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Probabilistic Nondeterministic Transition Systems (PNTS’s)

» a.k.a, Probabilistic Automata, Markov Decision Processes,
Simple Segala Systems

» F-coalgebras (X, ) of F(X) = P(D(X)).
» P(X) = powerset of X
» D(X) = discrete probability distributions on X
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Logics for PNTS's

Can be organized in three categories:
1. PCTL, PCTL" and similar logics (~20years old)
» Used in practice because can express useful properties.
» Main tool is Model-Checking, no much else.

» Logically induce non-standard notions of behavioral equivalence

PCTL* C PCTL
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» Main tool is Model-Checking, no much else.
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Logics for PNTS's

Can be organized in three categories:
1. PCTL, PCTL" and similar logics (~20years old)
» Used in practice because can express useful properties.
» Main tool is Model-Checking, no much else.
» Logically induce non-standard notions of behavioral equivalence
PCTL* ¢ PCTL
2. Hennessy-Milner-style Modal logics (ad-hoc, coalgebraic, .. .)

» Typically, carefully crafted to logically induce (some kind of)
bisimulation.

» Not expressive (even with fixed-point operators).

3. Quantitative (Real-valued) logics.
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Quantitative Logics

Given a PNTS's (X, «)
» Semantics: [¢] : X = R
> Eg., [¢ A 0] (x) = min ([¢] (x), [¢¥] ()
> But also, [¢ A 9] (x) = [¢] (x) - [¥] (x)
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» When enriched with fixed-point operators (quantitative
p-calculi)

» Expressive: Can encode PCTL

» Game Semantics: Two-Player Stochastic Games
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Quantitative Logics

Given a PNTS's (X, «)
» Semantics: [¢] : X = R
> Eg., [¢ A 0] (x) = min ([¢] (x), [¢¥] ()
> But also, [¢ A 9] (x) = [¢] (x) - [¥] (x)

» When enriched with fixed-point operators (quantitative
p-calculi)

» Expressive: Can encode PCTL

» Game Semantics: Two-Player Stochastic Games

» Under development: Model Checking algorithms,
Compositional Proof Systems, ...
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Natural Questions

» Is this approach somehow canonical or just ad-hoc?

» Relations with coalgebra? Standard logics (i.e., MSO) ?
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Natural Questions

» Is this approach somehow canonical or just ad-hoc?

» Relations with coalgebra? Standard logics (i.e., MSO) ?

» What kind of behavioral equivalence is logically induced by
these logics?

> Is there a best choice of connectives?
> Eg., [0 A 9] (x) = min ([¢] (), [¥] (x))
» But also, [¢ A 9] (x) = [¢] (x) - [¥] (x)
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Natural Questions

Is this approach somehow canonical or just ad-hoc?

v

» Relations with coalgebra? Standard logics (i.e., MSO) ?

v

What kind(s) of behavioral equivalence is logically induced
by these logics?

v

Is there a best choice of connectives?
> Eg., [0 A 9] (x) = min ([¢] (), [¥] (x))
» But also, [¢ A 9] (x) = [¢] (x) - [¥] (x)

Sound and Complete Axiomatizations?

v

» Proof Systems?
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Behavioral Equivalences for PNTS's

Several have been proposed in the literature.

Coalgebra shed some light: Cocongruence

Definition Given F-coalgebra (X, «), the equivalence relation
E C X x X is a cocongruence iff

(x,y) €E = (a(x),a(y)) € E.
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Examples: Coalgebra (X, «)
» of powerset functor P. Given A, B € P(X)
» (AB)eEr & {xe|xe€A}={xe|xeB}
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Examples: Coalgebra (X, «)
» of powerset functor P. Given A, B € P(X)
» (AB)eEr & {xe|xe€A}={xe|xeB}
» of Distribution functor D. Given di,d» € D(X)
» (di,db) € Ep &  di(A) = da(A), forall Ac X/E
» of PD functor (PNTS's). Given A, B € PD(X)

> (AB)€Epp © {lulg, |ne A} ={lug, | neB}

Definition Given F-coalgebra (X, «), the equivalence relation
E C X x X is a cocongruence iff

(x,y) € E = (a(x),a(y)) € E.
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Cocongruence for PNTS's was introduced (concretely) by Roberto
Segala in his PhD thesis (1994).

» Standard Bisimilarity for PNTS's.

Def: Given (X,a), an equivalence E C X x X is a standard
bisimulation if

» for all x — i there exists y — v such that (u,v)€ Ep, and
» for all y — v there exists x — p such that (u,v)€ Ep,

where x — 1 means p € a(x).
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Two states (x, y) which are not standard bisimilar.

Hl/X\Hz

0.2 0.8 0.8 0.2
L El ' o
X1 X2 X1 X2
/y \
H1 H3 K2
02 08 05 .05 08 02
1N A 1N A 1N A

X1 X2 X1 X2 X1 X2

Under the assumption that x; and x; are distinguishable.
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Convex Bisimilarity

Def: Given (X, a), an equivalence E C X x X is a convex
bisimulation if

» for all x —¢ u there exists y —¢ v such that (,u,u)el:'-_D, and
» for all y —¢ v there exists x —¢ p such that (u,v)€ Ep,

where x — ¢ p means pu € H(a(x)).
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Convex Bisimilarity

Def: Given (X, a), an equivalence E C X x X is a convex
bisimulation if

» for all x —¢ u there exists y —¢ v such that (,u,u)el:'-_D, and
» for all y —¢ v there exists x —¢ p such that (u,v)€ Ep,

where x — ¢ p means pu € H(a(x)).

Cocongruence of F-coalgebras for F = P.D

» P.D = Convex Sets of Probability Distributions.

(X,a: X = PD(X)) 5 (X,a:X = PD(X))

Standard Bisimilarity Convex Bisimilarity
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Fact: Expressive logics for PNTS's can not distinguish convex
bisimilar states.
» PCTL, PCTL* and the R-valued p-Calculi
convex bisim. C PCTL* C PCTL

=

convex bisim. C; quantitative p-calculi

Natural question: does Convex Bisimilarity distinguish too
much?

Matteo Mio Chocola — ENS Lyon, 2013



Example of (x,y) not Convex Bisimilar:

X1

X
H1 H2
0.3 03 0.4 05 04 0.1
L ~ El ' ~ o
X1 X2 X3 X1 X2 X3

M1 K2
: 0:3 "*.‘9.4 0.5!,»" 0:4 ;
X2 X3 U3 X1 X2

0.4.7 03 .03
1 o

~

X1 X2 X3

X3
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Example of (x,y) not Convex Bisimilar:

X
H1 H2
0.3 03 0.4 05 04 0.1
L ~ El ' ~ o
X1 X2 X3 X1 X2 X3

H1 H2
0.3 "0Q3 "*.‘9.4 0.5!,»" 094" 01
X X2 X3 U3 X1 X2 X3

0.4.7 03 .03
1 o

~

X1 X2 X3

Suppose we want to observe event ® = {x }.

» y can exhibit ® with probability [0.3,0.5]. But also x can!
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Example of (x,y) not Convex Bisimilar:

X
H1 H2
0.3 03 0.4 05 04 0.1
L ~ El ' ~ o
X1 X2 X3 X1 X2 X3

H1 H2
0.3 "0Q3 "*.‘9.4 0.5!,»" 094" 01
X X2 X3 U3 X1 X2 X3

0.4.7 03 .03
1 o

~

X1 X2 X3

Suppose we want to observe event ® = {x2}.

» y can exhibit ® with probability [0.3,0.4]. But also x can!
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Example of (x,y) not Convex Bisimilar:

X
H1 H2
0.3 03 0.4 05 04 0.1
L ~ El ' ~ o
X1 X2 X3 X1 X2 X3

H1 H2
0.3 "0Q3 "*.‘9.4 0.5!,»" 094" 01
X X2 X3 U3 X1 X2 X3

0.4.7 03 .03
1 o

~

X1 X2 X3

Suppose we want to observe event ® = {x,x2}.

» y can exhibit ® with probability [0.6,0.9]. But also x can!
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Example of (x,y) not Convex Bisimilar:

X1

As a matter of fact, for all events ® C {x1,x2,x3}.

X
H1 H2
0.3 03 0.4 05 04 0.1
L ~ El ' ~ o
X1 X2 X3 X1 X2 X3

M1 K2
: 0:3 "*.‘9.4 0.5!,»" 0:4 ;
X2 X3 U3 X1 X2

0.4.7 03 .03
1 o

~

X1 X2 X3

X3

» y can exhibit ® with probability [A1, A2] iff x can!
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We considered events ® C{xq, xp, x3}7

» What about Random Variables £ : {x1,x2,x3} - R ?
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We considered events ® C{xq, xp, x3}7
» What about Random Variables £ : {x1,x2,x3} - R ?

Example: f(x1) =60, f(x2) =0, f(x3) = 50.

X K1 J K2
N 0.3 03 "40.4 0.5 044 401
H1 H2 X1 X2 X3 M3 X1 X2 X3
0.3, 0:3 "40.4 0.5, 04 "40.1 0.4, 0:3 "40.3
X1 X2 X3 X1 X2 X3 X1 X2 X3

Expected values: E, (f) = 38, E,,(f) =35, E,,;(f) = 39.
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We considered events ® C{xq, xp, x3}7
» What about Random Variables £ : {x1,x2,x3} - R ?
Example: f(x1) =60, f(x2) =0, f(x3) = 50.
y

X 111 — J T~ 112
N 0.3 03 "40.4 0.5 044 401
H1 M2 X1 X2 X3 M3 X1 X2 X3
0.3, 03 ",0.4 0.5, 04 0.1 0.4, 03 “.,0.3
X1 X2 X3 X1 X2 X3 X1 X2 X3

Expected values: E, (f) = 38, E,,(f) =35, E,,;(f) = 39.

» The average resulting from interactions on y CAN BE
greater than 38 (and always is smaller than 39)

» The average resulting from interactions on y CAN NOT BE
greater than 38
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Upper Expectation Bisimilarity

Upper Expectation Functional: Given a set A of probability
distributions on X, define ves : (X — R) — R as:

uea(f) = sup{E,(f) | u € A}

Upper Expectation (UE) Bisimulation. Given a PNTS (X, a),
an equivalence relation E C X x X is a UE-bisimulation if

> uea(x)(f) = uea(y)(f)

for all E-invariant f : X — R, i.e., such that if (z, w) € E then
f(z)="f(w).
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Functional Analysis

Functionals of type (X — R) — R, e.g. C(X)*, are well studied in
Functional Analysis.

» Several Representation Theorems available.
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Functional Analysis

Functionals of type (X — R) — R, e.g. C(X)*, are well studied in
Functional Analysis.

» Several Representation Theorems available.

Theorem: Let X be a finite set and A € PD(X) a set of
probability distributions. Then:

> (| VX = R.(u(F) < vea(f))} = F(A)

where H(A) is the closed convex hull of A.
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Functional Analysis

Functionals of type (X — R) — R, e.g. C(X)*, are well studied in
Functional Analysis.

» Several Representation Theorems available.

Theorem: Let X be a finite set and A € PD(X) a set of
probability distributions. Then:

> (| VX = R.(u(F) < vea(f))} = F(A)

where H(A) is the closed convex hull of A.

Message: ves: (X —R)— R and H(A) are the same thing.
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Consequence

UE-bisimilarity = cocongruence for P..D-coalgebras.

» P..D = convex closed sets of probability distributions.
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Consequence

UE-bisimilarity = cocongruence for P..D-coalgebras.

» P..D = convex closed sets of probability distributions.

Remark: it is natural to consider only closed sets!
» Motto: “observable properties are open sets”

» Moreover, convex closure of a finite set is closed.
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Consequence

UE-bisimilarity = cocongruence for P..D-coalgebras.

» P..D = convex closed sets of probability distributions.

Remark: it is natural to consider only closed sets!
» Motto: “observable properties are open sets”

» Moreover, convex closure of a finite set is closed.

Therefore we have:

» Strong reasons for equating UE-bisimilar states (prob.
schedulers)

» Strong reasons for distinguishing not UE-bisimilar states
(R-valued experiments).
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Back to Logic!

PNTS  (X,a:X — PD(X)) X Ay

PNTS (X,a: X = (X - R) = R) X > uea

PNTS (X,a: (X = R) = (X = R)) f = Ax.(ueqy(x)(f))

Denote with Oy : (X —R)— (X —R) the latter presentation.
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Given a PNTS (X, «), R-valued Modal logics have
semantics:

[¢] : X — R.

and, in particular (for all the logics in the literature)

[0¢] = Oa(l2])

def

= sup{E([2]) | 1 € alx)}
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Given a PNTS (X, «), R-valued Modal logics have
semantics:

[¢] : X — R.

and, in particular (for all the logics in the literature)

[0¢] = Oa(l2])

def

= sup{E([2]) | 1 € alx)}

The several logics in the literature differ on the choice of other
connectives:

> [ (x) =1,
> [o 9] (x) = min{[o] (x), [¥] (x)}
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Functional Analysis - Again

Let (X,a) be a PNTS. Then Q4 : (X — R) — (X — R) satisfies:

1. (Monotone) if f C g then O (f) C On(f)
2. (Sublinear) O (f +g) E Oa(f) + Oalg)

3. (Positive Affine Homogeneous)
<>()\1f + )\21) = )\1<>a(f) + X0al, forall Ay >0, b € R

4. Oa(l) e X = {0,1}

Completeness: Furthermore, every (X — R) — (X — R) with
these properties is F = Q, for a unique PNTS (X, «).
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Riesz Modal Logic

A Riesz space is a vector space R with a lattice order C.

> Language: 1, f +g, Mf, fUg.
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Riesz Modal Logic

A Riesz space is a vector space R with a lattice order C.
» Language: 1, f+g, AMf, fUg.

> Yosida Representation Theorem: Every Riesz space which is
unitary is of the form (X — R,C).
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Riesz Modal Logic

A Riesz space is a vector space R with a lattice order C.
» Language: 1, f+g, AMf, fUg.

> Yosida Representation Theorem: Every Riesz space which is
unitary is of the form (X — R,C).

Theorem: Every PNTS's (X, «) is a unitary Riesz space R with
an operation ¢ : R — R with properties above.
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Riesz Modal Logic

A Riesz space is a vector space R with a lattice order C.
» Language: 1, f+g, AMf, fUg.

> Yosida Representation Theorem: Every Riesz space which is
unitary is of the form (X — R,C).

Theorem: Every PNTS's (X, «) is a unitary Riesz space R with
an operation ¢ : R — R with properties above.

Riesz Logic: ¢ :=1|f+g | Af | fUg| 0.
» Semantics interpreted on (X, a):
> () =1,
> [o + 91 (x) = [2] (x) + [V (x)

> [06] = Oa([4])
R o e e T i B



Theorems: Given a PNTS (X, «)

» Soundness: if x and y are UE-bisimilar then

Vo.([¢] (x) = [¥] ()
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Theorems: Given a PNTS (X, «)

» Soundness: if x and y are UE-bisimilar then

Vo.([¢] (x) = [¥] ()

» Denseness: The functions {[¢] | ¢ a formula } is dense in
the set of functions f : X — R which are invariant under
UE-bisimilarity.

» Stone-Weierstrass Theorem for Riesz spaces.
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Theorems: Given a PNTS (X, «)

» Soundness: if x and y are UE-bisimilar then
6. (161 (x) = [¥1 ()

» Denseness: The functions {[¢] | ¢ a formula } is dense in
the set of functions f : X — R which are invariant under
UE-bisimilarity.

» Stone-Weierstrass Theorem for Riesz spaces.

» Completeness: if x and y are not UE-bisimilar then there is

some ¢ such that [¢] (x) # [¢] (v).
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Theorems: Given a PNTS (X, «)

» Soundness: if x and y are UE-bisimilar then
6. (161 (x) = [¥1 ()

» Denseness: The functions {[¢] | ¢ a formula } is dense in
the set of functions f : X — R which are invariant under
UE-bisimilarity.

» Stone-Weierstrass Theorem for Riesz spaces.

» Completeness: if x and y are not UE-bisimilar then there is
some ¢ such that [¢] (x) # [¢] (v).

» We have a sound and complete axiomatization
» Axioms from unitary Riesz spaces, plus

» Axioms for ¢.
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This is a general framework!!!

Example 1: The class of PNTS's that beside
1. (Monotone) if f T g then On(f) T On(f)
. (Sublinear) On(f 4+ g) C Oa(f) + Calg)

3. (Positive Affine Homogeneous)
<>()\1f + )\21) = )\1<>a(f) + X0l forall Ay >0, M € R

- 0a(l) € X = {0,1}

N

~

also satisfy

> (Linearity) Oa(f + g) = Oal(f) + Oulg)
are Markov processes, i.e., PNTS (X, «) such that

» For all states x € X, either a(x) = {u} or a(x) =0
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This is a general framework!!!

Example 2: The class of PNTS's that beside
1. (Monotone) if f T g then On(f) T On(f)
. (Sublinear) On(f 4+ g) C Oa(f) + Calg)

3. (Positive Affine Homogeneous)
<>()\1f + )\21) = )\1<>a(f) + X0l forall Ay >0, M € R

- 0a(l) € X = {0,1}

N

~

also satisfy
» (Join preserving) O(f U g) = O(f) U O(g).
are Kripke frames, i.e., PNTS (X, a) such that

» For all states x € X every u € a(x) is a Dirac distribution.
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A quick note about pu-Calculi

The tukasiewicz p-Calculus (L) is a [0, 1]-valued logic
» Introduced in my PhD thesis,
» (co)inductived fixed points (u-Calculus)

» capable of encoding PCTL
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The connectives of Ly comes from tukasiewicz logic.

» The logic of MV-algebra.
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A quick note about pu-Calculi

The tukasiewicz p-Calculus (L) is a [0, 1]-valued logic
» Introduced in my PhD thesis,
» (co)inductived fixed points (u-Calculus)
» capable of encoding PCTL
The connectives of Ly comes from tukasiewicz logic.
» The logic of MV-algebra.

We can apply a variant of the Yosida Representation Theorem:

» All MV-algebras are of the form X — [0, 1]

Theorem: tp formulas are dense in X — [0, 1].
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New prospective on Convex (closed) Bisimilarity
> in terms of UE-bisimilarity,
» motivated by R-valued experiments X — R,

> concrete reason to distinguish between not UE-bisimilar states.
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New prospective on Convex (closed) Bisimilarity

> in terms of UE-bisimilarity,

» motivated by R-valued experiments X — R,

> concrete reason to distinguish between not UE-bisimilar states.
By application of results from Functional Analysis

» Coalgebra = R-valued Modal Logic

» Coalgebra = Algebra (Riesz space structure)
» Axiomatic approach covers important classes of systems
» Kripke Structures, Markov Processes, PNTS's, ...
» Expressive logics capable of expressing useful properties (e.g.,

PCTL) and having good algebraic properties.

Matteo Mio Chocola — ENS Lyon, 2013



Proof Systems?

Abelian Logic = Logic of (R, +, —,L!)

Sequents: F ¢1,...,¢,

means ¢1 + --- + ¢, > 0 in all interpretations.

Rules:

B FT,0,v IO B0
=, —¢ FT, 6+ T ol
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THANKS
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