Attention, 15h françaises !, 3 juin 2021

Pour assister à la rencontre, se rendre sur https://ent-services.ens-lyon.fr/entVisio/ choisir Chocola dans le menu déroulant, mettre son nom comme identifiant, et Bruxelles sans majuscule comme dernier champ. Autoriser les popups, et changer de navigateur au besoin.

10h: accueil et problèmes de connexion 10h15: début de l'exposé 11h15: questions et discussion 12h: adieu et problèmes de déconnexion Merci aux auditeurs de couper micro et caméra (sauf éventuellement, lorsqu'ils souhaitent poser une question). Les questions peuvent aussi être posées dans la fenêtre de chat.

En cas de problème ou de question, écrire à chocola-gestion chez ens-lyon.fr.

Programme

15:00 – 17:00
Carlo Angiuli (Carnegie Mellon University)

In their usual form, representation independence metatheorems provide an external guarantee that two implementations of an abstract interface are interchangeable when they are related by an operation-preserving correspondence. In the dependently-typed setting, however, we would like to appeal to such invariance results within a language itself, in order to transfer theorems from simple to complex implementations. Homotopy type theorists have noted that Voevodsky's univalence principle equates isomorphic structures, but unfortunately many instances of representation independence are not isomorphisms.

In this talk, we describe a technique for establishing internal relational representation independence results in Cubical Agda by using higher inductive types to simultaneously quotient two related implementation types by a heterogeneous correspondence between them. The correspondence becomes an isomorphism between the quotiented types, thereby allowing us to obtain an equality of implementations by univalence. Joint work with Evan Cavallo, Anders Mörtberg, and Max Zeuner. Available at https://dl.acm.org/doi/10.1145/3434293.