output “k” on the left = Πk(g)

4
����

>>>>

?>=<89:;f1
?>=<89:;f2

Listen for input on the left = 〈f1, f2〉

N
||||

BBBB

?>=<89:;g1 ?>=<89:;g2

Listen for input on the right = (g1, g2)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Process reading of a map ...

(A× B) + (A× C)
〈(Π1(1A),q1(Π2(1B))),(Π1(1A),q2(Π2(1C)))〉 // A× (B + C)

4
pppppppp

NNNNNNNN

N
�����

===== N
�����

=====

1� �1 1� �2

GFED@ABC1A 2� GFED@ABC1A 2�

GFED@ABC1B GFED@ABC1C

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Process reading of the identities ...

�k

4

�����
77777

?>=<89:;f ?>=<89:;g

=

4
����

7777

�k �k

?>=<89:;f ?>=<89:;g

N
����

::::

k� k�

?>=<89:;f ?>=<89:;g

=

k�

N

�����
;;;;;

?>=<89:;f ?>=<89:;g

�k

j�

?>=<89:;f

=

j�

�k

?>=<89:;f

4
uuuuuu

IIIIII

N

����
2222 N

����
2222

GFED@ABCf11
GFED@ABCf12

GFED@ABCf21
GFED@ABCf22

=

N

uuuuuu
IIIIII

4
����

2222 4
����

2222

GFED@ABCf11
GFED@ABCf12

GFED@ABCf21
GFED@ABCf22

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Slogan

The proof theory of products and coproducts

IS

the basic calculus of communication on a channel.

Joyal: “... mathematics is saying something.”

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

Different readings ...
TYPE CATEGORY PROOF PROCESS GAME

Type Object Proposition Protocol Game

Terms Map Proof Process Mediator

Substitute Compose Cut Communicate Compose

Variables Identities Axioms Relay Copy cat

Joyal and Santocanale used the reading of games (Blass) ...
Cockett and Seely used the reading of proofs and categories ...
Pastro used the reading as protocols and processes ...

... just products and coproducts ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

Communication on a channel

History:

(1) Cockett and Seely, Finite sum-product logic, TAC 8, (2001)
Not everything was sorted out!! No decision procedure for
units ...

(2) Cockett and Santocanale, On the word problem for
ΣΠ-categories, and the properties of two-way communication.
CSL 2009.
Proposed a feasible but “intricate” procedure to decide
equality with units.

(3) Heijltjes, Proof nets for additive linear logic with units. Proc.
LICS 2011
(Awarded the LICS 2011 Kleene award for best student paper)
Gave a clean feasible decision procedure for the units.

Without units there is no finite communication!!

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

3.

Polycategories and representation

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Processes connected to many channels

P

α1
UUUUUUUUUUUU

αmiiiiiiiiiiii

β1
iiiiiiiiiiii

βn UUUUUUUUUUUU

α1 : X1, . . . , αm : Xm `P β1 : Y1, . . . , βn : Yn

X1, ..,Xm,Y1, ...,Yn are protocols ...
These are types determine which events can happen next on each
channel (e.g. given by products and coproduct types).

A process can listen or output to any channel to which it is
attached. The process is the system and it communicates with its
environment.

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Communication

Plugging processes together ...

P

α1
UUUUUUUUUUUU

αmiiiiiiiiiiii

β1
ccccccccccccccccccccccccccc

βn

ψ NNNNNNNNNNNNN

Q
γ1

γpddddddddddddddddddddddddddd

δ1
iiiiiiiiiiii

δq UUUUUUUUUUUU

The combined processes become a composite process with the
communication on ψ hidden.

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Miscommunications ...
Plugging processes together in the wrong way can cause deadlock or

livelock ...

P

ECD@GF
α1=β1

αmiiiiiiiiiiii

βn UUUUUUUUUUUU

Don’t plug a process to itself..

P

α1
UUUUUUUUUUUU

α2iiiiiiiiiiii

β1=γ1

β2=γ2

Q

δ1
iiiiiiiiiiii

δ2 UUUUUUUUUUUU

Don’t connect two processes in two different ways ..

... the correctness criterion for linear logic ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Polycategories
A polycategory P consists of the data

I objects: X1, . . . ,Y1, . . . ∈ P0

I polymaps: ∀m, n ∈ N a set

P(X1, . . . ,Xm ; Y1, . . . ,Yn)

I identities: for each X ∈ P0 a polymap 1X ∈ P(X ; X).
I composition (cut): A map

P(Γ; ∆1,X ,∆2)× P(Γ1,X , Γ2; ∆) //P(Γ1, Γ, Γ2; ∆1,∆,∆2)

where Γ1 or ∆1 is empty and Γ2 or ∆2 is empty.

such that identities are identities and cut satisfies associativity and
interchange.
A polycategory is symmetric in case P(σΓ; τ∆) = P(Γ; ∆) for
permutations σ and τ , and certain obvious coherence conditions
hold.

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Polycategories

X1, . . . ,Xn `f Y1, . . . ,Ym

X1 Xn

f

Y1 Ym

···

···

Composition is modeled by the cut rule

Γ `f ∆, γ : Z γ : Z , Γ′ `g ∆

Γ, Γ′ `f ;γg ∆,∆′

Γ Γ′

f

g

∆ ∆′

γ

Composition must have identities (these are wires) ..

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Polycategories

Composition must satisfy the interchange and associative laws

f

g h

α β

f

g

h

α
EE

EE

β
EE

EE

When polycategories are symmetric crossing wires are allowed.

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Pure proof theory of cut-elimination
Symmetric polycategories are the categorical proof theory for cut-elimination.

A `1A A
id

Γ1,X1,X2, Γ2 ` Γ

Γ1,X2,X1, Γ2 ` Γ
exchange

Γ ` Γ1,X1,X2, Γ2

Γ ` Γ1,X2,X1, Γ2
exchange

Γ1 ` Γ2,X X ,∆1 ` ∆2

Γ1,∆1 ` Γ2,∆2
cut

Γ1 ` X , Γ2 ∆1,X ` ∆2

∆1, Γ1 ` ∆2, Γ2
cut

Γ ` X ∆1,X ,∆2 ` ∆

∆1, Γ,∆2 ` ∆
cut

Γ ` Γ1,X , Γ2 X ` ∆

Γ ` Γ1,∆, Γ2
cut

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Representability
A polycategory is representable in case there are polynatural
equivalences

P(Γ1,X ,Y , Γ2; ∆)
r⊗
∼
// P(Γ1,X ⊗ Y , Γ2; ∆)

P(Γ1, Γ2; ∆)
r>
∼
// P(Γ1,>, Γ2; ∆)

P(Γ; ∆1,X ,Y ,∆2)
r⊕
∼
// P(Γ; ∆1,X ⊕ Y ,∆2)

P(Γ; ∆1,∆2)
r⊥
∼
// P(Γ; ∆1,⊥,∆2)

Replace the commas with “bundled” types ...

Polynatural means that the transformation is invariant under
cutting into the non-active position ...

Representability (Burroni, Hermida) simplifies coherence. In a
polycategory having tensors is a property not structure.

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

The multiplicatives
Representability can be presented by sequent calculus rules of
inference:

Γ1, Γ2 ` ∆

Γ1,>, Γ2 ` ∆
split > Γ ` ∆1,∆2

Γ ` ∆1,⊥,∆2
split ⊥

Γ1,A,B, Γ2 ` ∆

Γ1,A⊗ B, Γ2 ` ∆
split ⊗ Γ ` ∆1,A,B,∆2

Γ ` ∆1,A⊕ B,∆2
split ⊕

Γ `
Γ ` > fork > ` ∆

⊥ ` ∆
fork ⊥

Γ1 ` ∆1,A Γ2 ` B,∆2

Γ1, Γ2 ` ∆1,A⊗ B,∆2
fork ⊗

Γ1,A ` ∆1 Γ2,B ` ∆2

Γ1,A⊕ B, Γ2 ` ∆1,∆2
fork ⊕

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Linear distribution ...

Here is a derivation of the linear distribution of ⊗ over ⊕:

B ` B C ` C
B ⊕ C ` B,C

A ` A B ` B
A,B ` A⊗ B

A,B ⊕ C ` A⊗ B,C

A⊗ (B ⊕ C) ` (A⊗ B)⊕ C

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Linearly distributive categories
Representable polycategories correspond precisely to linearly distributive categories.

There are natural coherence requirements. A typical coherence
requirement is:

A⊗ (B ⊗ (C ⊕ D))

1⊗δL
��

a⊗
//

1⊗δL
��

(A⊗ B)⊗ (C ⊕ D))

δL

��

A⊗ ((B ⊗ C)⊕ D)

δL
��

(A⊗ (B ⊗ C))⊕ D
a⊗⊕1

// ((A⊗ B)⊗ C)⊕ D

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Examples of linearly distributive categories

I A distributive lattice ∧ = ⊗, ∨ = ⊕ (*-autonomous=Boolean
lattice).

I A distributive category is a linearly distributive category (with
respect to the product and coproduct and the obvious linear
distribution) if and only if it is a poset.

I Any monoidal category is a degenerate linear distributive
category (“compact”: tensor = par).

I Any ∗-autonomous category is a linearly distributive category.

I A compact closed category is a degenerate ∗-autonomous
category (“compact”: tensor and par).

I (Joyal) Bicompletions of monoidal / linearly distributive
categories are linearly distributive (generally not
*-autonomous).

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Units again .. this time multiplicative!

I If you are French you pretend they don’t exist! This is not
wise!!
... because even if you don’t mention them they are implicit.

I If you are Canadian they are the main interest!!

I A decision procedure for map/proof equality in the symmetric
case is known (exponential).

I The complexity of this decision problem is still unknown ...

I A decision procedure for equality of maps in special cases of
the non-symmetric case is known.

Linear types as a semantics for concurrency: passing messages and defining protocols.

Many channels: the multiplicatives

Some history

(1) Barr ∗-autonomous categories LMS 752 (1979)

(2) Girard Linear logic TCS (1987)

(3) Seely Linear logic, *-autonomous categories and cofree
coalgebras (1989)

(4) Blute, Cockett, Seely, Trimble Natural deduction and
coherence for linearly distributive categories. JPAA (1996).

(5) Schneck Natural deduction and coherence for non-symmetric
linearly distributive categories. TAC (1999)

(6) Koh, Ong Explicit substitution internal languages for
autonomous and ∗-automonous categories. ENTCS 26 (1999)

(7) Lamarche, Strassburger Proof nets for multiplicative linear
logic with units LNCS 3210 (2004)

(8) Dominic Hughes Simple free star-autonomous categories and
full coherence JPPA (2012)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

4.

Communication on many channels
(Mulipicatives and additives)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

Products and coproducts for polycategories
There are polynatural equivalences

P(Γ1,X + Y , Γ2; ∆)
r+

∼
// P(Γ1,X , Γ2; ∆)× P(Γ1,Y , Γ2; ∆)

P(Γ1, 0, Γ2; ∆)
r0

∼
// 1

P(Γ; ∆1,X × Y ,∆2)
r×
∼
// P(Γ; ∆1,X ,∆2)× P(Γ; ∆1,Y ,∆2)

P(Γ; ∆1,∆2)
r1

∼
// 1

When P is representable we have distributive laws:

X⊗(A+B) ∼= (X⊗A)+(X⊗B) and (A×B)⊕Y ∼= (A⊕Y)×(B⊕Y).

e.g. P(Γ,X ⊗ A, Γ′; ∆)

P(Γ,X ,A, Γ′; ∆)

P(Γ,X ⊗ B, Γ′; ∆)

P(Γ,X ,B, Γ′; ∆)

P(Γ,X , (A + B), Γ′; ∆)

P(Γ,X ⊗ (A + B), Γ′; ∆)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

Notation designed to shock ...

Additives Multiplicatives
Product Coproduct Tensor Par

Linear Logic (Girard) & ⊕ ⊗ O
Categorical (Cockett/Seely) ×/

∏
+/
∐

⊗ ⊕
Categorical (Egger) ∧ ∨ ? >

Vive la différence!!!
Girard notation aligned for the distributive law:

A⊗ (B ⊕ C) ≡ (A⊗ B)⊕ (A⊗ C)
∗-autonomous with“exponentials”

Categorical notion aligned along dualities:
+� × and ⊕� ⊗

not ∗-autonomous no exponentials

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

Poly-calculus of products and coproducts

A `1A A
id

{Γ1, α : Xj , Γ2 `Pj
Γ3}j

Γ1, α :
∐

j Xj , Γ2 `α〈Pj 〉j Γ3
cotuple

{Γ1 `Qi
Γ2, α : Yi , Γ3}i

Γ1 `α〈Qi 〉i Γ2, α :
∏

i Yi , Γ3
tuple

Γ1 `P Γ2, α : Yk , Γ3

Γ1 `α[k]·P Γ2, α :
∐

i Yi , Γ3
coproj

Γ1, α : Xk , Γ2 `Q Γ3

Γ1, α :
∏

i Xi , Γ2 `α[k]·Q Γ3
proj

Γ1 `P Γ2, α : X , Γ3 ∆1, α : X ,∆2 `Q ∆3

∆1, Γ1,∆2 `P;αQ Γ2,∆3, Γ3
cut

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

Cut elimination ...

... is rewriting modulo equations:

α 6= β

(α[k] · P) ;γ Q +3 α[k] · (P ;γ Q)
P ;γ (β[k] · Q) +3 β[k] · (P ;γ Q)

α〈Pi 〉i ;γ Q +3 α〈Pi ;γ Q〉i
P ;γ β〈Qj〉j +3 β〈P ;γ Qj〉j

γ[k] · P ;γ γ〈Qj〉j +3 P ;γ Qk

γ〈Pi 〉i ;γ γ[k] · Q +3 Pk ;γ Q
α〈β〈Pij〉j〉i

�� �� β〈α〈Pij〉i 〉j
α[k] · β〈Pj〉j

�� �� β〈α[k] · Pj〉j
α[k] · β[l] · P �� �� β[l] · α[k] · P

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

A multi-channel process
P : A,E //G , I Q : B,E //G , J]
R : C ,F //H, I S : D,F //H,K

α :

◦

a
xxrrrrrr b

&&LLLLLL

•
c ����� d��999 •

e ����� f��999

A B C D

β :

(•
g
����� h��888

E F

) −−−−−−−−→

γ :

(◦
a′ ����� b′��999

G H

)

δ :

•

c ′ ����� d ′
��777

I ◦
e′ ����� f ′

��888

J K

α

〈 a 7→ β[g](γ[a′](δ

(
c ′ 7→ α[c](P)
d ′ 7→ α[d](δ[e ′](Q))

)
))

b 7→ β[h](γ[b′](δ

(
c ′ 7→ α[e](R)
d ′ 7→ α[f](δ[f ′](S))

)
))

〉

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

A programming interlude

α[a] := put a on α

δ

(
c 7→ R
d 7→ S

)
:=

match δ as
c → R
d → S

δ

〈
c 7→ R
d 7→ S

〉
:=

match δ as
c → R
d → S

Note: in programming syntax distinction between products and
coproducts are suppressed ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

A first programming interlude

match α as
a → put g on β; put a′ on γ

match δ as
c ′ → put c on α

call P(α, β ⇒ γ, δ)
d ′ → put d on α; put e ′ on δ

call Q(α, β ⇒ γ, δ)
b → put h on β ; put b′ on γ

match δ as
c ′ → put e on α

call R(α, β ⇒ γ, δ)
d ′ → put f on α; put f ′ on δ

call S(α, β ⇒ γ, δ)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

An example of cut-elimination

Suppose f : A //D, g : B //C , and h : D // E are atomic
axioms.

α

◦
a
		����

b
��,

,,,

A B

−−−−−−−−−−−−−−−−→
α

〈
a 7→ γ[c](f)
b 7→ γ[d](g)

〉
γ

◦
c
������

d
��-

C D

−−−−−−−−−−−−−−−−−→
γ

(
c 7→ β[f](1C)
d 7→ β[e](h)

)
β

◦
e
������

f
��,

,,,

E C

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

An example cont.

α

〈
a 7→ γ[c](f)
b 7→ γ[d](g)

〉
;γ γ

(
c 7→ β[f](h)
d 7→ β[e](1C)

)

⇒ α

〈 a 7→ γ[c](f) ;γ γ

(
c 7→ β[f](h)
d 7→ β[e](1C)

)
b 7→ γ[d](g) ;γ γ

(
c 7→ β[f](h)
d 7→ β[e](1C)

) 〉

⇒ α

〈
a 7→ f ;γ β[f](h)
b 7→ g ;γ β[e](1C)

〉
⇒ α

〈
a 7→ β[f](f ;γ h)
b 7→ β[e](g ;γ 1C)

〉
⇒ α

〈
a 7→ β[f](f ;γ h)
b 7→ β[e](g)

〉
α

◦
a
����� b
��444

A B

−−−−−−−−−−−−→

β

•
e
����� f
��444

E C

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

Forking and splitting

Γ1, α1 : X , α2 : Y , Γ2 `P Γ3

Γ1, α : X ⊗ Y , Γ2 `α〈α1,α2 7→P〉 Γ3

γ1 : Γ1 `P γ2 : Γ2, α1 : X δ1 : ∆1 `Q α2 : Y , δ2 : ∆2

γ1 : Γ1, δ1 : ∆1 `
α

〈
α1 | γ1, γ2 7→ P
α2 | δ1, δ2 7→ Q

〉 γ2 : Γ2, α : X ⊗ Y , δ2 : ∆2

Program syntax:

α〈α1, α2 7→ P〉 ≡ split α into (α1, α2) in P

α

〈
α1 | γ1, γ2 7→ P
α2 | δ1, δ2 7→ Q

〉
≡ fork α as

α1 with γ1, γ2 7→ P
α2 with δ1, δ2 7→ Q

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

More rewrites and identities

I γ

〈
α | Λ 7→ f
β | Φ 7→ g

〉
;γ γ〈(α, β) 7→ h〉 +3 g ;β (f ;α h))

I α

〈 α1 | Λ1 7→ f

α2 | Λ2 7→ β

(
a1 7→ g1
a2 7→ g2

) 〉
�� ��

β

 a1 7→ α

〈
α1 | Λ1 7→ f
α2 | Λ2 7→ g1

〉
a2 7→ α

〈
α1 | Λ1 7→ f
α2 | Λ2 7→ g2

〉

There are more identities. See:
Cockett and Pastro, A language for multiplicative-additive linear
logic, ENTCS, 2005.

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

Some history

The multiplicative-additive fragment has map equality decidable.
However, the precise complexity of deciding equality is still
unknown (it is in PSPACE).

(1) The problem was first explored in:
Girard Proof-nets for additives, manuscript, 1994.

(2) The “unit-free” case was handled very neatly by:
Hughes and Glabbeek, Proof nets for unit-free
multiplicative-additive linear logic, LICS 2003.

(3) A solution for the case with all units was described in:
Cockett and Pastro, A language for multiplicative-additive
linear logic, ENTCS, 2005.
However, the procedure was exponential and no attempt to
analyse the complexity was made.

Linear types as a semantics for concurrency: passing messages and defining protocols.

Multiplicatives and additives

Where are we?

REMARKABLY:

almost 1

NO CHOICES HAVE BEEN MADE!!

... everything is free and canonical ...

The initial setting for concurrency is just MALL ...

1... we chose symmetry for the polycategory!

Linear types as a semantics for concurrency: passing messages and defining protocols.

Message passing

5.

Message passing

Key feature of concurrency!

Linear types as a semantics for concurrency: passing messages and defining protocols.

Message passing

Message passing

A two-tier logic:

I The logic of messages: the sequential world of computation
(e.g. Cartesian closed category (CCC) with coproducts)

I The logic of message passing: the concurrent world of
computation
(e.g. Linearly distributive category (LDC) with
products/coproducts)

Categorically the sequential world acts on the concurrent world

... that is it is a linear actegory ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

Message passing

Linear actegory

I A cartesian C closed category with coproducts to represent
the sequential world

I A linearly distributive category L with products and
coproducts to represent the concurrent world

I Two actions:
◦ : C× L −→ L and • : Cop × L −→ L so that

(A× B) ◦ L ∼= A ◦ (B ◦ L) and (A× B) • L ∼= A • (B • L)
with obvious coherences.

I A • (putting out a message on the left) is left adjoint to A ◦
(putting out a message on the right):

X −→ A ◦ Y
A • X −→ Y

Linear types as a semantics for concurrency: passing messages and defining protocols.

Message passing

Sequential and concurrent worlds

(A) Sequential sequent:
Ψ −→ A

where Ψ is a sequential context - a list of types.

(B) Concurrent sequent:
Ψ | Γ ` ∆

I Ψ is the sequential context (a sequence of types)
I Γ and ∆ are the concurrent contexts (a sequence of protocols)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Message passing

Message passing rules

x :A,Ψ | α::X , Γ ` ∆

Ψ | α::A ◦ X , Γ ` ∆ get x on α

x :A,Ψ | Γ ` α::Y ,∆

Ψ | Γ ` α::A • Y ,∆

Ψ −→ t:A Ψ | α::X , Γ ` ∆

Ψ | α::A • X , Γ ` ∆ put t on α

Ψ −→ t:A Ψ | Γ ` Y ,∆

Ψ | Γ ` α::A ◦ Y ,∆

Programs do not distinguish “put”/“get” on the left or right ...
The adjunction guarantees they are equivalent ...

BUT THE TYPES ARE DIFFERENT!!!
The type depends on whether a channel has an “input polarity”
(channel on left) or an “output polarity” (channel on right).
The programmer has to assign “polarities” to facilitate type
inference ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

Message passing

Message passing rules
Augmenting multiplicative rules with sequential contexts:

Ψ | Γ1, Γ2 ` ∆

Ψ | Γ1,>, Γ2 ` ∆
split >

Ψ | Γ ` ∆1,∆2

Ψ | Γ ` ∆1,⊥,∆2
split ⊥

Ψ | Γ1,A,B, Γ2 ` ∆

Ψ | Γ1,A⊗ B, Γ2 ` ∆
split ⊗

Ψ | Γ ` ∆1,A,B,∆2

Ψ | Γ ` ∆1,A⊕ B,∆2
split ⊕

Γ `
Γ ` > fork > ` ∆

⊥ ` ∆
fork ⊥

Ψ | Γ1 ` ∆1,A Ψ | Γ2 ` B,∆2

Ψ | Γ1, Γ2 ` ∆1,A⊗ B,∆2
fork ⊗

Ψ | Γ1,A ` ∆1 Ψ | Γ2,B ` ∆2

Ψ | Γ1,A⊕ B, Γ2 ` ∆1,∆2
fork ⊕

Linear types as a semantics for concurrency: passing messages and defining protocols.

Message passing

Message passing rules

Augmenting with sequential context is straightforward ... mostly!

Significantly the sequential coproduct interacts with the concurrent
world allowing sequential control to have concurrent effect:

Ψ,A | Γ ` ∆ Ψ,A | Γ ` ∆

Ψ,A + B | Γ ` ∆

Program construct:

case t of

b0(x0) 7→ P1

b1(x1) 7→ P2

Linear types as a semantics for concurrency: passing messages and defining protocols.

Message passing

Diffie-Hellman key exchange:
Alice :: (Key,Key) Key • >,Msg • > ⇒ Key • (Key ◦ (cMsg • >))
Alice (k1, k2) α, β ⇒ γ

get a on α
put modk1(ka

2) on γ
get b on γ
get m on β
put encode(m,modk1(ba)) on γ
close α
close β
end γ

Given two public keys k1 and k2, Alice gets a secret key, a, on secure

channel α. Does a key exchange on insecure channel γ talking to Bob!

Gets a plain text message on (secure) channel β, encrypts it with now

agreed key; sends this on the insecure channel γ to Bob

Linear types as a semantics for concurrency: passing messages and defining protocols.

Message passing

A Reference:

Cockett and Pastro
The logic of message passing
Science of computer programming 74 (2009) 498-533

Proof theory

poly actegory
oo //

ff

&&NNNNNNNNNNN

Category theory

linear actegory
77

wwooooooooooo

term calculus

message passing

(Lots of history for message passing!!)

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

6.

Protocols

... for interactions continuing through time ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

Protocols

So far we have only introduced basic protocols using:

(a) products

(b) coproducts

(c) message passing: binding messages to channels.

These allow the modelling of finite interactions.

For REAL programming need sophisticated protocols which are
possibly infinite in time ...

These can be delivered through fixed points.

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

Protocols and fixed points

Initial/final datatypes
in the concurrent world

=

(categorical) fixed points
in the concurrent world

protocols!

There are two formulations:

I Lambek style datatypes: the fixed point formulation of
inductive and coinductive datatypes.

I Mendler style datatypes (Vene, Uustalu) and circular style
datatypes (Santocanale).

... for polycategories (without negation) only the second
formulation works!

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

Inductive datatypes
X a category and F : X −→ X an endofunctor. An inductive
datatype for F is an object µx .F (x) ∈ X together with a map

consF : F (µx .F (x)) −→ µx .F (x)

such that the inductive axiom holds: Given Z ∈ X and a map
g : F (Z) −→ Z then there is a unique map {|g |}F , such that

F (µx .F (x))
consF //

F ({|g |}F)

��

µx .F (x)

{|g |}F

��
F (Z) g

// Z

commutes.

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

Coinductive datatypes
X a category and F : X −→ X an endofunctor. An coinductive
datatype for F is an object νx .F (x) ∈ X together with a map

destF : νx .F (x) −→ F (µx .F (x))

such that the coinductive axiom holds: Given Z ∈ X and a map
g : Z −→ F (Z) then there is a unique map (|g |)F , such that

Z
g //

(|g |)F

��

F (Z)

F ((|g |)F)

��
µx .F (x)

destF
// µx .F (x)

commutes.

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

Rules for fixed points

The “Kozen rules” for fixed points are:

X ` F (µx .F (x))

X ` µx .F (x)

G (νy .G (y)) ` Y

νy .G (y) ` Y

F (X) ` X

µx .F (x) ` X

Y ` G (Y)

Y ` νy .G (y)

Problem: these do not work well2 in multi- or poly- type theories!

2Unless you can flip propositions from one side to the other ...

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

Inductive circular datatypes
A combinator: f : X −→ B

c[f] : F (X) −→ B

where
F (X)

c[x] !!DDDDDDDD

F (r) // F (X ′)

c[x ′]||yyyyyyyy

B

⇒ X

x
��????????
r // X ′

x ′~~~~~~~~~~

B

delivers a circular map µa.c[a] : µx .F (x) −→ B such that the
following diagram commutes

F (µx .F (x))
cons //

c[h]
%%JJJJJJJJJJ

µx .F (x)

h
{{wwwwwwwww

B

if and only if h = µa.c[a]. In particular consµa.c[a] = c[µa.c[a]].

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

Coinductive circular datatypes
Dually we have for coinductive datatypes the following circular
style definition. Given a combinator

B
f−−→ X

G (B) −−−→
c[f]

X
c[]

where B is a fixed object in X, there is a cocircular map
νb.c[b] : B −→ νx .G (x) such that

B

u

{{wwwwwwwww
c[u]

%%KKKKKKKKKK

νx .G (x)
dest

// G (νx .G (x))

commutes iff u = νb.c[b]. In particular (νb.c[b])dest = c[νb.c[b]].

See also Tarmo Uustalu and Varmo Vene (thesis).

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

Circular rules for polycategories

Given functors P and Q here are the circular rules for a
polycategory:

Γ ` ∆,P(µx .P(x)),∆′

Γ ` ∆, µx .P(x),∆′
µ-Cons

Γ,Q(νx .Q(x)), Γ′ `A ∆

Γ, νx .Q(x), Γ′ ` ∆
ν-Cons

X = µx .P(x) | Γ,X , Γ′ `X ∆

...
Γ,P(X), Γ′ ` ∆

Γ, µx .P(x), Γ′ ` ∆

X = νx .Q(x) | Γ `X ∆,X ,∆′

...
Γ ` ∆,Q(X),∆′

Γ ` ∆, νx .Q(x),∆′

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

Expressiveness of protocols

Adding datatypes increases expressiveness dramatically!
One can defne the Burroni natural numbers by:

N(A) = µX .A + X

Having the Burroni natural numbers means:

I All primitive recursive functions on the natural numbers are
present (Pare and Roman)!

I SO the decision problem for equality of maps is immediately
undecideable.

Linear types as a semantics for concurrency: passing messages and defining protocols.

protocols

Programming with protocols

protocol Talk(A,B) ⇒ $C
#talk:: put(A) (get(B) $C) ⇒ $C

–(initial fixed point µx .A • (B ◦ x))

drive
duplicator::Talk(A,B*B) ⇒ Talk(A,B), Talk(A,B)
duplicator:: α ⇒ β, γ by α =

#talk:
get x on α
put #talk on β ; put #talk on γ
put x on β ; put x on γ
get y1 on β ; get y2 on γ
put (y1, y2) on α
call duplicator(α ⇒ β, γ)

Linear types as a semantics for concurrency: passing messages and defining protocols.

Conclusions ...

Conclusions ...

Was this carving in snow!!???

I Logic of products and coproducts precisely describes
communication on a channel.

I Polycategories (the logic of cut) and additives model
communication on many channels.

I Multiplicatives given by representability.

I Messages determined by (adjoint action).

I Protocols given by datatypes.

I There was no choice!!!!

Linear types as a semantics for concurrency: passing messages and defining protocols.

Conclusions ...

Conclusions ..

Linearly actegories provide a semantics of concurrency:

I communication on channels

I message passing

I fixed points give sophisticated protocols.

AND ... non-deterministic semantics for distributed computing
obtained by compacting features (e.g tensor = par)!!

Linear types as a semantics for concurrency: passing messages and defining protocols.

Conclusions ...

Conclusions ...

Mathematics has something to on the semantics of concurrency ...

... the mathematics involved is (largely) available ...

... the problem is to deploy it in Computer Science!!!

	Where are we? Where should we be?
	Communication on a channel
	Many channels: the multiplicatives
	Multiplicatives and additives
	Message passing
	protocols
	Conclusions ...

