Convex Bisimilarity and Real-valued Modal Logics

Matteo Mio, CWI-Amsterdam

Probabilistic Nondeterministic Transition Systems (PNTS's)

 a.k.a, Probabilistic Automata, Markov Decision Processes, Simple Segala Systems

Probabilistic Nondeterministic Transition Systems (PNTS's)

 a.k.a, Probabilistic Automata, Markov Decision Processes, Simple Segala Systems

- ▶ F-coalgebras (X, α) of F(X) = P(D(X)).
 - P(X) = powerset of X
 - \triangleright D(X) = discrete probability distributions on X

Logics for PNTS's

Can be organized in three categories:

- 1. PCTL, PCTL* and similar logics (\sim 20years old)
 - Used in practice because can express useful properties.
 - Main tool is Model-Checking, no much else.
 - Logically induce non-standard notions of behavioral equivalence

$$PCTL^* \subsetneq PCTL$$

Logics for PNTS's

Can be organized in three categories:

- 1. PCTL, PCTL* and similar logics (\sim 20years old)
 - Used in practice because can express useful properties.
 - Main tool is Model-Checking, no much else.
 - Logically induce non-standard notions of behavioral equivalence

$$PCTL^* \subsetneq PCTL$$

- 2. Hennessy-Milner-style Modal logics (ad-hoc, coalgebraic, ...)
 - Typically, carefully crafted to logically induce (<u>some kind of</u>) bisimulation.
 - Not expressive (even with fixed-point operators).

Logics for PNTS's

Can be organized in three categories:

- 1. PCTL, PCTL* and similar logics (~20years old)
 - Used in practice because can express useful properties.
 - Main tool is Model-Checking, no much else.
 - Logically induce non-standard notions of behavioral equivalence

$$PCTL^* \subsetneq PCTL$$

- 2. Hennessy-Milner-style Modal logics (ad-hoc, coalgebraic, ...)
 - Typically, carefully crafted to logically induce (<u>some kind of</u>) bisimulation.
 - Not expressive (even with fixed-point operators).
- 3. Quantitative (Real-valued) logics.

Quantitative Logics

Given a PNTS's (X, α)

- ▶ Semantics: $\llbracket \phi \rrbracket : X \to \mathbb{R}$
 - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$
 - ▶ But also, $\llbracket \phi \wedge \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$

Quantitative Logics

Given a PNTS's (X, α)

- ▶ Semantics: $\llbracket \phi \rrbracket : X \to \mathbb{R}$
 - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$
 - ▶ But also, $\llbracket \phi \wedge \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$
- When enriched with fixed-point operators (quantitative μ -calculi)
 - ► Expressive: Can encode PCTL
 - ► Game Semantics: Two-Player Stochastic Games

Quantitative Logics

Given a PNTS's (X, α)

- ▶ Semantics: $\llbracket \phi \rrbracket : X \to \mathbb{R}$
 - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$
 - ▶ But also, $\llbracket \phi \land \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$
- When enriched with fixed-point operators (quantitative μ -calculi)
 - ► Expressive: Can encode PCTL
 - ► Game Semantics: Two-Player Stochastic Games
- ► Under development: Model Checking algorithms, Compositional Proof Systems, . . .

- ▶ Is this approach somehow canonical or just ad-hoc?
 - ► Relations with coalgebra? Standard logics (i.e., MSO) ?

- Is this approach somehow canonical or just ad-hoc?
 - ► Relations with coalgebra? Standard logics (i.e., MSO) ?
- ► What kind of behavioral equivalence is logically induced by these logics?

- Is this approach somehow canonical or just ad-hoc?
 - ▶ Relations with coalgebra? Standard logics (i.e., MSO) ?
- What kind of behavioral equivalence is logically induced by these logics?
- Is there a best choice of connectives?
 - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$
 - ▶ But also, $\llbracket \phi \land \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$

- Is this approach somehow canonical or just ad-hoc?
 - ▶ Relations with coalgebra? Standard logics (i.e., MSO) ?
- What kind of behavioral equivalence is logically induced by these logics?
- Is there a best choice of connectives?
 - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$
 - ▶ But also, $\llbracket \phi \land \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$
- Sound and Complete Axiomatizations?

- Is this approach somehow canonical or just ad-hoc?
 - ▶ Relations with coalgebra? Standard logics (i.e., MSO) ?
- What kind of behavioral equivalence is logically induced by these logics?
- Is there a best choice of connectives?
 - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$
 - ▶ But also, $\llbracket \phi \land \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$
- Sound and Complete Axiomatizations?
 - Proof Systems?

- Is this approach somehow canonical or just ad-hoc?
 - ► Relations with coalgebra? Standard logics (i.e., MSO) ?
- What kind(s) of behavioral equivalence is logically induced by these logics?
- ▶ Is there a **best choice** of connectives?
 - ► E.g., $\llbracket \phi \wedge \psi \rrbracket (x) = \min (\llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x))$
 - ▶ But also, $\llbracket \phi \land \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) \cdot \llbracket \psi \rrbracket (x)$
- Sound and Complete Axiomatizations?
 - Proof Systems?

Behavioral Equivalences for PNTS's

Several have been proposed in the literature.

Coalgebra shed some light: Cocongruence

Definition Given F-coalgebra (X, α) , the equivalence relation $E \subseteq X \times X$ is a cocongruence iff

$$(x,y) \in E \implies (\alpha(x),\alpha(y)) \in \hat{E}.$$

- ▶ of powerset functor P. Given $A, B \in P(X)$
 - $(A, B) \in \hat{E}_P \Leftrightarrow \{[x]_E \mid x \in A\} = \{[x]_E \mid x \in B\}$

- ▶ of powerset functor P. Given $A, B \in P(X)$
 - $(A,B) \in \hat{E}_P \Leftrightarrow \{[x]_E \mid x \in A\} = \{[x]_E \mid x \in B\}$
- ▶ of Distribution functor D. Given $d_1, d_2 \in D(X)$
 - $(d_1, d_2) \in \hat{E}_D \Leftrightarrow d_1(A) = d_2(A)$, for all $A \in X/E$

- ▶ of powerset functor P. Given $A, B \in P(X)$
 - $(A,B) \in \hat{E}_P \Leftrightarrow \{[x]_E \mid x \in A\} = \{[x]_E \mid x \in B\}$
- ▶ of Distribution functor D. Given $d_1, d_2 \in D(X)$
 - $(d_1, d_2) \in \hat{E}_D \Leftrightarrow d_1(A) = d_2(A)$, for all $A \in X/E$
- ▶ of *PD* functor (PNTS's). Given $A, B \in PD(X)$
 - $\qquad \bullet \quad (A,B) \in \hat{E}_{PD} \quad \Leftrightarrow \quad \left\{ [\mu]_{\hat{E}_D} \mid \mu \in A \right\} = \left\{ [\mu]_{\hat{E}_D} \mid \mu \in B \right\}$

- ▶ of powerset functor P. Given $A, B \in P(X)$
 - $(A,B) \in \hat{E}_P \Leftrightarrow \{[x]_E \mid x \in A\} = \{[x]_E \mid x \in B\}$
- ▶ of Distribution functor D. Given $d_1, d_2 \in D(X)$
 - $(d_1, d_2) \in \hat{E}_D \Leftrightarrow d_1(A) = d_2(A)$, for all $A \in X/E$
- ▶ of *PD* functor (PNTS's). Given $A, B \in PD(X)$
 - $(A,B) \in \hat{E}_{PD} \Leftrightarrow \{ [\mu]_{\hat{E}_D} \mid \mu \in A \} = \{ [\mu]_{\hat{E}_D} \mid \mu \in B \}$

Definition Given *F*-coalgebra (X, α) , the equivalence relation $E \subseteq X \times X$ is a cocongruence iff

$$(x,y) \in E \implies (\alpha(x),\alpha(y)) \in \hat{E}.$$

Cocongruence for PNTS's was introduced (concretely) by Roberto Segala in his PhD thesis (1994).

Standard Bisimilarity for PNTS's.

Def: Given (X, α) , an equivalence $E \subseteq X \times X$ is a standard bisimulation if

- for all $x \to \mu$ there exists $y \to \nu$ such that $(\mu, \nu) \in \hat{E}_D$, and
- for all $y \to \nu$ there exists $x \to \mu$ such that $(\mu, \nu) \in \hat{\mathcal{E}}_D$,

where $x \to \mu$ means $\mu \in \alpha(x)$.

Two states (x, y) which are not standard bisimilar.

Under the assumption that x_1 and x_2 are distinguishable.

Convex Bisimilarity

Def: Given (X, α) , an equivalence $E \subseteq X \times X$ is a convex bisimulation if

- ▶ for all $x \to_C \mu$ there exists $y \to_C \nu$ such that $(\mu, \nu) \in \hat{E}_D$, and
- ▶ for all $y \to_C \nu$ there exists $x \to_C \mu$ such that $(\mu, \nu) \in \hat{E}_D$,

where $x \to_C \mu$ means $\mu \in H(\alpha(x))$.

Convex Bisimilarity

Def: Given (X, α) , an equivalence $E \subseteq X \times X$ is a convex bisimulation if

- ▶ for all $x \to_C \mu$ there exists $y \to_C \nu$ such that $(\mu, \nu) \in \hat{E}_D$, and
- ▶ for all $y \to_C \nu$ there exists $x \to_C \mu$ such that $(\mu, \nu) \in \hat{E}_D$,

where $x \to_C \mu$ means $\mu \in H(\alpha(x))$.

Cocongruence of F-coalgebras for $F = P_c D$

 $ightharpoonup P_c D$ = Convex Sets of Probability Distributions.

$$(X, \alpha: X \to PD(X)) \xrightarrow{H} (X, \alpha: X \to P_cD(X))$$

Standard Bisimilarity

Convex Bisimilarity

Fact: Expressive logics for PNTS's can not distinguish convex bisimilar states.

▶ PCTL, PCTL* and the \mathbb{R} -valued μ -Calculi convex bisim. \subsetneq PCTL* \subsetneq PCTL convex bisim. $\subseteq_?$ quantitative μ -calculi

Natural question: does Convex Bisimilarity distinguish too much?

Suppose we want to observe event $\Phi = \{x_1\}$.

• y can exhibit Φ with probability [0.3, 0.5]. But also x can!

Suppose we want to observe event $\Phi = \{x_2\}$.

• y can exhibit Φ with probability [0.3, 0.4]. But also x can!

Suppose we want to observe event $\Phi = \{x_1, x_2\}$.

• y can exhibit Φ with probability [0.6, 0.9]. But also x can!

As a matter of fact, for all events $\Phi \subseteq \{x_1, x_2, x_3\}$.

▶ y can exhibit Φ with probability $[λ_1, λ_2]$ iff x can!

We considered events $\Phi \subseteq \{x_1, x_2, x_3\}$?

▶ What about Random Variables $f: \{x_1, x_2, x_3\} \rightarrow \mathbb{R}$?

We considered events $\Phi \subseteq \{x_1, x_2, x_3\}$?

▶ What about Random Variables $f: \{x_1, x_2, x_3\} \rightarrow \mathbb{R}$?

Example: $f(x_1) = 60$, $f(x_2) = 0$, $f(x_3) = 50$.

Expected values: $E_{\mu_1}(f) = 38$, $E_{\mu_2}(f) = 35$, $E_{\mu_3}(f) = 39$.

We considered events $\Phi \subseteq \{x_1, x_2, x_3\}$?

▶ What about Random Variables $f: \{x_1, x_2, x_3\} \rightarrow \mathbb{R}$?

Example: $f(x_1) = 60$, $f(x_2) = 0$, $f(x_3) = 50$.

Expected values: $E_{\mu_1}(f) = 38$, $E_{\mu_2}(f) = 35$, $E_{\mu_3}(f) = 39$.

- ► The average resulting from interactions on *y* **CAN BE** greater than 38 (and always is smaller than 39)
- ► The average resulting from interactions on *y* **CAN NOT BE** greater than 38

Upper Expectation Bisimilarity

Upper Expectation Functional: Given a set A of probability distributions on X, define $ue_A:(X\to\mathbb{R})\to\mathbb{R}$ as:

$$ue_A(f) = \sup\{E_\mu(f) \mid \mu \in A\}$$

Upper Expectation (UE) Bisimulation. Given a PNTS (X, α) , an equivalence relation $E \subseteq X \times X$ is a UE-bisimulation if

•
$$ue_{\alpha(x)}(f) = ue_{\alpha(y)}(f)$$

for all *E*-invariant $f: X \to \mathbb{R}$, i.e., such that if $(z, w) \in E$ then f(z) = f(w).

Functional Analysis

Functionals of type $(X \to \mathbb{R}) \to \mathbb{R}$, e.g. $C(X)^*$, are well studied in Functional Analysis.

Several Representation Theorems available.

Functional Analysis

Functionals of type $(X \to \mathbb{R}) \to \mathbb{R}$, e.g. $C(X)^*$, are well studied in Functional Analysis.

Several Representation Theorems available.

Theorem: Let X be a finite set and $A \in PD(X)$ a set of probability distributions. Then:

- $ightharpoonup ue_{A} = ue_{\overline{H}(A)}$
- $\qquad \qquad \big\{ \mu \mid \forall f : X \to \mathbb{R}. (\mu(f) \leq ue_A(f)) \big\} = \overline{H}(A)$

where $\overline{H}(A)$ is the *closed convex hull* of A.

Functional Analysis

Functionals of type $(X \to \mathbb{R}) \to \mathbb{R}$, e.g. $C(X)^*$, are well studied in Functional Analysis.

Several Representation Theorems available.

Theorem: Let X be a finite set and $A \in PD(X)$ a set of probability distributions. Then:

- $ightharpoonup ue_{A} = ue_{\overline{H}(A)}$
- $\qquad \qquad \big\{ \mu \mid \forall f : X \to \mathbb{R}. (\mu(f) \le ue_A(f)) \big\} = \overline{H}(A)$

where $\overline{H}(A)$ is the *closed convex hull* of A.

Message: $ue_A:(X \to \mathbb{R}) \to \mathbb{R}$ and $\overline{H}(A)$ are the same thing.

Consequence

UE-bisimilarity = cocongruence for $P_{cc}D$ -coalgebras.

▶ $P_{cc}D$ = convex <u>closed</u> sets of probability distributions.

Consequence

UE-bisimilarity = cocongruence for $P_{cc}D$ -coalgebras.

 $ightharpoonup P_{cc}D = {
m convex} \ {
m closed} \ {
m sets} \ {
m of probability distributions}.$

Remark: it is natural to consider only closed sets!

- ► Motto: "observable properties are open sets"
- Moreover, convex closure of a finite set is closed.

Consequence

UE-bisimilarity = cocongruence for $P_{cc}D$ -coalgebras.

 $ightharpoonup P_{cc}D = {
m convex} \ {
m closed} \ {
m sets} \ {
m of probability distributions}.$

Remark: it is natural to consider only closed sets!

- ► Motto: "observable properties are open sets"
- Moreover, convex closure of a finite set is closed.

Therefore we have:

- Strong reasons for equating UE-bisimilar states (prob. schedulers)
- ► Strong reasons for distinguishing not UE-bisimilar states (ℝ-valued experiments).

Back to Logic!

PNTS
$$(X, \alpha: X \to P_{cc}D(X))$$
 $x \mapsto A_X$

PNTS $(X, \alpha: X \to (X \to \mathbb{R}) \to \mathbb{R})$ $x \mapsto ue_A$

PNTS $(X, \alpha: (X \to \mathbb{R}) \to (X \to \mathbb{R}))$ $f \mapsto \lambda x.(ue_{\alpha(x)}(f))$

Denote with $\Diamond_{\alpha}: (X \to \mathbb{R}) \to (X \to \mathbb{R})$ the latter presentation.

Given a PNTS (X, α) , \mathbb{R} -valued Modal logics have semantics:

$$\llbracket \phi \rrbracket : X \to \mathbb{R}.$$

and, in particular (for all the logics in the literature)

$$\llbracket \Diamond \phi \rrbracket = \Diamond_{\alpha}(\llbracket \phi \rrbracket) \stackrel{\text{def}}{=} \sup \{ E_{\mu}(\llbracket \phi \rrbracket) \mid \mu \in \alpha(x) \}$$

Given a PNTS (X, α) , \mathbb{R} -valued Modal logics have semantics:

$$\llbracket \phi \rrbracket : X \to \mathbb{R}.$$

and, in particular (for all the logics in the literature)

$$\llbracket \lozenge \phi \rrbracket = \lozenge_{\alpha}(\llbracket \phi \rrbracket) \stackrel{\text{def}}{=} \sup \{ E_{\mu}(\llbracket \phi \rrbracket) \mid \mu \in \alpha(x) \}$$

The several logics in the literature differ on the choice of other connectives:

- [1](x) = 1,
- ▶ $\llbracket \phi \sqcap \psi \rrbracket (x) = \min \{ \llbracket \phi \rrbracket (x), \llbracket \psi \rrbracket (x) \}$
- **.**...

Functional Analysis - Again

Let (X, α) be a PNTS. Then $\Diamond_{\alpha} : (X \to \mathbb{R}) \to (X \to \mathbb{R})$ satisfies:

- 1. (Monotone) if $f \sqsubseteq g$ then $\Diamond_{\alpha}(f) \sqsubseteq \Diamond_{\alpha}(f)$
- 2. (Sublinear) $\Diamond_{\alpha}(f+g) \sqsubseteq \Diamond_{\alpha}(f) + \Diamond_{\alpha}(g)$
- 3. (Positive Affine Homogeneous) $\Diamond(\lambda_1 f + \lambda_2 \underline{1}) = \lambda_1 \Diamond_{\alpha}(f) + \lambda_2 \Diamond_{\alpha} \underline{1}$, for all $\lambda_1 \geq 0$, $\lambda_2 \in \mathbb{R}$
- **4**. $\Diamond_{\alpha}(\underline{1}) \in X \rightarrow \{0,1\}$

Completeness: Furthermore, every $(X \to \mathbb{R}) \to (X \to \mathbb{R})$ with these properties is $F = \Diamond_{\alpha}$ for a unique PNTS (X, α) .

A *Riesz space* is a vector space R with a lattice order \sqsubseteq .

► Language: $\underline{1}$, f + g, λf , $f \sqcup g$.

A *Riesz space* is a vector space R with a lattice order \sqsubseteq .

- ▶ Language: $\underline{1}$, f + g, λf , $f \sqcup g$.
- ▶ Yosida Representation Theorem: Every Riesz space which is unitary is of the form $(X \to \mathbb{R}, \sqsubseteq)$.

A *Riesz space* is a vector space R with a lattice order \sqsubseteq .

- ▶ Language: $\underline{1}$, f + g, λf , $f \sqcup g$.
- ▶ Yosida Representation Theorem: Every Riesz space which is unitary is of the form $(X \to \mathbb{R}, \sqsubseteq)$.

Theorem: Every PNTS's (X, α) is a unitary Riesz space R with an operation $\Diamond: R \to R$ with properties above.

A *Riesz space* is a vector space R with a lattice order \sqsubseteq .

- ▶ Language: $\underline{1}$, f + g, λf , $f \sqcup g$.
- ▶ Yosida Representation Theorem: Every Riesz space which is unitary is of the form $(X \to \mathbb{R}, \sqsubseteq)$.

Theorem: Every PNTS's (X, α) is a unitary Riesz space R with an operation $\Diamond: R \to R$ with properties above.

Riesz Logic: $\phi := \underline{1} \mid f + g \mid \lambda f \mid f \sqcup g \mid \Diamond \phi$.

- Semantics interpreted on (X, α) :
 - [1](x) = 1,
 - $\llbracket \phi + \psi \rrbracket (x) = \llbracket \phi \rrbracket (x) + \llbracket \psi \rrbracket (x)$

▶ Soundness: if x and y are UE-bisimilar then $\forall \phi. (\llbracket \phi \rrbracket(x) = \llbracket \psi \rrbracket(y))$

- ▶ Soundness: if x and y are UE-bisimilar then $\forall \phi. (\llbracket \phi \rrbracket(x) = \llbracket \psi \rrbracket(y))$
- ▶ Denseness: The functions $\{\llbracket \phi \rrbracket \mid \phi \text{ a formula }\}$ is <u>dense</u> in the set of functions $f: X \to \mathbb{R}$ which are invariant under UE-bisimilarity.
 - ▶ Stone-Weierstrass Theorem for Riesz spaces.

- ▶ Soundness: if x and y are UE-bisimilar then $\forall \phi. (\llbracket \phi \rrbracket(x) = \llbracket \psi \rrbracket(y))$
- ▶ Denseness: The functions $\{ \llbracket \phi \rrbracket \mid \phi \text{ a formula } \}$ is <u>dense</u> in the set of functions $f: X \to \mathbb{R}$ which are invariant under UE-bisimilarity.
 - Stone-Weierstrass Theorem for Riesz spaces.
- ▶ Completeness: if x and y are not UE-bisimilar then there is some ϕ such that $\llbracket \phi \rrbracket (x) \neq \llbracket \phi \rrbracket (y)$.

- ▶ Soundness: if x and y are UE-bisimilar then $\forall \phi. (\llbracket \phi \rrbracket(x) = \llbracket \psi \rrbracket(y))$
- ▶ Denseness: The functions $\{ \llbracket \phi \rrbracket \mid \phi \text{ a formula } \}$ is <u>dense</u> in the set of functions $f: X \to \mathbb{R}$ which are invariant under UE-bisimilarity.
 - Stone-Weierstrass Theorem for Riesz spaces.
- ▶ Completeness: if x and y are not UE-bisimilar then there is some ϕ such that $\llbracket \phi \rrbracket (x) \neq \llbracket \phi \rrbracket (y)$.
- ▶ We have a sound and complete axiomatization
 - Axioms from unitary Riesz spaces, plus
 - ▶ Axioms for ◊.

This is a general framework!!!

Example 1: The class of PNTS's that beside

- 1. (Monotone) if $f \sqsubseteq g$ then $\Diamond_{\alpha}(f) \sqsubseteq \Diamond_{\alpha}(f)$
- 2. (Sublinear) $\Diamond_{\alpha}(f+g) \sqsubseteq \Diamond_{\alpha}(f) + \Diamond_{\alpha}(g)$
- 3. (Positive Affine Homogeneous) $\Diamond(\lambda_1 f + \lambda_2 \underline{1}) = \lambda_1 \Diamond_{\alpha}(f) + \lambda_2 \Diamond_{\alpha} \underline{1}$, for all $\lambda_1 \geq 0$, $\lambda_2 \in \mathbb{R}$
- **4**. $\Diamond_{\alpha}(\underline{1}) \in X \rightarrow \{0,1\}$

also satisfy

• (Linearity) $\Diamond_{\alpha}(f+g) = \Diamond_{\alpha}(f) + \Diamond_{\alpha}(g)$

are **Markov processes**, i.e., PNTS (X, α) such that

▶ For all states $x \in X$, either $\alpha(x) = \{\mu\}$ or $\alpha(x) = \emptyset$

This is a general framework!!!

Example 2: The class of PNTS's that beside

- 1. (Monotone) if $f \sqsubseteq g$ then $\Diamond_{\alpha}(f) \sqsubseteq \Diamond_{\alpha}(f)$
- 2. (Sublinear) $\Diamond_{\alpha}(f+g) \sqsubseteq \Diamond_{\alpha}(f) + \Diamond_{\alpha}(g)$
- 3. (Positive Affine Homogeneous) $\Diamond(\lambda_1 f + \lambda_2 \underline{1}) = \lambda_1 \Diamond_{\alpha}(f) + \lambda_2 \Diamond_{\alpha} \underline{1}$, for all $\lambda_1 \geq 0$, $\lambda_2 \in \mathbb{R}$
- **4**. $\Diamond_{\alpha}(\underline{1}) \in X \rightarrow \{0,1\}$

also satisfy

▶ (Join preserving) $\Diamond(f \sqcup g) = \Diamond(f) \sqcup \Diamond(g)$.

are **Kripke frames**, i.e., PNTS (X, α) such that

▶ For all states $x \in X$ every $\mu \in \alpha(x)$ is a Dirac distribution.

A quick note about μ -Calculi

The Łukasiewicz μ -Calculus ($\xi\mu$) is a [0,1]-valued logic

- Introduced in my PhD thesis,
- (co)inductived fixed points (μ-Calculus)
- capable of encoding PCTL

A quick note about μ -Calculi

The Łukasiewicz μ -Calculus (μ) is a [0,1]-valued logic

- Introduced in my PhD thesis,
- (co)inductived fixed points (μ-Calculus)
- capable of encoding PCTL

The connectives of $\mathbf{L}\mu$ comes from Łukasiewicz logic.

► The logic of MV-algebra.

A quick note about μ -Calculi

The Łukasiewicz μ -Calculus (Ł μ) is a [0,1]-valued logic

- Introduced in my PhD thesis,
- (co)inductived fixed points (μ-Calculus)
- capable of encoding PCTL

The connectives of $\mathbf{L}\mu$ comes from Łukasiewicz logic.

The logic of MV-algebra.

We can apply a variant of the Yosida Representation Theorem:

lacktriangle All MV-algebras are of the form X o [0,1]

Theorem: μ formulas are dense in $X \to [0, 1]$.

Summary

New prospective on Convex (closed) Bisimilarity

- in terms of UE-bisimilarity,
- ▶ motivated by \mathbb{R} -valued experiments $X \to \mathbb{R}$,
- concrete reason to distinguish between not UE-bisimilar states.

Summary

New prospective on Convex (closed) Bisimilarity

- in terms of UE-bisimilarity,
- ▶ motivated by \mathbb{R} -valued experiments $X \to \mathbb{R}$,
- concrete reason to distinguish between not UE-bisimilar states.

By application of results from Functional Analysis

- ightharpoonup Coalgebra = \mathbb{R} -valued Modal Logic
- Coalgebra = Algebra (Riesz space structure)
- Axiomatic approach covers important classes of systems
 - Kripke Structures, Markov Processes, PNTS's, . . .
- Expressive logics capable of expressing useful properties (e.g., PCTL) and having good algebraic properties.

Proof Systems?

Abelian Logic = Logic of
$$(\mathbb{R}, +, -, \sqcup)$$

Sequents:
$$\vdash \phi_1, \ldots, \phi_n$$

means $\phi_1 + \cdots + \phi_n \ge 0$ in all interpretations.

Rules:

THANKS