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INTRODUCTION



In this talk ... (1)

» | will introduce a language consisting of infinitary
propositional formulas and a sequent calculus to derive
sequences of formulas ©,I A . . ..

» | will show a soundness—and—completeness theorem for
derivations = formal proofs in the sequent calculus:



In this talk ... (1)

» | will introduce a language consisting of infinitary
propositional formulas and a sequent calculus to derive
sequences of formulas ©,I A . . ..

» | will show a soundness—and—completeness theorem for
derivations = formal proofs in the sequent calculus:

Soundness: T cDER(6) = TcINT(O)

Completeness: T cINT(6) — T cDER(O)

where, roughly speaking:
e T DER(6) = “Tisthe skeleton of a derivation of ©”

e T€INT(©) = “Tisamember of the interactive
interpretation of ©”



Skeleton: example
Untyped \-terms: fu... == x,y,z,... | tu] Ax.t
Formulas (types): F,G,... == a,c,d,... |F—> G
Curry-style type assignment for untyped \—terms:

Mx:FF t: G

F)%88 1= 1= o5e r >t F>G

r-t:F—- G N~ u: F
r-tu: G




Skeleton: example
Untyped \-terms: fu... == x,y,z,... | tu] Ax.t
Formulas (types): F,G,... == a,c,d,... |F—> G
Derivations in minimal logic (natural deduction):

r, Fr G

Jo 7 3 r - F—-G

r- F5G v+ F
r- G

Untyped \—terms = skeletons of derivations in natural
deduction of formulas of minimal logic.

» But this is just an intuition. In our case, skeletons are
infinitary (not even well-founded) objects.



In this talk ... (Il)

» The interactive interpretation of a sequent © is defined
... interactively = using a procedure of cut—elimination

» Related works: Girard’s ludics and (in part) Krivine’s
classical realizability.

@ J.-Y. Girard
Locus solum: From the rules of logic to the logic of rules
Math. Struct. in Comp. Sci. 11(3) 301-506, 2001.

@ J.—L. Krivine
Realizability in classical logic
Panoramas et Syntheses 27 197-229, 2009.

This work is self—-contained = no familiarity is required.



Analogies and differences

Ludics Realizability This work
Logic MALL2;,. Analysis T
Object = untyped proof design Ac—term test
Counter—object design stack environment
Polarization YES NO NO
Interaction (W) cut-net process configuration
Interaction (H) cut—elimination KAM closed cut—elimination
Orthogonality convergence | several options convergence
Formula behaviour truth value interactive interpretation
soundness adequacy soundness
Aim correctness extraction
completeness completeness
> MALL2;,. = second—order polarized focalized MALL, sequent calculus with cut
> Analysis = second—order classical arithmetic, natural deduction
» 7T = Tait calculus (only normal rules) cut—free sequent calculus
» KAM = Krivine Abtract Machine (head S—reduction)
> Behaviour = a set of designs A such that A = AL+
» Truth value = a set of closed Ao—terms A such that A = X, for some set of
stacks X
> Interactive interpretation = a set of tests A such that A = {E} -, for some

environment E

> Correctness = the interpretation is invariant under cut—elimination



The interactive interpretation of formulas and sequents is
defined through the concept of ... interaction.

We now informally describe what interaction is.



Sequent calculus

» Formulas: F,G,H, ... generated in the usual way,
using (possibly infinitary)
connectives V, A, L.

» Sequents : ©,,... = finite, non—empty sequences of
formulas - Fg,...,F_1.

» Rules for deriving sequents.

{ga}aes )
» Derivations = well-founded trees labeled by sequents
(which are “locally correct”).

System T = (F,S,R,D)



Closed cuts

LT

FFO,...,Fn_‘] GO7...,Gn_1

where:
» “Closed” means that every formula is a cut—formula.
» wis a derivation of - Fg,... ,F,_1in T,

» Go,...,G,_1 is a finite, non—empty sequence of formulas
of 7 that we call environment.

» We simultaneously cut F; with G;, for each i < n.

In this talk, we adopt the more suggestive notation:

LT

l_ FO, ey Fn_1 '_* GO . e '_* Gn_1

cut

We also denote environments by -, Go ... . Gp_1.



Interaction (I)

So ... you cut a derivation AND a sequence of formulas ???



Interaction (I)

So ... you cut a derivation AND a sequence of formulas ???

YES, because we identify a formula F occurring in & with the
derivation of its subformula tree:

. F F. G F.H F. F . G . H
F.FAGAH F.FVvGVH

This special kind of derivation is not in general a derivation
in 7. Since every formula has a unique subformula tree,
every formula has a unique special derivation of this kind.
Moreover, it makes sense to cut these thing together ...




Interaction (ll)

...and define a procedure of cut—elimination:

LT

-FvGF HF G
- FVG F FEAGE
cut
reduces to
L HF- H GE :
HFVG,F F. F- A Gt F. F*

cut



Interaction (ll)

...and define a procedure of cut—elimination:

LT

-FvGF HF G

- FVG F FEAGE
cut
reduces to
L HF- H GE :
HFVG,F F. F- A Gt F. F*
cut

This form of cut—elimination does not produce anything.
However, we can study some properties of this procedure.



Interaction (lII)
In general, we have to consider closed cuts like

LT

l_FO,...,Fn_‘] l_* GO P l_* Gn_1
cut
There are new situations to consider:
» Error:

s

- Fy VFy, Fy im

F F{VvF F.GiVvG
1 2 1 2 out

reduces to “error.”



Interaction (IV)

» Reduction:

.

= F1\/F2,F1 P G1 P G2 Pe G3
F FyVF F. Gy AGoAG
1 2 1 2 3 cut
reduces to
Eﬂ' |_*G1 |_*G2 |_*G3 o
FFiVFs Fy F. G1 A Go A G3 F. Gy

cut



Generalization

» Instead of considering derivations in 7, we will consider
skeletons of derivations, that we call tests T, 4,7, . ..
» A test does not contain all the information of a derivation.

But we have enough information to consider closed cuts of
the form

‘E l_* GO “ e |_* Gn_1

cut
where we cut:
» the test %,
» the environmentt, Gy ... F, G,_1.

Later on, we will define a suitable procedure of reduction
(cut—elimination) that we call



TREES



Notation

v

N* = {s,t,u,...} =the set of finite sequences of natural

numbers.
» Some sequences:
() = the empty sequence;
a = unary sequence;
apa; = binary sequence;
apai---ax—1 = k—ary sequence.

v

st = the concatenation of s and t.

In particular, if sis a k—ary sequence and a € N, then sa
and sa are (k + 1)—ary sequences.

v

Prefix order: sC t <5 there is u € N* such that t = su.

v



Trees

v

A tree T is a non—empty subset of N* such that
ftc TandsC t,thensc T.

» Since T is non—empty, () € T. () is called the root of T.
» An infinite branch in T is a infinite subset S C T of the

foomS=1{(), a, @ai, ..., @aai---an-1, ...}

A tree is said to be well-founded if it does not contain an
infinite branch.

Let A be a non—empty set. A tree labeled by A is a pair
L = (T, ) consisting of a tree T and a function

¢: T — A. pis called the labeling function of L. Ais
called the set of labels.

We write TREE (L) and LAB(L) for the underlying tree of L
and its labeling function respectively, i.e., if L = (T, ¢), then
TREE(L) = T and LaB(L) = ¢.

Two labeled trees L and M (labeled by the same set of
labels) are equal if TREE(L) = TREE(M) and

LAB(L)(s) = LaB(M)(s), for all s € TREE(L).



TAIT CALCULUS T



[ W.W. Tait
Normal derivability in classical logic
In: The syntax and semantics of infinitary languages (Jon
Barwise editor), LNM 72 Springer—Verlag 204—-236, 1968.

[§ H. Schwichtenberg
Proof theory: some applications of cut-elimination
In: Handbook of Mathematical Logic (Jon Barwise editor)
867-895, 1977.

[ W.W. Tait
Gddel’s reformulation of Gentzen’s first consistency proof
for arithmetic: the no-counterexample interpretation
The Bulletin of Symbolic Logic 11(2) 225-238, 2005.

¥ W. Pohlers
Proof theory: an introduction
Spinger—Verlag 1989.



Tait calculus is an infinitary classical propositional logic.

» A purely logical and propositional approach to (first order,
classical) arithmetic.

In this work:
» Sequents are finite sequences of formulas rather than
finite sets of formulas,
» We only consider sets of natural numbers as index sets.

» We do not consider propositional atoms: the prime (i.e.,
undecomposable) formulas are 0 (false) and 1 (true).

» We only consider normal rules (i.e., no cut-rule).



Formulas

» The formulas of our language are inductively defined as
follows:

if for some S C N, {Ga}4cs is a family of formulas, then \/ 5 G,
and A g G, are formulas.

Some terminology and notation:

» VsGa= :
» AsGa = conjunction;

» 0 X \/@Ga;
> 1= Ay Ga

Equilvalently, a formula is a well-founded tree labeled by
{V,A}.



Negation and sequents

The negation of a formula F, noted by F*, is the formula
recursively defined as follows:

(VsGa)® = Ns (Gz); (AsGa)* = Vs (Ga).
In particular, 0- =1, and 1+ = 0.
The negation is involutive:

FLL=F.

A sequent ©,I', ... of T is a non—empty finite sequence
+ Fo,...,Fn_q of formulas (n > 0).



Rules

The following derive sequents. They have to be read
bottom—up, in the sense of proof-search.

rule :
» j<nanday € S:

H FO?"'>FI'—1 ) VSGaa FI'+1,"'7FH713G30
- FO:"'vFI'—‘I ) \/SGav Fi+17--an—1

(V)

Conjunctive rule :
» | < n, one premise for each member of S:

l_ F077F171 5 /\3Ga7 F,‘+17...7Fn_17Ga a”aES
F FO)"'aFi—'I ) /\SGa7 Fi+17"'7Fn—1

(A)



Derivations

» A derivation is a well-founded tree labeled by sequents
which is “locally correct.” Formally,

A derivation is a well-founded tree 7 labeled by sequents
such that for all s € TREE(7) one of the following two conditions

holds:

(D1) :

(D2) :

\

(i) LaB(m)(s) =+Fo,...,F,_yandtherearei<n
and gy € NsuchthatF; =\/gGzand g € S,

(i) sa € TREE(n) if and only if a =0, and
LAB(7)(s0) =F Fo,...,Fr_1,Gg.

(i) vaB(7)(s) =+ Fo,...,Fryandthereisi<n
such that F; = A5 Ga,

(i) sa € TREE(7) if and only if a € S, and
LaB(w)(sa) =+ Fo,...,Fr_1,Ga forallae S.

This completes the definition of Tait calculus 7.



Some derivable sequents

» Initial sequents : A derivation with no premises is
()

F FO,...,F,‘,'] ) 1 ) Fi+17~--7Fn—1

» Every leaf of a derivation is labeled by a sequent of this
form.

» Generalized identities : Sequents of this form are
derivable:

- Fo,....Fi.1, G, Fiyq,...,Fi_1, G5, Fipq,...,Fpy
» Novikoff’s law of complete induction is the formula
(FAA(Ft = F)AN(Fo = Fs)A---) > Ff AFo AFg A=
In our system, we can consider the sequent
F (FrV(FiAF3)V(FoAF3) V), FiAFa AFg Ao

and show that it is derivable.



Game interpretation (1)

We can give a game—theoretic interpretation of our sequent
calculus derivations (Tait (2005)). The game is played by two
participants: SHE and HE. They argue about some sequent ©.
SHE tries to prove it, whereas HE tries to refute it.

A play for © proceeds as follows.

» The play starts with 89 = ©.
Let®, =FFg,...,Fp_1.
» If © only contains occurrences of prime formulas 0 and 1,
then O, 1 = O.

» Otherwise, SHE selects an occurrence of non—prime
formula, say F;.

If F;is a formula \/ 5 Ga, then SHE chooses

aye Sand©y 1 = FFy,...,Fn_1,Gg,.

If F; is a conjunctive formula A g Ga, then HE chooses
DEF

ap € Sand ek+1 = [P Fo,...,Fn_1,GaO.



Game interpretation (1)

SHE wins the play if for some n the sequent ©, contains some
occurrences of 1. Otherwise, HE wins.

This game is clearly unfair to ... HIM:

» HE can only choose an immediate subformula of a
conjunctive formula selected by HER.

» SHE can choose any occurence of non—prime formula in a
sequent, and in case it is , any immediate
subformula of it. In particular, if SHE realizes that a
previous choice was wrong, then SHE can remedy
later on, making a different choice.

SHE has a strategy to win all the possible plays for © if and
only if © is derivable in T.



TESTS



Actions

Tests ~ skeletons of derivations in 7.

Formally, tests are infinitary trees labeled by actions.

» A is a triple (n, i, a) where n,i,a are
natural numbers and i < n.

» A conjunctive action is a pair [n, i] where n, i are natural
numbers and i < n.

Some terminology:

» (n,i,a) = ( base , address , name )
» [n,i] = [base,address |



Tests

A test is a tree labeled by actions T such that for all
se TREE(‘I) one of the following two conditions holds:

(i) ©aB(T)(s)={n,i a0),
(T4): { (i) sae TREE(T) if and only if a =0, and
the base of LAB(T)(s0) is n+ 1.

(i) forall ae N, sac TREE(T) and
the base of LAB(T)(sa) is n+ 1.

() 1AB(%)(s) = [n,i],
(T2) : {

We use letters ¥, 41,47, . . . to range over tests.

» Tests are not well-founded trees.



Terminology and notation

Let T be a test.
» If the base of the action LAB(T)(()) is n, we say that T is
on base n.

» If LAB(T)(()) = (n, i, a0), then we say that Tis a
. By definition, ¥ has a unique immediate
subtree 4. We denote T by

(n,i,ap).u

» If LAB(T)(()) = [n, ], then we say that T is a conjunctive
test. By definition, for each a € N there is an immediate
subtree i, of . We denote T by

[n,i].4a



Example

DEF

T = (1,0,a).(2,0,a)...(n,0,a).(n+1,0,a) ...
is a disjunctive test on base 1. Here:
» TREE(T) = {(),0,00,000,...} = {0" | ne N},
» LAB(T)(0") = (n+1,0,a), for each n € N.



DER(©)

Inductive definition of DER(©):

ﬂ S DER( '7 FO,...,F[,‘] 5 \/SGa7 F/+1,...,Fn_1 3 Gao)
<n,i,ao>.£l S DER( = Fo,...,F,‘,-] 5 \/SGa 5 F/+1,...,Fn_1)

V)

ﬂaEDER( = FQ,...,F,‘,1,/\SG3,F,‘+1,...,Fn_1,Ga) ...allae S
[n,i].ilaeDER( H Fo,...,F,‘_17/\SGa, F,‘+1,...,Fn,1)

(n)

In the conjunctive rule the subtests {4, },cn\ s are arbitrary. For
instance, we have DER( - 1) = conjunctive tests on base 1.



Remarks

» There is no bijective correspondence between
DER(©) and {r:xisaderivationof ©®inT}.

For instance, the sequent - 1 has derivation
in 7, but DER( + 1) = conjunctive tests on base 1.

» The set DER(©) is defined syntactically, i.e., by using
the rules of the sequent calculus.

» Our aim now is to define the set INT(© ) interactively,
i.e., by using a kind of cut—elimination procedure.



INTERACTION



Recall that we want to consider closed cuts of the form

T l_* GO o l_* Gn_‘]

cut

and define a suitable procedure of reduction (cut—elimination)
that we call . Here:
» Tis a test,

» . Gy ... k. Gp_qis anenvironment, thatis a
sequence of formulas (recall that we identify an
occurrence of formula in & with the derivation of its
subformula tree)

l_* GO oo l_* an‘]



Configurations

An environment on base n (n > 0) is a sequence of formulas
Gp,...,G,_1thatwedenote by -, Gg ... . Gp_q.

A configuration is either

» apair (T, ks Go, ..., Gh_1) Where:
» T is a test of base n,
» . Gop,...,F. Gh_1 is an environment on base n;

for some n > 0,
» or the (fresh) symbol 1 (error).

C denotes the set of all configurations.

» Intuition:

(T,l—*G(),...,l—*Gn_1) ~ FFo,...,Fn_1 F*GO F*Gn_1

cut



Reduction relation (1)

The reduction relation — is the subset of C x C defined as
follows.

(1 —1

Intuition: “ error reduces to error.”



Reduction relation (I1)

(2) Let C = (<n, i ao>.u, o Go oo [P Gn_1).

o lfG; = AgFaand g € S, then

CcC — (L[, |—*G0 f—*Gn,1 Fo Fao).

e C — 1, otherwise.

Intuition (case n=2and i = 1):

5 U

= A, VrHa, Hy W) : . Fa ...allae S
- A, \V;Ha . Go F. AgFa
cut
reduces to
o : . Fa ...allae S :
F A, V,Ha, Hy . Go F. AgFa b Fap

cut



Reduction relation (lll)

(3) Let C = ([n,i].Ua, k. Go

C— (Ya, ks

Go

e C — 1, otherwise.

Intuition (case n =2, i = 1):

.ﬂ_a

|_* Gn—1)-

kv Gpo1 F« Fa) , forallae S.

FA, AyHa, Ha...allaeN N : . F, ...allae S
FA, AyHa F. Go FVgFa cut
reduces to
s : . F. ...allae s
FA, AyHa, Ha . Go FeVsFa " Fa t
cu

one cut for each a € S.



Examples

» The configuration
([n, i] Mg, s Go oo [P G,'_1 Fo 0 Gi+1 P Gn,1)
does not reduce to anything (because G; = 0 = \/, Fa).

» The configuration
([1,0].8la, Fi V ¢4y Ga) reduces to
(ﬂc 3 l_* \/{C,d} Ga '_* Gc) and (ud 5 l_* \/{C,d} Ga }_* Gd)

DEF

» LetT = (1,0,a).(2,0,a)...({n,0,a).(n+1,0,a) ...
and F%E A(ay) Ga» Where Gg, %F 0. Then,

(T,F.F) — ((2,0,&) ..., F. FF. 0)
H

s ((n,0,a0).(n+1,0,a)... , F. FF.0...+. 0)
((n+1,0,a) ..., F FF.0...F. 0+, 0)

L]



Some properties of —

Let A be a set and let R be a binary relation of A.
» Ris total <= for all a € A there is b € Asuch that a R b;
» Ris deterministic &< aR band aR ¢ imply b = c;
» Ris terminating <= there is no infinite sequence
ayg —ay — .
The relation — is not total,

not deterministic,
not terminating.



INT(©)

Let® =+ Fy,...,F,_1 be a sequent of 7. We define the
interactive interpretation of © as follows:

TcINT(©) & every sequence of reductions starting
from (T, k. Fy ...+ FL ;) terminates.



SOUNDNESS—AND—COMPLETENESS



Application: additive connectives in ludics (l)

We say that a test T is affine (or, improperly linear), if for every
s,t € TREE(%) the following condition holds:

sCt = the addresses of LAB(T)(s) and
LAB(T)(t) are different.

In the “formulas—as-resources” interpretation, this condition formalizes the
idea that any occurrence of formula is used (decomposed) “at most once” in
a branch of a derivation, i.e., only additive contraction (sharing of contexts)
is allowed. In terms of rules:

F Fo,...,Fi.y , 0 , Fipq,...,Fnh_q, Gg
F F07"'7Ff717vsGayFi+17"'7FH—1

(Varr)

F Fo,...,F/_1 5 0 g F/+1,...,Fn,1,Ga ...allae S
F Fo,...,Fi_1, AgGa, Fiy1,...,Foq

(/\aff)

We can use 0 to express the fact that “the slot i is unavailable.”



Application: additive connectives in ludics (II)

LetA:vsFa 5 B:\/TFa ; C:AsGa !D:/\TGB ,and
suppose that S and T are disjoint. Define:

AeB = Vg rFa

C&D = Ag,rGa

T cINT*(F) & < is affine, and every sequence

of reductions starting from
(T, ks F) terminates.

Then, one can show that:
INT*(A@B) = INT*(A) U INT*(B);
INT*(C&D) = INT*(C) N INT*(D).

Moreover, the union in the case of @ is disjoint.



Soundness—and—-completeness

For every sequent © in 7

T € DER(©) < TcINT(O).



Future work

» Propositional variables and second order quantifiers.

» Girard’s g—logic (the logic underlying the theory of
dilators).



Thank you!



Thank you!

Questions?



Thank you!
Questions?

Answers?
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