Convex Bisimilarity and Real-valued Modal Logics Matteo Mio, CWI-Amsterdam ### Probabilistic Nondeterministic Transition Systems (PNTS's) a.k.a, Probabilistic Automata, Markov Decision Processes, Simple Segala Systems ### Probabilistic Nondeterministic Transition Systems (PNTS's) a.k.a, Probabilistic Automata, Markov Decision Processes, Simple Segala Systems - ▶ F-coalgebras (X, α) of F(X) = P(D(X)). - P(X) = powerset of X - \triangleright D(X) = discrete probability distributions on X ## Logics for PNTS's Can be organized in three categories: - 1. PCTL, PCTL* and similar logics (\sim 20years old) - Used in practice because can express useful properties. - Main tool is Model-Checking, no much else. - Logically induce non-standard notions of behavioral equivalence $$PCTL^* \subsetneq PCTL$$ ## Logics for PNTS's Can be organized in three categories: - 1. PCTL, PCTL* and similar logics (\sim 20years old) - Used in practice because can express useful properties. - Main tool is Model-Checking, no much else. - Logically induce non-standard notions of behavioral equivalence $$PCTL^* \subsetneq PCTL$$ - 2. Hennessy-Milner-style Modal logics (ad-hoc, coalgebraic, ...) - Typically, carefully crafted to logically induce (<u>some kind of</u>) bisimulation. - Not expressive (even with fixed-point operators). ## Logics for PNTS's Can be organized in three categories: - 1. PCTL, PCTL* and similar logics (~20years old) - Used in practice because can express useful properties. - Main tool is Model-Checking, no much else. - Logically induce non-standard notions of behavioral equivalence $$PCTL^* \subsetneq PCTL$$ - 2. Hennessy-Milner-style Modal logics (ad-hoc, coalgebraic, ...) - Typically, carefully crafted to logically induce (<u>some kind of</u>) bisimulation. - Not expressive (even with fixed-point operators). - 3. Quantitative (Real-valued) logics. ## Quantitative Logics Given a PNTS's (X, α) - ▶ Semantics: $\llbracket \phi \rrbracket : X \to \mathbb{R}$ - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$ - ▶ But also, $\llbracket \phi \wedge \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$ ## Quantitative Logics Given a PNTS's (X, α) - ▶ Semantics: $\llbracket \phi \rrbracket : X \to \mathbb{R}$ - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$ - ▶ But also, $\llbracket \phi \wedge \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$ - When enriched with fixed-point operators (quantitative μ -calculi) - ► Expressive: Can encode PCTL - ► Game Semantics: Two-Player Stochastic Games ## Quantitative Logics Given a PNTS's (X, α) - ▶ Semantics: $\llbracket \phi \rrbracket : X \to \mathbb{R}$ - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$ - ▶ But also, $\llbracket \phi \land \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$ - When enriched with fixed-point operators (quantitative μ -calculi) - ► Expressive: Can encode PCTL - ► Game Semantics: Two-Player Stochastic Games - ► Under development: Model Checking algorithms, Compositional Proof Systems, . . . - ▶ Is this approach somehow canonical or just ad-hoc? - ► Relations with coalgebra? Standard logics (i.e., MSO) ? - Is this approach somehow canonical or just ad-hoc? - ► Relations with coalgebra? Standard logics (i.e., MSO) ? - ► What kind of behavioral equivalence is logically induced by these logics? - Is this approach somehow canonical or just ad-hoc? - ▶ Relations with coalgebra? Standard logics (i.e., MSO) ? - What kind of behavioral equivalence is logically induced by these logics? - Is there a best choice of connectives? - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$ - ▶ But also, $\llbracket \phi \land \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$ - Is this approach somehow canonical or just ad-hoc? - ▶ Relations with coalgebra? Standard logics (i.e., MSO) ? - What kind of behavioral equivalence is logically induced by these logics? - Is there a best choice of connectives? - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$ - ▶ But also, $\llbracket \phi \land \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$ - Sound and Complete Axiomatizations? - Is this approach somehow canonical or just ad-hoc? - ▶ Relations with coalgebra? Standard logics (i.e., MSO) ? - What kind of behavioral equivalence is logically induced by these logics? - Is there a best choice of connectives? - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$ - ▶ But also, $\llbracket \phi \land \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$ - Sound and Complete Axiomatizations? - Proof Systems? - Is this approach somehow canonical or just ad-hoc? - ► Relations with coalgebra? Standard logics (i.e., MSO) ? - What kind(s) of behavioral equivalence is logically induced by these logics? - ▶ Is there a **best choice** of connectives? - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$ - ▶ But also, $\llbracket \phi \land \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$ - Sound and Complete Axiomatizations? - Proof Systems? # Behavioral Equivalences for PNTS's Several have been proposed in the literature. Coalgebra shed some light: Cocongruence **Definition** Given F-coalgebra (X, α) , the equivalence relation $E \subseteq X \times X$ is a cocongruence iff $$(x,y) \in E \implies (\alpha(x),\alpha(y)) \in \hat{E}.$$ - ▶ of powerset functor P. Given $A, B \in P(X)$ - $(A, B) \in \hat{E}_P \Leftrightarrow \{[x]_E \mid x \in A\} = \{[x]_E \mid x \in B\}$ - ▶ of powerset functor P. Given $A, B \in P(X)$ - $(A,B) \in \hat{E}_P \Leftrightarrow \{[x]_E \mid x \in A\} = \{[x]_E \mid x \in B\}$ - ▶ of Distribution functor D. Given $d_1, d_2 \in D(X)$ - $(d_1, d_2) \in \hat{E}_D \Leftrightarrow d_1(A) = d_2(A)$, for all $A \in X/E$ - ▶ of powerset functor P. Given $A, B \in P(X)$ - $(A,B) \in \hat{E}_P \Leftrightarrow \{[x]_E \mid x \in A\} = \{[x]_E \mid x \in B\}$ - ▶ of Distribution functor D. Given $d_1, d_2 \in D(X)$ - $(d_1, d_2) \in \hat{E}_D \Leftrightarrow d_1(A) = d_2(A)$, for all $A \in X/E$ - ▶ of *PD* functor (PNTS's). Given $A, B \in PD(X)$ - $\qquad \bullet \quad (A,B) \in \hat{E}_{PD} \quad \Leftrightarrow \quad \left\{ [\mu]_{\hat{E}_D} \mid \mu \in A \right\} = \left\{ [\mu]_{\hat{E}_D} \mid \mu \in B \right\}$ - ▶ of powerset functor P. Given $A, B \in P(X)$ - $(A,B) \in \hat{E}_P \Leftrightarrow \{[x]_E \mid x \in A\} = \{[x]_E \mid x \in B\}$ - ▶ of Distribution functor D. Given $d_1, d_2 \in D(X)$ - $(d_1, d_2) \in \hat{E}_D \Leftrightarrow d_1(A) = d_2(A)$, for all $A \in X/E$ - ▶ of *PD* functor (PNTS's). Given $A, B \in PD(X)$ - $(A,B) \in \hat{E}_{PD} \Leftrightarrow \{ [\mu]_{\hat{E}_D} \mid \mu \in A \} = \{ [\mu]_{\hat{E}_D} \mid \mu \in B \}$ **Definition** Given *F*-coalgebra (X, α) , the equivalence relation $E \subseteq X \times X$ is a cocongruence iff $$(x,y) \in E \implies (\alpha(x),\alpha(y)) \in \hat{E}.$$ Cocongruence for PNTS's was introduced (concretely) by Roberto Segala in his PhD thesis (1994). Standard Bisimilarity for PNTS's. **Def:** Given (X, α) , an equivalence $E \subseteq X \times X$ is a standard bisimulation if - for all $x \to \mu$ there exists $y \to \nu$ such that $(\mu, \nu) \in \hat{E}_D$, and - for all $y \to \nu$ there exists $x \to \mu$ such that $(\mu, \nu) \in \hat{\mathcal{E}}_D$, where $x \to \mu$ means $\mu \in \alpha(x)$. Two states (x, y) which are not standard bisimilar. **Under the assumption** that x_1 and x_2 are distinguishable. ## Convex Bisimilarity **Def:** Given (X, α) , an equivalence $E \subseteq X \times X$ is a convex bisimulation if - ▶ for all $x \to_C \mu$ there exists $y \to_C \nu$ such that $(\mu, \nu) \in \hat{E}_D$, and - ▶ for all $y \to_C \nu$ there exists $x \to_C \mu$ such that $(\mu, \nu) \in \hat{E}_D$, where $x \to_C \mu$ means $\mu \in H(\alpha(x))$. # Convex Bisimilarity **Def:** Given (X, α) , an equivalence $E \subseteq X \times X$ is a convex bisimulation if - ▶ for all $x \to_C \mu$ there exists $y \to_C \nu$ such that $(\mu, \nu) \in \hat{E}_D$, and - ▶ for all $y \to_C \nu$ there exists $x \to_C \mu$ such that $(\mu, \nu) \in \hat{E}_D$, where $x \to_C \mu$ means $\mu \in H(\alpha(x))$. Cocongruence of F-coalgebras for $F = P_c D$ $ightharpoonup P_c D$ = Convex Sets of Probability Distributions. $$(X, \alpha: X \to PD(X)) \xrightarrow{H} (X, \alpha: X \to P_cD(X))$$ Standard Bisimilarity Convex Bisimilarity **Fact**: Expressive logics for PNTS's can not distinguish convex bisimilar states. ▶ PCTL, PCTL* and the \mathbb{R} -valued μ -Calculi convex bisim. \subsetneq PCTL* \subsetneq PCTL convex bisim. $\subseteq_?$ quantitative μ -calculi **Natural question**: does Convex Bisimilarity distinguish too much? Suppose we want to observe event $\Phi = \{x_1\}$. • y can exhibit Φ with probability [0.3, 0.5]. But also x can! Suppose we want to observe event $\Phi = \{x_2\}$. • y can exhibit Φ with probability [0.3, 0.4]. But also x can! Suppose we want to observe event $\Phi = \{x_1, x_2\}$. • y can exhibit Φ with probability [0.6, 0.9]. But also x can! As a matter of fact, for all events $\Phi \subseteq \{x_1, x_2, x_3\}$. ▶ y can exhibit Φ with probability $[λ_1, λ_2]$ iff x can! We considered events $\Phi \subseteq \{x_1, x_2, x_3\}$? ▶ What about Random Variables $f: \{x_1, x_2, x_3\} \rightarrow \mathbb{R}$? We considered events $\Phi \subseteq \{x_1, x_2, x_3\}$? ▶ What about Random Variables $f: \{x_1, x_2, x_3\} \rightarrow \mathbb{R}$? Example: $f(x_1) = 60$, $f(x_2) = 0$, $f(x_3) = 50$. Expected values: $E_{\mu_1}(f) = 38$, $E_{\mu_2}(f) = 35$, $E_{\mu_3}(f) = 39$. We considered events $\Phi \subseteq \{x_1, x_2, x_3\}$? ▶ What about Random Variables $f: \{x_1, x_2, x_3\} \rightarrow \mathbb{R}$? Example: $f(x_1) = 60$, $f(x_2) = 0$, $f(x_3) = 50$. Expected values: $E_{\mu_1}(f) = 38$, $E_{\mu_2}(f) = 35$, $E_{\mu_3}(f) = 39$. - ► The average resulting from interactions on *y* **CAN BE** greater than 38 (and always is smaller than 39) - ► The average resulting from interactions on *y* **CAN NOT BE** greater than 38 # Upper Expectation Bisimilarity **Upper Expectation Functional:** Given a set A of probability distributions on X, define $ue_A:(X\to\mathbb{R})\to\mathbb{R}$ as: $$ue_A(f) = \sup\{E_\mu(f) \mid \mu \in A\}$$ **Upper Expectation (UE) Bisimulation**. Given a PNTS (X, α) , an equivalence relation $E \subseteq X \times X$ is a UE-bisimulation if • $$ue_{\alpha(x)}(f) = ue_{\alpha(y)}(f)$$ for all *E*-invariant $f: X \to \mathbb{R}$, i.e., such that if $(z, w) \in E$ then f(z) = f(w). ### Functional Analysis Functionals of type $(X \to \mathbb{R}) \to \mathbb{R}$, e.g. $C(X)^*$, are well studied in Functional Analysis. Several Representation Theorems available. ## Functional Analysis Functionals of type $(X \to \mathbb{R}) \to \mathbb{R}$, e.g. $C(X)^*$, are well studied in Functional Analysis. Several Representation Theorems available. **Theorem**: Let X be a finite set and $A \in PD(X)$ a set of probability distributions. Then: - $ightharpoonup ue_{A} = ue_{\overline{H}(A)}$ - $\qquad \qquad \big\{ \mu \mid \forall f : X \to \mathbb{R}. (\mu(f) \leq ue_A(f)) \big\} = \overline{H}(A)$ where $\overline{H}(A)$ is the *closed convex hull* of A. ### Functional Analysis Functionals of type $(X \to \mathbb{R}) \to \mathbb{R}$, e.g. $C(X)^*$, are well studied in Functional Analysis. Several Representation Theorems available. **Theorem**: Let X be a finite set and $A \in PD(X)$ a set of probability distributions. Then: - $ightharpoonup ue_{A} = ue_{\overline{H}(A)}$ - $\qquad \qquad \big\{ \mu \mid \forall f : X \to \mathbb{R}. (\mu(f) \le ue_A(f)) \big\} = \overline{H}(A)$ where $\overline{H}(A)$ is the *closed convex hull* of A. **Message**: $ue_A:(X \to \mathbb{R}) \to \mathbb{R}$ and $\overline{H}(A)$ are the same thing. # Consequence UE-bisimilarity = cocongruence for $P_{cc}D$ -coalgebras. ▶ $P_{cc}D$ = convex <u>closed</u> sets of probability distributions. ### Consequence UE-bisimilarity = cocongruence for $P_{cc}D$ -coalgebras. $ightharpoonup P_{cc}D = { m convex} \ { m closed} \ { m sets} \ { m of probability distributions}.$ Remark: it is natural to consider only closed sets! - ► Motto: "observable properties are open sets" - Moreover, convex closure of a finite set is closed. ### Consequence UE-bisimilarity = cocongruence for $P_{cc}D$ -coalgebras. $ightharpoonup P_{cc}D = { m convex} \ { m closed} \ { m sets} \ { m of probability distributions}.$ Remark: it is natural to consider only closed sets! - ► Motto: "observable properties are open sets" - Moreover, convex closure of a finite set is closed. #### Therefore we have: - Strong reasons for equating UE-bisimilar states (prob. schedulers) - ► Strong reasons for distinguishing not UE-bisimilar states (ℝ-valued experiments). ### Back to Logic! PNTS $$(X, \alpha: X \to P_{cc}D(X))$$ $x \mapsto A_X$ PNTS $(X, \alpha: X \to (X \to \mathbb{R}) \to \mathbb{R})$ $x \mapsto ue_A$ PNTS $(X, \alpha: (X \to \mathbb{R}) \to (X \to \mathbb{R}))$ $f \mapsto \lambda x.(ue_{\alpha(x)}(f))$ Denote with $\Diamond_{\alpha}: (X \to \mathbb{R}) \to (X \to \mathbb{R})$ the latter presentation. Given a PNTS (X, α) , \mathbb{R} -valued Modal logics have semantics: $$\llbracket \phi \rrbracket : X \to \mathbb{R}.$$ and, in particular (for all the logics in the literature) $$\llbracket \Diamond \phi \rrbracket = \Diamond_{\alpha}(\llbracket \phi \rrbracket) \stackrel{\text{def}}{=} \sup \{ E_{\mu}(\llbracket \phi \rrbracket) \mid \mu \in \alpha(x) \}$$ Given a PNTS (X, α) , \mathbb{R} -valued Modal logics have semantics: $$\llbracket \phi \rrbracket : X \to \mathbb{R}.$$ and, in particular (for all the logics in the literature) $$\llbracket \lozenge \phi \rrbracket = \lozenge_{\alpha}(\llbracket \phi \rrbracket) \stackrel{\text{def}}{=} \sup \{ E_{\mu}(\llbracket \phi \rrbracket) \mid \mu \in \alpha(x) \}$$ The several logics in the literature differ on the choice of other connectives: - [1](x) = 1, - ▶ $\llbracket \phi \sqcap \psi \rrbracket (x) = \min \{ \llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x) \}$ - **.**... ## Functional Analysis - Again Let (X, α) be a PNTS. Then $\Diamond_{\alpha} : (X \to \mathbb{R}) \to (X \to \mathbb{R})$ satisfies: - 1. (Monotone) if $f \sqsubseteq g$ then $\Diamond_{\alpha}(f) \sqsubseteq \Diamond_{\alpha}(f)$ - 2. (Sublinear) $\Diamond_{\alpha}(f+g) \sqsubseteq \Diamond_{\alpha}(f) + \Diamond_{\alpha}(g)$ - 3. (Positive Affine Homogeneous) $\Diamond(\lambda_1 f + \lambda_2 \underline{1}) = \lambda_1 \Diamond_{\alpha}(f) + \lambda_2 \Diamond_{\alpha} \underline{1}$, for all $\lambda_1 \geq 0$, $\lambda_2 \in \mathbb{R}$ - **4**. $\Diamond_{\alpha}(\underline{1}) \in X \rightarrow \{0,1\}$ **Completeness:** Furthermore, every $(X \to \mathbb{R}) \to (X \to \mathbb{R})$ with these properties is $F = \Diamond_{\alpha}$ for a unique PNTS (X, α) . A *Riesz space* is a vector space R with a lattice order \sqsubseteq . ► Language: $\underline{1}$, f + g, λf , $f \sqcup g$. A *Riesz space* is a vector space R with a lattice order \sqsubseteq . - ▶ Language: $\underline{1}$, f + g, λf , $f \sqcup g$. - ▶ Yosida Representation Theorem: Every Riesz space which is unitary is of the form $(X \to \mathbb{R}, \sqsubseteq)$. A *Riesz space* is a vector space R with a lattice order \sqsubseteq . - ▶ Language: $\underline{1}$, f + g, λf , $f \sqcup g$. - ▶ Yosida Representation Theorem: Every Riesz space which is unitary is of the form $(X \to \mathbb{R}, \sqsubseteq)$. **Theorem**: Every PNTS's (X, α) is a unitary Riesz space R with an operation $\Diamond: R \to R$ with properties above. A *Riesz space* is a vector space R with a lattice order \sqsubseteq . - ▶ Language: $\underline{1}$, f + g, λf , $f \sqcup g$. - ▶ Yosida Representation Theorem: Every Riesz space which is unitary is of the form $(X \to \mathbb{R}, \sqsubseteq)$. **Theorem**: Every PNTS's (X, α) is a unitary Riesz space R with an operation $\Diamond: R \to R$ with properties above. **Riesz Logic:** $\phi := \underline{1} \mid f + g \mid \lambda f \mid f \sqcup g \mid \Diamond \phi$. - Semantics interpreted on (X, α) : - [1](x) = 1, - $\llbracket \phi + \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) + \llbracket \psi \rrbracket (x)$ ▶ Soundness: if x and y are UE-bisimilar then $\forall \phi. (\llbracket \phi \rrbracket(x) = \llbracket \psi \rrbracket(y))$ - ▶ Soundness: if x and y are UE-bisimilar then $\forall \phi. (\llbracket \phi \rrbracket(x) = \llbracket \psi \rrbracket(y))$ - ▶ Denseness: The functions $\{\llbracket \phi \rrbracket \mid \phi \text{ a formula }\}$ is <u>dense</u> in the set of functions $f: X \to \mathbb{R}$ which are invariant under UE-bisimilarity. - ▶ Stone-Weierstrass Theorem for Riesz spaces. - ▶ Soundness: if x and y are UE-bisimilar then $\forall \phi. (\llbracket \phi \rrbracket(x) = \llbracket \psi \rrbracket(y))$ - ▶ Denseness: The functions $\{ \llbracket \phi \rrbracket \mid \phi \text{ a formula } \}$ is <u>dense</u> in the set of functions $f: X \to \mathbb{R}$ which are invariant under UE-bisimilarity. - Stone-Weierstrass Theorem for Riesz spaces. - ▶ Completeness: if x and y are not UE-bisimilar then there is some ϕ such that $\llbracket \phi \rrbracket (x) \neq \llbracket \phi \rrbracket (y)$. - ▶ Soundness: if x and y are UE-bisimilar then $\forall \phi. (\llbracket \phi \rrbracket(x) = \llbracket \psi \rrbracket(y))$ - ▶ Denseness: The functions $\{ \llbracket \phi \rrbracket \mid \phi \text{ a formula } \}$ is <u>dense</u> in the set of functions $f: X \to \mathbb{R}$ which are invariant under UE-bisimilarity. - Stone-Weierstrass Theorem for Riesz spaces. - ▶ Completeness: if x and y are not UE-bisimilar then there is some ϕ such that $\llbracket \phi \rrbracket (x) \neq \llbracket \phi \rrbracket (y)$. - ▶ We have a sound and complete axiomatization - Axioms from unitary Riesz spaces, plus - ▶ Axioms for ◊. ### This is a general framework!!! #### **Example 1**: The class of PNTS's that beside - 1. (Monotone) if $f \sqsubseteq g$ then $\Diamond_{\alpha}(f) \sqsubseteq \Diamond_{\alpha}(f)$ - 2. (Sublinear) $\Diamond_{\alpha}(f+g) \sqsubseteq \Diamond_{\alpha}(f) + \Diamond_{\alpha}(g)$ - 3. (Positive Affine Homogeneous) $\Diamond(\lambda_1 f + \lambda_2 \underline{1}) = \lambda_1 \Diamond_{\alpha}(f) + \lambda_2 \Diamond_{\alpha} \underline{1}$, for all $\lambda_1 \geq 0$, $\lambda_2 \in \mathbb{R}$ - **4**. $\Diamond_{\alpha}(\underline{1}) \in X \rightarrow \{0,1\}$ also satisfy • (Linearity) $\Diamond_{\alpha}(f+g) = \Diamond_{\alpha}(f) + \Diamond_{\alpha}(g)$ are **Markov processes**, i.e., PNTS (X, α) such that ▶ For all states $x \in X$, either $\alpha(x) = \{\mu\}$ or $\alpha(x) = \emptyset$ ### This is a general framework!!! #### **Example 2**: The class of PNTS's that beside - 1. (Monotone) if $f \sqsubseteq g$ then $\Diamond_{\alpha}(f) \sqsubseteq \Diamond_{\alpha}(f)$ - 2. (Sublinear) $\Diamond_{\alpha}(f+g) \sqsubseteq \Diamond_{\alpha}(f) + \Diamond_{\alpha}(g)$ - 3. (Positive Affine Homogeneous) $\Diamond(\lambda_1 f + \lambda_2 \underline{1}) = \lambda_1 \Diamond_{\alpha}(f) + \lambda_2 \Diamond_{\alpha} \underline{1}$, for all $\lambda_1 \geq 0$, $\lambda_2 \in \mathbb{R}$ - **4**. $\Diamond_{\alpha}(\underline{1}) \in X \rightarrow \{0,1\}$ also satisfy ▶ (Join preserving) $\Diamond(f \sqcup g) = \Diamond(f) \sqcup \Diamond(g)$. are **Kripke frames**, i.e., PNTS (X, α) such that ▶ For all states $x \in X$ every $\mu \in \alpha(x)$ is a Dirac distribution. ### A quick note about μ -Calculi The Łukasiewicz μ -Calculus ($\xi\mu$) is a [0,1]-valued logic - Introduced in my PhD thesis, - (co)inductived fixed points (μ-Calculus) - capable of encoding PCTL ### A quick note about μ -Calculi The Łukasiewicz μ -Calculus (μ) is a [0,1]-valued logic - Introduced in my PhD thesis, - (co)inductived fixed points (μ-Calculus) - capable of encoding PCTL The connectives of $\mathbf{L}\mu$ comes from Łukasiewicz logic. ► The logic of MV-algebra. ### A quick note about μ -Calculi The Łukasiewicz μ -Calculus (Ł μ) is a [0,1]-valued logic - Introduced in my PhD thesis, - (co)inductived fixed points (μ-Calculus) - capable of encoding PCTL The connectives of $\mathbf{L}\mu$ comes from Łukasiewicz logic. The logic of MV-algebra. We can apply a variant of the Yosida Representation Theorem: lacktriangle All MV-algebras are of the form X o [0,1] **Theorem**: μ formulas are dense in $X \to [0, 1]$. ### Summary New prospective on Convex (closed) Bisimilarity - in terms of UE-bisimilarity, - ▶ motivated by \mathbb{R} -valued experiments $X \to \mathbb{R}$, - concrete reason to distinguish between not UE-bisimilar states. ### Summary New prospective on Convex (closed) Bisimilarity - in terms of UE-bisimilarity, - ▶ motivated by \mathbb{R} -valued experiments $X \to \mathbb{R}$, - concrete reason to distinguish between not UE-bisimilar states. By application of results from Functional Analysis - ightharpoonup Coalgebra = \mathbb{R} -valued Modal Logic - Coalgebra = Algebra (Riesz space structure) - Axiomatic approach covers important classes of systems - Kripke Structures, Markov Processes, PNTS's, . . . - Expressive logics capable of expressing useful properties (e.g., PCTL) and having good algebraic properties. ## **Proof Systems?** Abelian Logic = Logic of $$(\mathbb{R}, +, -, \sqcup)$$ **Sequents**: $$\vdash \phi_1, \ldots, \phi_n$$ means $\phi_1 + \cdots + \phi_n \ge 0$ in all interpretations. #### Rules: # **THANKS**