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Probabilistic Nondeterministic Transition Systems (PNTS’s)

◮ a.k.a, Probabilistic Automata, Markov Decision Processes,
Simple Segala Systems

p

d1 d2 d3

q r s

1
2

1
2

1 1
3

2
3

Matteo Mio Chocola – ENS Lyon, 2013



Probabilistic Nondeterministic Transition Systems (PNTS’s)

◮ a.k.a, Probabilistic Automata, Markov Decision Processes,
Simple Segala Systems

p

d1 d2 d3

q r s

1
2

1
2

1 1
3

2
3

◮ F -coalgebras (X , α) of F (X ) = P(D(X )).

◮ P(X ) = powerset of X

◮ D(X ) = discrete probability distributions on X

Matteo Mio Chocola – ENS Lyon, 2013



Logics for PNTS’s

Can be organized in three categories:

1. PCTL, PCTL∗ and similar logics (∼20years old)

◮ Used in practice because can express useful properties.

◮ Main tool is Model-Checking, no much else.

◮ Logically induce non-standard notions of behavioral equivalence

PCTL∗ ( PCTL
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◮ Used in practice because can express useful properties.

◮ Main tool is Model-Checking, no much else.
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2. Hennessy-Milner-style Modal logics (ad-hoc, coalgebraic, . . . )

◮ Typically, carefully crafted to logically induce (some kind of)
bisimulation.

◮ Not expressive (even with fixed-point operators).
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Can be organized in three categories:

1. PCTL, PCTL∗ and similar logics (∼20years old)

◮ Used in practice because can express useful properties.

◮ Main tool is Model-Checking, no much else.

◮ Logically induce non-standard notions of behavioral equivalence

PCTL∗ ( PCTL

2. Hennessy-Milner-style Modal logics (ad-hoc, coalgebraic, . . . )

◮ Typically, carefully crafted to logically induce (some kind of)
bisimulation.

◮ Not expressive (even with fixed-point operators).

3. Quantitative (Real-valued) logics.
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Quantitative Logics

Given a PNTS’s (X , α)

◮ Semantics: [[φ]] : X → R

◮ E.g., [[φ ∧ ψ]] (x) = min
(

[[φ]] (x), [[ψ]] (x)
)

◮ But also, [[φ ∧ ψ]] (x) = [[φ]] (x) · [[ψ]] (x)
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◮ Game Semantics: Two-Player Stochastic Games
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Quantitative Logics

Given a PNTS’s (X , α)

◮ Semantics: [[φ]] : X → R

◮ E.g., [[φ ∧ ψ]] (x) = min
(

[[φ]] (x), [[ψ]] (x)
)

◮ But also, [[φ ∧ ψ]] (x) = [[φ]] (x) · [[ψ]] (x)

◮ When enriched with fixed-point operators (quantitative
µ-calculi)

◮ Expressive: Can encode PCTL

◮ Game Semantics: Two-Player Stochastic Games

◮ Under development: Model Checking algorithms,
Compositional Proof Systems, . . .

Matteo Mio Chocola – ENS Lyon, 2013



Natural Questions

◮ Is this approach somehow canonical or just ad-hoc?

◮ Relations with coalgebra? Standard logics (i.e., MSO) ?
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Natural Questions

◮ Is this approach somehow canonical or just ad-hoc?

◮ Relations with coalgebra? Standard logics (i.e., MSO) ?

◮ What kind(s) of behavioral equivalence is logically induced
by these logics?

◮ Is there a best choice of connectives?

◮ E.g., [[φ ∧ ψ]] (x) = min
(

[[φ]] (x), [[ψ]] (x)
)

◮ But also, [[φ ∧ ψ]] (x) = [[φ]] (x) · [[ψ]] (x)

◮ Sound and Complete Axiomatizations?

◮ Proof Systems?
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Behavioral Equivalences for PNTS’s

Several have been proposed in the literature.

Coalgebra shed some light: Cocongruence

Definition Given F -coalgebra (X , α), the equivalence relation
E ⊆ X × X is a cocongruence iff

(x , y) ∈ E ⇒
(

α(x), α(y)
)

∈ Ê .
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Examples: Coalgebra (X , α)

◮ of powerset functor P . Given A,B ∈ P(X )

◮ (A,B) ∈ ÊP ⇔
{

[x ]E | x ∈ A
}

=
{

[x ]E | x ∈ B
}
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Examples: Coalgebra (X , α)

◮ of powerset functor P . Given A,B ∈ P(X )

◮ (A,B) ∈ ÊP ⇔
{

[x ]E | x ∈ A
}

=
{

[x ]E | x ∈ B
}

◮ of Distribution functor D. Given d1, d2 ∈ D(X )

◮ (d1, d2) ∈ ÊD ⇔ d1(A) = d2(A), for all A ∈ X/E

◮ of PD functor (PNTS’s). Given A,B ∈ PD(X )

◮ (A,B) ∈ ÊPD ⇔
{

[µ]
ÊD

| µ ∈ A
}

=
{

[µ]
ÊD

| µ ∈ B
}

Definition Given F -coalgebra (X , α), the equivalence relation
E ⊆ X × X is a cocongruence iff

(x , y) ∈ E ⇒
(

α(x), α(y)
)

∈ Ê .
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Cocongruence for PNTS’s was introduced (concretely) by Roberto
Segala in his PhD thesis (1994).

◮ Standard Bisimilarity for PNTS’s.

Def: Given (X , α), an equivalence E ⊆ X × X is a standard
bisimulation if

◮ for all x → µ there exists y → ν such that (µ, ν)∈ ÊD , and

◮ for all y → ν there exists x → µ such that (µ, ν)∈ ÊD ,

where x → µ means µ ∈ α(x).
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Two states (x , y) which are not standard bisimilar.

x

µ1 µ2

x1 x2 x1 x2

0.2 0.8 0.8 0.2

y

µ1 µ3 µ2

x1 x2 x1 x2 x1 x2

0.2 0.8 0.5 0.5 0.8 0.2

Under the assumption that x1 and x2 are distinguishable.
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Convex Bisimilarity

Def: Given (X , α), an equivalence E ⊆ X × X is a convex
bisimulation if

◮ for all x →C µ there exists y →C ν such that (µ, ν)∈ ÊD , and

◮ for all y →C ν there exists x →C µ such that (µ, ν)∈ ÊD ,

where x →C µ means µ ∈ H(α(x)).
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Convex Bisimilarity

Def: Given (X , α), an equivalence E ⊆ X × X is a convex
bisimulation if

◮ for all x →C µ there exists y →C ν such that (µ, ν)∈ ÊD , and

◮ for all y →C ν there exists x →C µ such that (µ, ν)∈ ÊD ,

where x →C µ means µ ∈ H(α(x)).

Cocongruence of F -coalgebras for F = PcD

◮ PcD = Convex Sets of Probability Distributions.

(

X , α : X → PD(X )
) H

−→
(

X , α : X → PcD(X )
)

Standard Bisimilarity Convex Bisimilarity
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Fact: Expressive logics for PNTS’s can not distinguish convex
bisimilar states.

◮ PCTL, PCTL∗ and the R-valued µ-Calculi

convex bisim. ( PCTL∗ ( PCTL

convex bisim. ⊆? quantitative µ-calculi

Natural question: does Convex Bisimilarity distinguish too
much?
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Example of (x , y) not Convex Bisimilar:

x

µ1 µ2

x1 x2 x3 x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

y

µ1 µ2

µ3x1 x2 x3 x1 x2 x3

x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

0.4 0.3 0.3
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Example of (x , y) not Convex Bisimilar:

x

µ1 µ2

x1 x2 x3 x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

y

µ1 µ2

µ3x1 x2 x3 x1 x2 x3

x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

0.4 0.3 0.3

Suppose we want to observe event Φ = {x1}.

◮ y can exhibit Φ with probability [0.3, 0.5]. But also x can!
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Example of (x , y) not Convex Bisimilar:

x

µ1 µ2

x1 x2 x3 x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

y

µ1 µ2

µ3x1 x2 x3 x1 x2 x3

x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

0.4 0.3 0.3

Suppose we want to observe event Φ = {x2}.

◮ y can exhibit Φ with probability [0.3, 0.4]. But also x can!
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Example of (x , y) not Convex Bisimilar:

x

µ1 µ2

x1 x2 x3 x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

y

µ1 µ2

µ3x1 x2 x3 x1 x2 x3

x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

0.4 0.3 0.3

Suppose we want to observe event Φ = {x1, x2}.

◮ y can exhibit Φ with probability [0.6, 0.9]. But also x can!
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Example of (x , y) not Convex Bisimilar:

x

µ1 µ2

x1 x2 x3 x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

y

µ1 µ2

µ3x1 x2 x3 x1 x2 x3

x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

0.4 0.3 0.3

As a matter of fact, for all events Φ ⊆ {x1, x2, x3}.

◮ y can exhibit Φ with probability [λ1, λ2] iff x can!
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We considered events Φ⊆{x1, x2, x3}?

◮ What about Random Variables f : {x1, x2, x3} → R ?

Matteo Mio Chocola – ENS Lyon, 2013



We considered events Φ⊆{x1, x2, x3}?

◮ What about Random Variables f : {x1, x2, x3} → R ?

Example: f (x1) = 60, f (x2) = 0, f (x3) = 50.

x

µ1 µ2

x1 x2 x3 x1 x2 x3
0.3 0.3 0.4 0.5 0.4 0.1

y

µ1 µ2

µ3x1 x2 x3 x1 x2 x3

x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

0.4 0.3 0.3

Expected values: Eµ1(f ) = 38, Eµ2(f ) = 35, Eµ3(f ) = 39.
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We considered events Φ⊆{x1, x2, x3}?

◮ What about Random Variables f : {x1, x2, x3} → R ?

Example: f (x1) = 60, f (x2) = 0, f (x3) = 50.

x

µ1 µ2

x1 x2 x3 x1 x2 x3
0.3 0.3 0.4 0.5 0.4 0.1

y

µ1 µ2

µ3x1 x2 x3 x1 x2 x3

x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

0.4 0.3 0.3

Expected values: Eµ1(f ) = 38, Eµ2(f ) = 35, Eµ3(f ) = 39.

◮ The average resulting from interactions on y CAN BE
greater than 38 (and always is smaller than 39)

◮ The average resulting from interactions on y CAN NOT BE
greater than 38
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Upper Expectation Bisimilarity

Upper Expectation Functional: Given a set A of probability
distributions on X , define ueA : (X → R) → R as:

ueA(f ) = sup{Eµ(f ) | µ ∈ A}

Upper Expectation (UE) Bisimulation. Given a PNTS (X , α),
an equivalence relation E ⊆ X × X is a UE-bisimulation if

◮ ueα(x)(f ) = ueα(y)(f )

for all E -invariant f : X → R, i.e., such that if (z ,w)∈E then
f (z)= f (w).

Matteo Mio Chocola – ENS Lyon, 2013



Functional Analysis

Functionals of type (X → R) → R, e.g. C (X )∗, are well studied in
Functional Analysis.

◮ Several Representation Theorems available.
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Functional Analysis

Functionals of type (X → R) → R, e.g. C (X )∗, are well studied in
Functional Analysis.

◮ Several Representation Theorems available.

Theorem: Let X be a finite set and A ∈ PD(X ) a set of
probability distributions. Then:

◮ ueA = ueH(A)

◮
{

µ | ∀f : X → R.(µ(f ) ≤ ueA(f ))
}

= H(A)

where H(A) is the closed convex hull of A.
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Functional Analysis

Functionals of type (X → R) → R, e.g. C (X )∗, are well studied in
Functional Analysis.

◮ Several Representation Theorems available.

Theorem: Let X be a finite set and A ∈ PD(X ) a set of
probability distributions. Then:

◮ ueA = ueH(A)

◮
{

µ | ∀f : X → R.(µ(f ) ≤ ueA(f ))
}

= H(A)

where H(A) is the closed convex hull of A.

Message: ueA : (X→R)→ R and H(A) are the same thing.
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Consequence

UE-bisimilarity = cocongruence for PccD-coalgebras.

◮ PccD = convex closed sets of probability distributions.
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Consequence

UE-bisimilarity = cocongruence for PccD-coalgebras.

◮ PccD = convex closed sets of probability distributions.

Remark: it is natural to consider only closed sets!

◮ Motto: “observable properties are open sets”

◮ Moreover, convex closure of a finite set is closed.

Therefore we have:

◮ Strong reasons for equating UE-bisimilar states (prob.
schedulers)

◮ Strong reasons for distinguishing not UE-bisimilar states
(R-valued experiments).
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Back to Logic!

PNTS
(

X , α : X → PccD(X )
)

x 7→ Ax

PNTS
(

X , α : X → (X → R) → R
)

x 7→ ueA

PNTS
(

X , α : (X → R) → (X → R)
)

f 7→ λx .(ueα(x)(f ))

Denote with ♦α : (X→R)→(X →R) the latter presentation.
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Given a PNTS (X , α), R-valued Modal logics have
semantics:

[[φ]] : X → R.

and, in particular (for all the logics in the literature)

[[♦φ]] = ♦α([[φ]])
def
= sup{Eµ([[φ]]) | µ ∈ α(x)}
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Given a PNTS (X , α), R-valued Modal logics have
semantics:

[[φ]] : X → R.

and, in particular (for all the logics in the literature)

[[♦φ]] = ♦α([[φ]])
def
= sup{Eµ([[φ]]) | µ ∈ α(x)}

The several logics in the literature differ on the choice of other
connectives:

◮ [[1]] (x) = 1,

◮ [[φ ⊓ ψ]] (x) = min{[[φ]] (x), [[ψ]] (x)}

◮ . . .

Matteo Mio Chocola – ENS Lyon, 2013



Functional Analysis - Again

Let (X , α) be a PNTS. Then ♦α : (X → R) → (X → R) satisfies:

1. (Monotone) if f ⊑ g then ♦α(f ) ⊑ ♦α(f )

2. (Sublinear) ♦α(f + g) ⊑ ♦α(f ) + ♦α(g)

3. (Positive Affine Homogeneous)
♦(λ1f + λ21) = λ1♦α(f ) + λ2♦α1, for all λ1 ≥ 0, λ2 ∈ R

4. ♦α(1) ∈ X → {0, 1}

Completeness: Furthermore, every (X → R) → (X → R) with
these properties is F = ♦α for a unique PNTS (X , α).
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Riesz Modal Logic

A Riesz space is a vector space R with a lattice order ⊑.

◮ Language: 1, f + g , λf , f ⊔ g .
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Riesz Modal Logic

A Riesz space is a vector space R with a lattice order ⊑.

◮ Language: 1, f + g , λf , f ⊔ g .

◮ Yosida Representation Theorem: Every Riesz space which is
unitary is of the form (X → R,⊑).
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Riesz Modal Logic

A Riesz space is a vector space R with a lattice order ⊑.

◮ Language: 1, f + g , λf , f ⊔ g .

◮ Yosida Representation Theorem: Every Riesz space which is
unitary is of the form (X → R,⊑).

Theorem: Every PNTS’s (X , α) is a unitary Riesz space R with
an operation ♦ : R → R with properties above.
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Riesz Modal Logic

A Riesz space is a vector space R with a lattice order ⊑.

◮ Language: 1, f + g , λf , f ⊔ g .

◮ Yosida Representation Theorem: Every Riesz space which is
unitary is of the form (X → R,⊑).

Theorem: Every PNTS’s (X , α) is a unitary Riesz space R with
an operation ♦ : R → R with properties above.

Riesz Logic: φ ::= 1 | f + g | λf | f ⊔ g | ♦φ.

◮ Semantics interpreted on (X , α):

◮ [[1]] (x) = 1,

◮ [[φ + ψ]] (x) = [[φ]] (x) + [[ψ]] (x)

◮ [[♦φ]] = ♦α([[φ]])

Matteo Mio Chocola – ENS Lyon, 2013



Theorems: Given a PNTS (X , α)

◮ Soundness: if x and y are UE-bisimilar then
∀φ.

(

[[φ]] (x) = [[ψ]] (y)
)
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Theorems: Given a PNTS (X , α)

◮ Soundness: if x and y are UE-bisimilar then
∀φ.

(

[[φ]] (x) = [[ψ]] (y)
)

◮ Denseness: The functions { [[φ]] | φ a formula } is dense in
the set of functions f : X → R which are invariant under
UE-bisimilarity.

◮ Stone-Weierstrass Theorem for Riesz spaces.
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◮ Soundness: if x and y are UE-bisimilar then
∀φ.

(

[[φ]] (x) = [[ψ]] (y)
)

◮ Denseness: The functions { [[φ]] | φ a formula } is dense in
the set of functions f : X → R which are invariant under
UE-bisimilarity.

◮ Stone-Weierstrass Theorem for Riesz spaces.

◮ Completeness: if x and y are not UE-bisimilar then there is
some φ such that [[φ]] (x) 6= [[φ]] (y).
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Theorems: Given a PNTS (X , α)

◮ Soundness: if x and y are UE-bisimilar then
∀φ.

(

[[φ]] (x) = [[ψ]] (y)
)

◮ Denseness: The functions { [[φ]] | φ a formula } is dense in
the set of functions f : X → R which are invariant under
UE-bisimilarity.

◮ Stone-Weierstrass Theorem for Riesz spaces.

◮ Completeness: if x and y are not UE-bisimilar then there is
some φ such that [[φ]] (x) 6= [[φ]] (y).

◮ We have a sound and complete axiomatization

◮ Axioms from unitary Riesz spaces, plus

◮ Axioms for ♦.
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This is a general framework!!!

Example 1: The class of PNTS’s that beside

1. (Monotone) if f ⊑ g then ♦α(f ) ⊑ ♦α(f )

2. (Sublinear) ♦α(f + g) ⊑ ♦α(f ) + ♦α(g)

3. (Positive Affine Homogeneous)
♦(λ1f + λ21) = λ1♦α(f ) + λ2♦α1, for all λ1 ≥ 0, λ2 ∈ R

4. ♦α(1) ∈ X → {0, 1}

also satisfy

◮ (Linearity) ♦α(f + g) = ♦α(f ) + ♦α(g)

are Markov processes, i.e., PNTS (X , α) such that

◮ For all states x ∈ X , either α(x) = {µ} or α(x) = ∅
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This is a general framework!!!

Example 2: The class of PNTS’s that beside

1. (Monotone) if f ⊑ g then ♦α(f ) ⊑ ♦α(f )

2. (Sublinear) ♦α(f + g) ⊑ ♦α(f ) + ♦α(g)

3. (Positive Affine Homogeneous)
♦(λ1f + λ21) = λ1♦α(f ) + λ2♦α1, for all λ1 ≥ 0, λ2 ∈ R

4. ♦α(1) ∈ X → {0, 1}

also satisfy

◮ (Join preserving) ♦(f ⊔ g) = ♦(f ) ⊔ ♦(g).

are Kripke frames, i.e., PNTS (X , α) such that

◮ For all states x ∈ X every µ ∈ α(x) is a Dirac distribution.
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A quick note about µ-Calculi

The  Lukasiewicz µ-Calculus ( Lµ) is a [0, 1]-valued logic

◮ Introduced in my PhD thesis,

◮ (co)inductived fixed points (µ-Calculus)

◮ capable of encoding PCTL
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A quick note about µ-Calculi

The  Lukasiewicz µ-Calculus ( Lµ) is a [0, 1]-valued logic

◮ Introduced in my PhD thesis,

◮ (co)inductived fixed points (µ-Calculus)

◮ capable of encoding PCTL

The connectives of  Lµ comes from  Lukasiewicz logic.

◮ The logic of MV-algebra.

We can apply a variant of the Yosida Representation Theorem:

◮ All MV-algebras are of the form X → [0, 1]

Theorem:  Lµ formulas are dense in X → [0, 1].
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Summary

New prospective on Convex (closed) Bisimilarity

◮ in terms of UE-bisimilarity,

◮ motivated by R-valued experiments X → R,

◮ concrete reason to distinguish between not UE-bisimilar states.
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Summary

New prospective on Convex (closed) Bisimilarity

◮ in terms of UE-bisimilarity,

◮ motivated by R-valued experiments X → R,

◮ concrete reason to distinguish between not UE-bisimilar states.

By application of results from Functional Analysis

◮ Coalgebra = R-valued Modal Logic

◮ Coalgebra = Algebra (Riesz space structure)

◮ Axiomatic approach covers important classes of systems

◮ Kripke Structures, Markov Processes, PNTS’s, . . .

◮ Expressive logics capable of expressing useful properties (e.g.,
PCTL) and having good algebraic properties.
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Proof Systems?

Abelian Logic = Logic of (R,+,−,⊔)

Sequents: ⊢ φ1, . . . , φn

means φ1 + · · · + φn ≥ 0 in all interpretations.

Rules:

⊢ φ,−φ
⊢ Γ, φ, ψ

⊢ Γ, φ + ψ

⊢ Γ, φ ⊢ Γ, ψ

⊢ Γ, φ ⊔ ψ

Matteo Mio Chocola – ENS Lyon, 2013



THANKS

Matteo Mio Chocola – ENS Lyon, 2013


