
AN INTERACTIVE SEMANTICS FOR CLASSICAL

PROOFS

Michele Basaldella

IML Marseille

September 26, 2013

INTRODUCTION

In this talk ... (I)
I I will introduce a language consisting of infinitary

propositional formulas and a sequent calculus to derive
sequences of formulas ΘΘΘ,ΓΓΓ,∆∆∆

I I will show a soundness–and–completeness theorem for
derivations = formal proofs in the sequent calculus:

Soundness : T ∈ DER
(

ΘΘΘ
)

=⇒ T ∈ INT
(

ΘΘΘ
)

Completeness : T ∈ INT
(

ΘΘΘ
)

=⇒ T ∈ DER
(

ΘΘΘ
)

where, roughly speaking:
• T ∈ DER

(
ΘΘΘ
)

= “T is the skeleton of a derivation of ΘΘΘ”
• T ∈ INT

(
ΘΘΘ
)

= “T is a member of the interactive
interpretation of ΘΘΘ”

In this talk ... (I)
I I will introduce a language consisting of infinitary

propositional formulas and a sequent calculus to derive
sequences of formulas ΘΘΘ,ΓΓΓ,∆∆∆

I I will show a soundness–and–completeness theorem for
derivations = formal proofs in the sequent calculus:

Soundness : T ∈ DER
(

ΘΘΘ
)

=⇒ T ∈ INT
(

ΘΘΘ
)

Completeness : T ∈ INT
(

ΘΘΘ
)

=⇒ T ∈ DER
(

ΘΘΘ
)

where, roughly speaking:
• T ∈ DER

(
ΘΘΘ
)

= “T is the skeleton of a derivation of ΘΘΘ”
• T ∈ INT

(
ΘΘΘ
)

= “T is a member of the interactive
interpretation of ΘΘΘ”

Skeleton: example

Untyped λ–terms: t ,u . . . ::= x , y , z, . . . | tu | λx .t
Formulas (types): F ,G, . . . ::= a, c,d , . . . | F → G

Curry–style type assignment for untyped λ–terms:

Γ, x : F ` x : F
Γ, x : F ` t : G
Γ ` λx .t : F → G

Γ ` t : F → G Γ ` u : F
Γ ` tu : G

Untyped λ–terms ≈ skeletons of derivations in natural
deduction of formulas of minimal logic.

I But this is just an intuition. In our case, skeletons are
infinitary (not even well–founded) objects.

Skeleton: example

Untyped λ–terms: t ,u . . . ::= x , y , z, . . . | tu | λx .t
Formulas (types): F ,G, . . . ::= a, c,d , . . . | F → G

Derivations in minimal logic (natural deduction):

Γ, F ` F
Γ, F ` G

Γ ` F → G

Γ ` F → G Γ ` F
Γ ` G

Untyped λ–terms ≈ skeletons of derivations in natural
deduction of formulas of minimal logic.

I But this is just an intuition. In our case, skeletons are
infinitary (not even well–founded) objects.

In this talk ... (II)

I The interactive interpretation of a sequent ΘΘΘ is defined
. . . interactively = using a procedure of cut–elimination

I Related works: Girard’s ludics and (in part) Krivine’s
classical realizability.

J.–Y. Girard
Locus solum: From the rules of logic to the logic of rules
Math. Struct. in Comp. Sci. 11(3) 301–506, 2001.

J.–L. Krivine
Realizability in classical logic
Panoramas et Synthèses 27 197–229, 2009.

This work is self–contained = no familiarity is required.

Analogies and differences
Ludics Realizability This work

Logic MALL2foc Analysis T
Object = untyped proof design λc–term test

Counter–object design stack environment
Polarization YES NO NO

Interaction (W) cut–net process configuration
Interaction (H) cut–elimination KAM closed cut–elimination
Orthogonality convergence several options convergence

Formula behaviour truth value interactive interpretation
soundness adequacy soundness

Aim correctness extraction
completeness completeness

I MALL2foc = second–order polarized focalized MALL, sequent calculus with cut
I Analysis = second–order classical arithmetic, natural deduction
I T = T ait calculus (only normal rules) cut–free sequent calculus
I KAM = Krivine Abtract Machine (head β–reduction)
I Behaviour = a set of designs A such that A = A⊥⊥

I Truth value = a set of closed λc–terms A such that A = X⊥, for some set of
stacks X

I Interactive interpretation = a set of tests A such that A = {E}⊥, for some
environment E

I Correctness = the interpretation is invariant under cut–elimination

The interactive interpretation of formulas and sequents is
defined through the concept of . . . interaction.

We now informally describe what interaction is.

Sequent calculus

I Formulas: F,G,H, . . . generated in the usual way,
using (possibly infinitary)
connectives ∨,∧,⊥.

I Sequents : ΘΘΘ,ΓΓΓ, . . . = finite, non–empty sequences of
formulas ` F0, . . . ,Fn−1.

I Rules for deriving sequents.

{ΘΘΘa}a∈S
(r)

ΘΘΘ
I Derivations = well–founded trees labeled by sequents

(which are “locally correct”).

System T DEF
=
(
F, S , R , D

)

Closed cuts

... π
` F0, . . . ,Fn−1 G0, . . . ,Gn−1 cut

where:

I “Closed” means that every formula is a cut–formula.
I π is a derivation of ` F0, . . . ,Fn−1 in T ,
I G0, . . . ,Gn−1 is a finite, non–empty sequence of formulas

of T that we call environment.
I We simultaneously cut Fi with Gi , for each i < n.

In this talk, we adopt the more suggestive notation:
... π

` F0, . . . ,Fn−1

...
...

`∗ G0 . . . `∗ Gn−1 cut

We also denote environments by `∗ G0 . . . `∗ Gn−1.

Interaction (I)

So . . . you cut a derivation AND a sequence of formulas ???

YES, because we identify a formula F occurring in E with the
derivation of its subformula tree:

...
`∗ F

...
`∗ G

...
`∗ H

`∗ F ∧G ∧ H

...
`∗ F

...
`∗ G

...
`∗ H

`∗ F ∨G ∨ H

This special kind of derivation is not in general a derivation
in T . Since every formula has a unique subformula tree,
every formula has a unique special derivation of this kind.
Moreover, it makes sense to cut these thing together . . .

Interaction (I)

So . . . you cut a derivation AND a sequence of formulas ???

YES, because we identify a formula F occurring in E with the
derivation of its subformula tree:

...
`∗ F

...
`∗ G

...
`∗ H

`∗ F ∧G ∧ H

...
`∗ F

...
`∗ G

...
`∗ H

`∗ F ∨G ∨ H

This special kind of derivation is not in general a derivation
in T . Since every formula has a unique subformula tree,
every formula has a unique special derivation of this kind.
Moreover, it makes sense to cut these thing together . . .

Interaction (II)

. . . and define a procedure of cut–elimination:

... π
` F ∨G,F
` F ∨G

...
`∗ F⊥

...
`∗ G⊥

`∗ F⊥ ∧G⊥
cut

reduces to

... π
` F ∨G,F

...
`∗ F⊥

...
`∗ G⊥

`∗ F⊥ ∧G⊥

...
`∗ F⊥

cut

This form of cut–elimination does not produce anything.
However, we can study some properties of this procedure.

Interaction (II)

. . . and define a procedure of cut–elimination:

... π
` F ∨G,F
` F ∨G

...
`∗ F⊥

...
`∗ G⊥

`∗ F⊥ ∧G⊥
cut

reduces to

... π
` F ∨G,F

...
`∗ F⊥

...
`∗ G⊥

`∗ F⊥ ∧G⊥

...
`∗ F⊥

cut

This form of cut–elimination does not produce anything.
However, we can study some properties of this procedure.

Interaction (III)

In general, we have to consider closed cuts like

... π
` F0, . . . ,Fn−1

...
...

`∗ G0 . . . `∗ Gn−1 cut

There are new situations to consider:
I Error:

... π
` F1 ∨ F2,F1

` F1 ∨ F2

... π
`∗ G1 ∨G2 cut

reduces to “error.”

Interaction (IV)

I Reduction:

... π
` F1 ∨ F2,F1

` F1 ∨ F2

...
`∗ G1

...
`∗ G2

...
`∗ G3

`∗ G1 ∧G2 ∧G3 cut

reduces to

... π
` F1 ∨ F2,F1

...
`∗ G1

...
`∗ G2

...
`∗ G3

`∗ G1 ∧G2 ∧G3

...
`∗ G1 cut

Generalization

I Instead of considering derivations in T , we will consider
skeletons of derivations, that we call tests T,U,V, . . .

I A test does not contain all the information of a derivation.
But we have enough information to consider closed cuts of
the form

T

...
...

`∗ G0 . . . `∗ Gn−1 cut

where we cut:
I the test T,
I the environment `∗ G0 . . . `∗ Gn−1.

Later on, we will define a suitable procedure of reduction
(cut–elimination) that we call interaction.

TREES

Notation

I N∗ = {s, t ,u, . . .} = the set of finite sequences of natural
numbers.

I Some sequences:

() = the empty sequence;
a = unary sequence;

a0a1 = binary sequence;
a0a1 · · · ak−1 = k–ary sequence.

I st = the concatenation of s and t .
I In particular, if s is a k–ary sequence and a ∈ N, then sa

and sa are (k + 1)–ary sequences.

I Prefix order: s v t DEF⇐⇒ there is u ∈ N∗ such that t = su.

Trees
I A tree T is a non–empty subset of N∗ such that

if t ∈ T and s v t , then s ∈ T .
I Since T is non–empty, () ∈ T . () is called the root of T .
I An infinite branch in T is a infinite subset S ⊆ T of the

form S = {() , a0 , a0a1 , . . . , a0a1 · · · an−1 , . . .}.
I A tree is said to be well–founded if it does not contain an

infinite branch.
I Let A be a non–empty set. A tree labeled by A is a pair

L = (T , ϕ) consisting of a tree T and a function
ϕ : T −→ A. ϕ is called the labeling function of L. A is
called the set of labels.

I We write TREE
(
L
)

and LAB
(
L
)

for the underlying tree of L
and its labeling function respectively, i.e., if L = (T , ϕ), then
TREE

(
L
)

= T and LAB
(
L
)

= ϕ.
I Two labeled trees L and M (labeled by the same set of

labels) are equal if TREE
(
L
)

= TREE
(
M
)

and
LAB

(
L
)
(s) = LAB

(
M
)
(s), for all s ∈ TREE

(
L
)
.

TAIT CALCULUS T

W.W. Tait
Normal derivability in classical logic
In: The syntax and semantics of infinitary languages (Jon
Barwise editor), LNM 72 Springer–Verlag 204–236, 1968.

H. Schwichtenberg
Proof theory: some applications of cut-elimination
In: Handbook of Mathematical Logic (Jon Barwise editor)
867–895, 1977.

W.W. Tait
Gödel’s reformulation of Gentzen’s first consistency proof
for arithmetic: the no-counterexample interpretation
The Bulletin of Symbolic Logic 11(2) 225-238, 2005.

W. Pohlers
Proof theory: an introduction
Spinger–Verlag 1989.

Tait calculus is an infinitary classical propositional logic.

I A purely logical and propositional approach to (first order,
classical) arithmetic.

In this work:

I Sequents are finite sequences of formulas rather than
finite sets of formulas,

I We only consider sets of natural numbers as index sets.
I We do not consider propositional atoms: the prime (i.e.,

undecomposable) formulas are 0 (false) and 1 (true).
I We only consider normal rules (i.e., no cut–rule).

Formulas

I The formulas of our language are inductively defined as
follows:

if for some S ⊆ N, {Ga}a∈S is a family of formulas, then
∨

S Ga
and

∧
S Ga are formulas.

Some terminology and notation:
I
∨

S Ga = disjunction;
I
∧

S Ga = conjunction;

I 0 DEF
=
∨
∅Ga;

I 1 DEF
=
∧
∅Ga.

Equilvalently, a formula is a well–founded tree labeled by
{∨,∧}.

Negation and sequents

The negation of a formula F, noted by F⊥, is the formula
recursively defined as follows:(∨

S Ga
)⊥ DEF

=
∧

S
(
G⊥a
)
;

(∧
S Ga

)⊥ DEF
=

∨
S
(
G⊥a
)
.

In particular, 0⊥ = 1, and 1⊥ = 0.

The negation is involutive:

F⊥⊥ = F.

A sequent ΘΘΘ,ΓΓΓ, . . . of T is a non–empty finite sequence
` F0, . . . ,Fn−1 of formulas (n > 0).

Rules

The following rules derive sequents. They have to be read
bottom–up, in the sense of proof–search.

Disjunctive rule :
I i < n and a0 ∈ S:

` F0, . . . ,Fi−1 ,
∨

S Ga , Fi+1, . . . ,Fn−1 , Ga0
(∨)

` F0, . . . ,Fi−1 ,
∨

S Ga , Fi+1, . . . ,Fn−1

Conjunctive rule :
I i < n, one premise for each member of S:

` F0, . . . ,Fi−1 ,
∧

S Ga , Fi+1, . . . ,Fn−1 , Ga . . . all a ∈ S
(∧)

` F0, . . . ,Fi−1 ,
∧

S Ga , Fi+1, . . . ,Fn−1

Derivations

I A derivation is a well–founded tree labeled by sequents
which is “locally correct.” Formally,

A derivation is a well–founded tree π labeled by sequents
such that for all s ∈ TREE

(
π
)

one of the following two conditions
holds:

(D1) :

(i) LAB

(
π
)
(s) = ` F0, . . . ,Fn−1 and there are i < n

and a0 ∈ N such that Fi =
∨

S Ga and a0 ∈ S,
(ii) sa ∈ TREE

(
π
)

if and only if a = 0, and
LAB

(
π
)
(s0) = ` F0, . . . ,Fn−1,Ga0 .

(D2) :

(i) LAB

(
π
)
(s) = ` F0, . . . ,Fn−1 and there is i < n

such that Fi =
∧

S Ga,
(ii) sa ∈ TREE

(
π
)

if and only if a ∈ S, and
LAB

(
π
)
(sa) = ` F0, . . . ,Fn−1,Ga, for all a ∈ S.

This completes the definition of Tait calculus T .

Some derivable sequents

I Initial sequents : A derivation with no premises is
(∧)

` F0, . . . ,Fi−1 , 1 , Fi+1, . . . ,Fn−1

I Every leaf of a derivation is labeled by a sequent of this
form.

I Generalized identities : Sequents of this form are
derivable:
` F0, . . . ,Fi−1 , G , Fi+1, . . . ,Fj−1 , G⊥ , Fj+1, . . . ,Fn−1

I Novikoff’s law of complete induction is the formula(
F1 ∧ (F1 → F2) ∧ (F2 → F3) ∧ · · ·

)
→ F1 ∧ F2 ∧ F3 ∧ · · · .

In our system, we can consider the sequent

`
(
F⊥1 ∨ (F1 ∧ F⊥2) ∨ (F2 ∧ F⊥3) ∨ · · ·

)
, F1 ∧ F2 ∧ F3 ∧ · · · .

and show that it is derivable.

Game interpretation (I)
We can give a game–theoretic interpretation of our sequent
calculus derivations (Tait (2005)). The game is played by two
participants: SHE and HE. They argue about some sequent ΘΘΘ.
SHE tries to prove it, whereas HE tries to refute it.
A play for ΘΘΘ proceeds as follows.

I The play starts with ΘΘΘ0
DEF
= ΘΘΘ.

Let ΘΘΘk = ` F0, . . . ,Fn−1.
I If ΘΘΘk only contains occurrences of prime formulas 0 and 1,

then ΘΘΘk+1
DEF
= ΘΘΘk .

I Otherwise, SHE selects an occurrence of non–prime
formula, say Fi .
If Fi is a disjunctive formula

∨
S Ga, then SHE chooses

a0 ∈ S and ΘΘΘk+1
DEF
= ` F0, . . . ,Fn−1,Ga0 .

If Fi is a conjunctive formula
∧

S Ga, then HE chooses
a0 ∈ S and ΘΘΘk+1

DEF
= ` F0, . . . ,Fn−1,Ga0 .

Game interpretation (II)

SHE wins the play if for some n the sequent ΘΘΘn contains some
occurrences of 1. Otherwise, HE wins.

This game is clearly unfair to . . . HIM:
I HE can only choose an immediate subformula of a

conjunctive formula selected by HER.
I SHE can choose any occurence of non–prime formula in a

sequent, and in case it is disjunctive, any immediate
subformula of it. In particular, if SHE realizes that a
previous choice was wrong, then SHE can remedy
later on, making a different choice.

SHE has a strategy to win all the possible plays for ΘΘΘ if and
only if ΘΘΘ is derivable in T .

TESTS

Actions

Tests ≈ skeletons of derivations in T .

Formally, tests are infinitary trees labeled by actions.

I A disjunctive action is a triple
〈
n, i ,a

〉
where n, i ,a are

natural numbers and i < n.
I A conjunctive action is a pair

[
n, i
]

where n, i are natural
numbers and i < n.

Some terminology:

I
〈
n, i ,a

〉
=
〈

base , address , name
〉

I
[
n, i
]

=
[

base , address
]

Tests

A test is a tree labeled by actions T such that for all
s ∈ TREE

(
T
)

one of the following two conditions holds:

(T1) :

(i) LAB

(
T
)
(s) =

〈
n, i ,a0

〉
,

(ii) sa ∈ TREE
(
T
)

if and only if a = 0, and
the base of LAB

(
T
)
(s0) is n + 1.

(T2) :

(i) LAB

(
T
)
(s) =

[
n, i
]
,

(ii) for all a ∈ N, sa ∈ TREE
(
T
)

and
the base of LAB

(
T
)
(sa) is n + 1.

We use letters T,U,V, . . . to range over tests.

I Tests are not well–founded trees.

Terminology and notation

Let T be a test.
I If the base of the action LAB

(
T
)
(()) is n, we say that T is

on base n.
I If LAB

(
T
)
(()) =

〈
n, i ,a0

〉
, then we say that T is a

disjunctive test. By definition, T has a unique immediate
subtree U. We denote T by〈

n, i ,a0
〉
.U

I If LAB
(
T
)
(()) =

[
n, i
]
, then we say that T is a conjunctive

test. By definition, for each a ∈ N there is an immediate
subtree Ua of T. We denote T by[

n, i
]
.Ua

Example

T
DEF
=
〈
1,0,a0

〉
.
〈
2,0,a0

〉
. . .
〈
n,0,a0

〉
.
〈
n + 1,0,a0

〉
. . .

is a disjunctive test on base 1. Here:
I TREE

(
T
)

= {(),0,00,000, . . .} = {0n
∣∣ n ∈ N},

I LAB
(
T
)
(0n) =

〈
n + 1,0,a0

〉
, for each n ∈ N.

DER
(
ΘΘΘ
)

Inductive definition of DER
(

ΘΘΘ
)
:

U ∈ DER
(
` F0, . . . ,Fi−1 ,

∨
S Ga , Fi+1, . . . ,Fn−1 , Ga0

)
(∨)〈

n, i ,a0
〉
.U ∈ DER

(
` F0, . . . ,Fi−1 ,

∨
S Ga , Fi+1, . . . ,Fn−1

)
Ua ∈ DER

(
` F0, . . . ,Fi−1 ,

∧
S Ga , Fi+1, . . . ,Fn−1,Ga

)
. . . all a ∈ S

(∧)[
n, i
]
.Ua ∈ DER

(
` F0, . . . ,Fi−1 ,

∧
S Ga , Fi+1, . . . ,Fn−1

)
In the conjunctive rule the subtests {Ub}b∈N\S are arbitrary. For
instance, we have DER

(
` 1

)
= conjunctive tests on base 1.

Remarks

I There is no bijective correspondence between
DER

(
ΘΘΘ
)

and {π : π is a derivation of ΘΘΘ in T }.
For instance, the sequent ` 1 has exactly one derivation
in T , but DER

(
` 1

)
= conjunctive tests on base 1.

I The set DER
(

ΘΘΘ
)

is defined syntactically, i.e., by using
the rules of the sequent calculus.

I Our aim now is to define the set INT
(

ΘΘΘ
)

interactively,
i.e., by using a kind of cut–elimination procedure.

INTERACTION

Recall that we want to consider closed cuts of the form

T `∗ G0 . . . `∗ Gn−1 cut

and define a suitable procedure of reduction (cut–elimination)
that we call interaction. Here:

I T is a test,
I `∗ G0 . . . `∗ Gn−1 is an environment, that is a

sequence of formulas (recall that we identify an
occurrence of formula in E with the derivation of its
subformula tree)

...
...

`∗ G0 . . . `∗ Gn−1

Configurations
An environment on base n (n > 0) is a sequence of formulas
G0, . . . ,Gn−1 that we denote by `∗ G0 . . . `∗ Gn−1.

A configuration is either
I a pair

(
T , `∗ G0, . . . ,`∗ Gn−1

)
where:

I T is a test of base n,
I `∗ G0, . . . ,`∗ Gn−1 is an environment on base n;

for some n > 0,
I or the (fresh) symbol ⇑ (error).

C denotes the set of all configurations.

I Intuition:

(
T , `∗ G0, . . . ,`∗ Gn−1

)
≈

... π
` F0, . . . ,Fn−1

...
...

`∗ G0 . . . `∗ Gn−1
cut

Reduction relation (I)

The reduction relation −→ is the subset of C× C defined as
follows.

(1) ⇑ −→ ⇑.

Intuition: “ error reduces to error.”

Reduction relation (II)

(2) Let C =
(〈

n, i ,a0
〉
.U , `∗ G0 . . . `∗ Gn−1

)
.

• If Gi =
∧

S Fa and a0 ∈ S, then
C −→

(
U , `∗ G0 . . . `∗ Gn−1 `∗ Fa0

)
.

• C −→ ⇑, otherwise.

Intuition (case n = 2 and i = 1):

... π
` A ,

∨
T Ha , Ha0

(∨)
` A ,

∨
T Ha

...
`∗ G0

...
`∗ Fa . . . all a ∈ S
`∗
∧

S Fa
cut

reduces to

... π
` A ,

∨
T Ha , Ha0

...
`∗ G0

...
`∗ Fa . . . all a ∈ S
`∗
∧

S Fa

...
`∗ Fa0 cut

Reduction relation (III)

(3) Let C =
([

n, i
]
.Ua , `∗ G0 . . . `∗ Gn−1

)
.

• If Gi =
∨

S Fa, then
C −→

(
Ua , `∗ G0 . . . `∗ Gn−1 `∗ Fa

)
, for all a ∈ S.

• C −→ ⇑, otherwise.

Intuition (case n = 2, i = 1):

... πa

` A ,
∧

N Ha , Ha . . . all a ∈ N
(∧)

` A ,
∧

N Ha

...
`∗ G0

...
`∗ Fa . . . all a ∈ S
`∗
∨

S Fa
cut

reduces to

... πa

` A ,
∧

N Ha , Ha

...
`∗ G0

...
`∗ Fa . . . all a ∈ S
`∗
∨

S Fa

...
`∗ Fa

cut

one cut for each a ∈ S.

Examples
I The configuration([

n, i
]
.Ua , `∗ G0 . . . `∗ Gi−1 `∗ 0 `∗ Gi+1 `∗ Gn−1

)
does not reduce to anything (because Gi = 0 =

∨
∅ Fa).

I The configuration([
1,0
]
.Ua , `∗

∨
{c,d}Ga

)
reduces to(

Uc , `∗
∨
{c,d}Ga `∗ Gc

)
and

(
Ud , `∗

∨
{c,d}Ga `∗ Gd

)
I Let T DEF

=
〈
1,0,a0

〉
.
〈
2,0,a0

〉
. . .
〈
n,0,a0

〉
.
〈
n + 1,0,a0

〉
. . .

and F DEF
=
∧
{a0}Ga, where Ga0

DEF
= 0. Then,

(
T , `∗ F

)
−→

(〈
2, 0, a0

〉
. . . , `∗ F `∗ 0

)
−→

...
−→

(〈
n, 0, a0

〉
.
〈
n + 1, 0, a0

〉
. . . , `∗ F `∗ 0 . . . `∗ 0

)
−→

(〈
n + 1, 0, a0

〉
. . . , `∗ F `∗ 0 . . . `∗ 0 `∗ 0

)
−→ · · ·

Some properties of −→

Let A be a set and let R be a binary relation of A.
I R is total DEF⇐⇒ for all a ∈ A there is b ∈ A such that a R b;
I R is deterministic DEF⇐⇒ a R b and a R c imply b = c;
I R is terminating DEF⇐⇒ there is no infinite sequence

a0 −→ a1 −→ · · · .
The relation −→ is not total,

not deterministic,
not terminating.

INT
(
ΘΘΘ
)

Let ΘΘΘ = ` F0, . . . ,Fn−1 be a sequent of T . We define the
interactive interpretation of ΘΘΘ as follows:

T ∈ INT
(

ΘΘΘ
) DEF⇐⇒ every sequence of reductions starting

from
(
T , `∗ F⊥0 . . . `∗ F⊥n−1

)
terminates.

SOUNDNESS–AND–COMPLETENESS

Application: additive connectives in ludics (I)

We say that a test T is affine (or, improperly linear), if for every
s, t ∈ TREE

(
T
)

the following condition holds:

s < t =⇒ the addresses of LAB
(
T
)
(s) and

LAB
(
T
)
(t) are different.

In the “formulas–as–resources” interpretation, this condition formalizes the
idea that any occurrence of formula is used (decomposed) “at most once” in
a branch of a derivation, i.e., only additive contraction (sharing of contexts)
is allowed. In terms of rules:

` F0, . . . ,Fi−1 , 0 , Fi+1, . . . ,Fn−1 , Ga0
(∨aff)` F0, . . . ,Fi−1 ,

∨
S Ga , Fi+1, . . . ,Fn−1

` F0, . . . ,Fi−1 , 0 , Fi+1, . . . ,Fn−1 , Ga . . . all a ∈ S
(∧aff)` F0, . . . ,Fi−1 ,

∧
S Ga , Fi+1, . . . ,Fn−1

We can use 0 to express the fact that “the slot i is unavailable.”

Application: additive connectives in ludics (II)

Let A =
∨

S Fa , B =
∨

T Fa , C =
∧

S Ga , D =
∧

T Ga , and
suppose that S and T are disjoint. Define:

A⊕ B DEF
=

∨
S∪T Fa;

C & D DEF
=

∧
S∪T Ga.

T ∈ INT?
(

F
) DEF⇐⇒ T is affine, and every sequence

of reductions starting from(
T , `∗ F

)
terminates.

Then, one can show that:

INT?
(

A⊕ B
)

= INT?
(

A
)
∪ INT?

(
B
)
;

INT?
(

C & D
)

= INT?
(

C
)
∩ INT?

(
D
)
.

Moreover, the union in the case of ⊕ is disjoint.

Soundness–and–completeness

For every sequent ΘΘΘ in T :

T ∈ DER
(

ΘΘΘ
)
⇐⇒ T ∈ INT

(
ΘΘΘ
)
.

Future work

I Propositional variables and second order quantifiers.
I Girard’s β–logic (the logic underlying the theory of

dilators).
I . . .

Thank you!

Questions?

Answers?

Thank you!
Questions?

Answers?

Thank you!
Questions?

Answers?

	Introduction
	Trees
	Tait calculus T
	Tests
	Interaction
	Soundness–and–completeness

