Realizability games for the specification problem

Mauricio Guillermo², Étienne Miquey^{1,2}

¹Team πr² (INRIA), PPS, Université Paris-Diderot ²Fac. de Ingeniería, Universidad de la República, Uruguay

CHoCoLa meeting, 21.05.2015

Introduction

The manège enchanté

Classical realizability

Curry-Howard correspondence	
Proof theory	Functional programming
Proposition	Туре
Deduction rule	Typing rule
$A \Rightarrow B$	A o B
$\frac{\Gamma \vdash A \Rightarrow B \qquad \Gamma \vdash A}{\Gamma \vdash B}$	$ \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash (t)u : B} $

- Constructive mathematics: intuitionistic logic
- Correct (for the execution) program might be untypable :

The manège enchanté

Classical realizability

Introduction

00000

Curry-Howard correspondence	
Proof theory	Functional programming
Proposition	Туре
Deduction rule	Typing rule
$A \Rightarrow B$	A o B
$\frac{\Gamma \vdash A \Rightarrow B \qquad \Gamma \vdash A}{\Gamma \vdash B}$	$ \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash (t)u : B} $

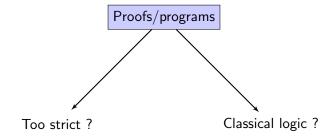
- Constructive mathematics: intuitionistic logic
- Correct (for the execution) program might be untypable :

```
let stupid n =
           if n=n+1 then 27 else true
```

Classical realizability

Introduction

00000

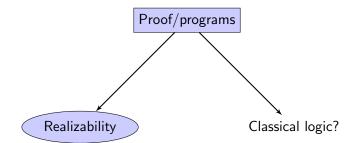


 \mathbb{G}^1 : a first game

Relaxing: realizability

Introduction

000000



Relaxing: realizability

Realizers

Introduction

000000

- $t \Vdash \mathsf{Nat}$ si $t \succ \overline{n}$
- $t \Vdash A \Rightarrow B$ si $u \Vdash A$ implies $(t)u \Vdash B$
 - Definition purely computational: no sintax
 - Relation $t \Vdash A$ undecidable

Classical logic

Introduction

000000

Griffin, 1990

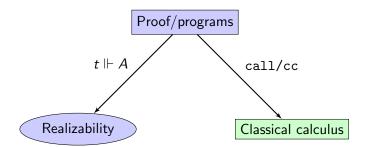
$$call/cc: ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$$

- Intuitionistic logic + Peirce's Law = Classical logic
- Classical Curry-Howard :
 - \rightarrow add a control operator + its typing rule
- Backtrack makes computational analysis harder

Classical realizability

Introduction

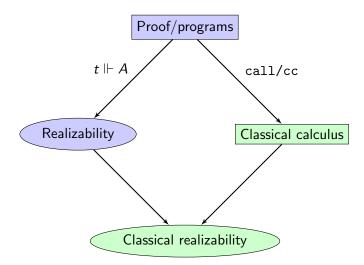
000000



Classical realizability

Introduction

000000



The question of this talk

Specification of *A*:

Can we give a **characterization** of the realizers of *A* ?

Introduction

000000

Conclusion

Krivine classical realizability

Introduction

Introduction

Terms, stacks, processes

 \mathcal{B} : stack constants

C: instructions (including \mathbf{c}), countable

KAN

Conclusion

Introduction

Terms, stacks, processes

 \mathcal{B} : stack constants

C: instructions (including \mathbf{c}), countable

KAM

Push:
$$(t)u \star \pi \succ_1 t \star u \cdot \pi$$

Grab: $\lambda x.t \star u \cdot \pi \succ_1 t\{x := u\} \star \pi$

Introduction

Terms, stacks, processes

 \mathcal{B} : stack constants

C: instructions (including \mathbf{c}), countable

KAM

Push : $(t)u \star \pi \succ_{1} t \star u \cdot \pi$ Grab : $\lambda x.t \star u \cdot \pi \succ_{1} t\{x := u\} \star \pi$ Save : $\mathbf{c} \star t \cdot \pi \succ_{1} t \star \mathbf{k}_{\pi} \cdot \pi$ Restore : $\mathbf{k}_{\pi} \star t \cdot \rho \succ_{1} t \star \pi$

Introduction

Terms, stacks, processes

 \mathcal{B} : stack constants

C: instructions (including \mathbf{c}), countable

KAM

```
Push : (t)u \star \pi \succ_1 t \star u \cdot \pi

Grab : \lambda x.t \star u \cdot \pi \succ_1 t\{x := u\} \star \pi

Save : \mathbf{c} \star t \cdot \pi \succ_1 t \star \mathbf{k}_{\pi} \cdot \pi

Restore : \mathbf{k}_{\pi} \star t \cdot \rho \succ_1 t \star \pi
```

Introduction

Terms, stacks, processes

 \mathcal{B} : stack constants

C: instructions (including \mathbf{c}), countable

KAM + C extended

```
SAVE : \mathbf{c} \star t \cdot \pi \succ_{1} t \star \mathbf{k}_{\pi} \cdot \pi

QUOTE : quote \star \phi \cdot t \cdot \pi \succ_{1} t \star \overline{n_{\phi}} \cdot \pi

FORK : \pitchfork \star t \cdot u \cdot \pi \succ_{1} t \star \pi

FORK : \pitchfork \star t \cdot u \cdot \pi \succ_{1} u \star \pi

PRINT : print \star \overline{n} \cdot t \cdot \pi \succ_{1} t \star \pi
```

2nd-order arithmetic

Classical realizability

0000000000

Language

Introduction

Expressions e ::= $x \mid f(e_1, \ldots, e_k)$

Formulæ $A, B ::= X(e_1, \ldots, e_k) \mid A \Rightarrow B \mid \forall x A \mid \forall X A$

Shorthands

$$\bot \equiv \forall Z.Z
\neg A \equiv A \Rightarrow \bot
A \land B \equiv \forall Z((A \Rightarrow B \Rightarrow Z) \Rightarrow Z)
A \lor B \equiv \forall Z((A \Rightarrow Z) \Rightarrow (B \Rightarrow Z) \Rightarrow Z)
A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)
\exists xA(x) \equiv \forall Z(\forall x(A(x) \Rightarrow Z) \Rightarrow Z)
\exists XA(X) \equiv \forall Z(\forall Z(A(X) \Rightarrow Z) \Rightarrow Z)
e_1 = e_2 \equiv \forall Z(Z(e_1) \Rightarrow Z(e_2))$$

2nd-order arithmetic

Classical realizability

0000000000

Language

Introduction

Expressions
$$e$$
 ::= $x \mid f(e_1, ..., e_k)$
Formulæ A, B ::= $X(e_1, ..., e_k) \mid A \Rightarrow B \mid \forall x A \mid \forall X A$

Shorthands:

$$\downarrow \equiv \forall Z.Z
\neg A \equiv A \Rightarrow \bot
A \land B \equiv \forall Z((A \Rightarrow B \Rightarrow Z) \Rightarrow Z)
A \lor B \equiv \forall Z((A \Rightarrow Z) \Rightarrow (B \Rightarrow Z) \Rightarrow Z)
A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)
\exists xA(x) \equiv \forall Z(\forall x(A(x) \Rightarrow Z) \Rightarrow Z)
\exists XA(X) \equiv \forall Z(\forall X(A(X) \Rightarrow Z) \Rightarrow Z)
e_1 = e_2 \equiv \forall Z(Z(e_1) \Rightarrow Z(e_2))$$

Introduction

$$\frac{\Gamma \vdash x : A}{\Gamma \vdash x : A} (x : A) \in \Gamma$$

$$\frac{\Gamma \vdash t : A \Rightarrow B}{\Gamma \vdash t : B} \qquad \frac{\Gamma \vdash t : B}{\Gamma \vdash \lambda x . t : A \Rightarrow B}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x . A} x \notin FV(\Gamma)$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall X . A} X \notin FV(\Gamma)$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall X . A} X \notin FV(\Gamma)$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall X . A} X \notin FV(\Gamma)$$

$$\frac{\Gamma \vdash t : \forall X . A}{\Gamma \vdash t : A \{X(x_1, \dots, x_k) := B\}}$$

$$\frac{\Gamma \vdash \alpha : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}{\Gamma \vdash \alpha : (A \Rightarrow B) \Rightarrow A}$$

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \perp \!\!\! \perp ?$$

$$|A| = ||A||^{\perp \perp} = \{ t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp \}$$

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot$$
?

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

Classical realizability

0000000000

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot$$
?

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot$$
?

 $\rightsquigarrow \bot \bot \subset \Lambda_c \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality** : $|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp \}$

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot$$
?

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot$$
?

 $\rightsquigarrow \bot \!\!\! \bot \subset \Lambda_c \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality**:
$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp \}$$

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \perp \!\!\! \perp ?$$

 $\rightsquigarrow \bot \!\!\! \bot \subset \Lambda_c \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality**:

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

Ground model \mathcal{M}

Classical realizability

00000000000

Pole

Introduction

 $\bot\!\!\!\bot\subset\Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : \quad (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

$$|A| = ||A||^{\perp \perp} = \{ t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp \}$$

Ground model ${\mathcal M}$

Pole

Introduction

 $\bot\!\!\!\bot\subset \Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : \quad (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

- $\bullet \|A \Rightarrow B\| = \{t \cdot \pi : t \in |A| \land \pi \in \|B\|\}$
- $\bullet \|\forall xA\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\bullet \|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := \hat{F}\}\|$
- $||F(e_1,...,e_k)|| = F([e_1],...,[e_k])$

Ground model \mathcal{M}

Classical realizability

0000000000

Pole

Introduction

 $\bot\!\!\!\bot\subset\Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

- $||A \Rightarrow B|| = \{t \cdot \pi : t \in |A| \land \pi \in ||B||\}$
- $\|\forall x A\| = \|\int_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := F\}\|$
- $\|\dot{F}(e_1, \dots, e_{\nu})\| = F([e_1], \dots, [e_{\nu}])$

Ground model \mathcal{M}

Classical realizability

0000000000

Pole

Introduction

 $\bot\!\!\!\bot\subset\Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : \quad (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

- $||A \Rightarrow B|| = \{t \cdot \pi : t \in |A| \land \pi \in ||B||\}$
- $\bullet \|\forall xA\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := F\}\|$
- $\|\dot{F}(e_1, \dots, e_{\nu})\| = F([e_1], \dots, [e_{\nu}])$

Ground model ${\cal M}$

Classical realizability

0000000000

Pole

Introduction

 $\bot\!\!\!\bot\subset \Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : \quad (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

- $||A \Rightarrow B|| = \{t \cdot \pi : t \in |A| \land \pi \in ||B||\}$
- $\|\forall xA\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := \dot{F}\}\|$
- $\|\dot{F}(e_1,...,e_k)\| = F(\llbracket e_1 \rrbracket,...,\llbracket e_k \rrbracket)$

Ground model \mathcal{M}

Classical realizability

0000000000

Pole

Introduction

 $\bot\!\!\!\bot\subset\Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

- $||A \Rightarrow B|| = \{t \cdot \pi : t \in |A| \land \pi \in ||B||\}$
- $\bullet \|\forall xA\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := F\}\|$
- $\|\dot{F}(e_1,...,e_k)\| = F([e_1],...,[e_k])$

Introduction

Ground model \mathcal{M} Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

Falsity value (opponent):

Classical realizability

0000000000

- $||A \Rightarrow B|| = \{t \cdot \pi : t \in |A| \land \pi \in ||B||\}$
- $\bullet \|\forall xA\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := \dot{F}\}\|$
- $\|\dot{F}(e_1, \dots, e_{\nu})\| = F([e_1], \dots, [e_{\nu}])$

Notation

$$t \Vdash A$$
 iff $t \in |A| = ||A||^{\perp \perp}$
 $t \Vdash A$ iff $t \Vdash A$ for all $\perp \perp$

Remarks

Introduction

Case $\perp \!\!\! \perp = \emptyset$ (degenerated model)

• Truth as in the standard model:

$$|A| = \begin{cases} \Lambda & \text{if } \llbracket A \rrbracket = 1 \\ \emptyset & \text{if } \llbracket A \rrbracket = 0 \end{cases}$$

Realizable ⇔ True in the standard model

Case $\bot\!\!\!\bot \neq \emptyset$

- $t \star \pi \in \bot\!\!\!\bot \Rightarrow$ forall $A, \mathbf{k}_{\pi}t \Vdash A$
- Restriction to proof-like

Remarks

Introduction

Case $\perp \!\!\! \perp = \emptyset$ (degenerated model)

• Truth as in the standard model:

$$|A| = \begin{cases} \Lambda & \text{if } \llbracket A \rrbracket = 1 \\ \emptyset & \text{if } \llbracket A \rrbracket = 0 \end{cases}$$

Realizable ⇔ True in the standard model

Case $\bot\!\!\!\bot \neq \emptyset$

- $t \star \pi \in \bot \bot \Rightarrow$ forall A, $\mathbf{k}_{\pi} t \Vdash A$
- Restriction to proof-like

Remarks

Introduction

Case $\perp \!\!\! \perp = \emptyset$ (degenerated model)

• Truth as in the standard model:

$$|A| = \begin{cases} \Lambda & \text{if } \llbracket A \rrbracket = 1\\ \emptyset & \text{if } \llbracket A \rrbracket = 0 \end{cases}$$

Realizable ⇔ True in the standard model

Case $\bot\!\!\!\bot \neq \emptyset$

- $t \star \pi \in \bot \bot \Rightarrow$ forall A, $\mathbf{k}_{\pi}t \Vdash A$
- Restriction to proof-like

Properties

Realizing Peano axioms

If $PA2 \vdash A$, then there is a closed proof-like term t s.t. $t \Vdash A$.

Witness extraction

If $t \Vdash \exists^{N} x A(x)$ and A(x) is atomic or decidable, then we can build a term u s.t. that $\forall \pi \in \Pi$:

$$t \star u \cdot \pi \succ \operatorname{stop} \star \overline{n} \cdot \pi \wedge A(n) \text{ holds}$$

Adequacy

$$\begin{cases} x_1: A_1, \dots, x_k: A_k \vdash t: A \\ \forall i \in [1, k](t_i \Vdash A_i) \end{cases} \Rightarrow t[t_1/x_1, \dots, t_k/x_k] \Vdash A$$

Adequacy

$$\begin{cases} x_1: A_1, \dots, x_k: A_k \vdash t: A \\ \forall i \in [1, k] (t_i \Vdash A_i) \end{cases} \Rightarrow t[t_1/x_1, \dots, t_k/x_k] \Vdash A$$

A Michelin-like metaphor

Adequacy

$$\begin{cases} x_1 : A_1, \dots, x_k : A_k \vdash t : A \\ \forall i \in [1, k](t_i \Vdash A_i) \end{cases} \Rightarrow t[t_1/x_1, \dots, t_k/x_k] \Vdash A$$

Typing

Realizability

Relativization

0000000000

Introduction

$$\mathsf{Nat}(x) \; \equiv \; \forall Z \, (Z(0) \Rightarrow \forall y \, (Z(y) \Rightarrow Z(s(y))) \Rightarrow Z(x))$$

Proposition

There is no $t \in \Lambda_c$ such that $t \Vdash \forall n.Nat(n)$

$$A, B ::= \dots \mid \{e\} \Rightarrow A$$

$$\|\{e\} \Rightarrow A\| = \{\bar{n} \cdot \pi : \llbracket e \rrbracket = n \land \pi \in \|A\|\}$$

$$\forall^{N} x A(x) \equiv \forall x (\{x\} \Rightarrow A(x))$$

- $\lambda x. Tx \Vdash \forall^{N} x. A(x) \Rightarrow \forall^{nat} x. A(x)$

G2: general case

$$Nat(x) \equiv \forall Z(Z(0) \Rightarrow \forall y(Z(y) \Rightarrow Z(s(y))) \Rightarrow Z(x))$$

Proposition

There is no $t \in \Lambda_c$ such that $t \Vdash \forall n.Nat(n)$

Fix:

$$\forall^{nat} x A := \forall x (\mathsf{Nat}(x) \Rightarrow A)$$

Obviously, $\lambda x.x \Vdash \forall^{nat} x \mathsf{Nat}(x)$

Better

$$A, B ::= \dots | \{e\} \Rightarrow A$$

$$\|\{e\} \Rightarrow A\| = \{\bar{n} \cdot \pi : [\![e]\!] = n \land \pi \in \|A\|\}$$

$$\forall^{\mathsf{N}} x A(x) \equiv \forall x (\{x\} \Rightarrow A(x))$$

Let T be a storage operator. The following holds for any formula

Relativization

Classical realizability

0000000000

Introduction

$$Nat(x) \equiv \forall Z(Z(0) \Rightarrow \forall y(Z(y) \Rightarrow Z(s(y))) \Rightarrow Z(x))$$

Proposition

There is no $t \in \Lambda_c$ such that $t \Vdash \forall n. Nat(n)$

Better:

$$A, B ::= \dots \mid \{e\} \Rightarrow A$$

$$\|\{e\} \Rightarrow A\| = \{\bar{n} \cdot \pi : \llbracket e \rrbracket = n \land \pi \in \|A\|\}$$

$$\forall^{\mathsf{N}} x \, A(x) \equiv \forall x \, (\{x\} \Rightarrow A(x))$$

Let T be a storage operator. The following holds for any formula A(x):

- $\lambda x. Tx \Vdash \forall^{N} x. A(x) \Rightarrow \forall^{nat} x. A(x)$

A short digression through models

- Initially designed for PA^2 , but we can design model of ZF, and in particular simulate Cohen's forcing.
- Remember there is no $t \Vdash \forall x \text{Nat}(x)$? In fact, there is $\bot \bot$ s.t.:

$$(\mathcal{M}, \perp \!\!\!\perp) \Vdash \exists x \neg \mathsf{Nat}(x)$$

- ullet As a "consequence", we can build a model of ZF in which $\mathbb R$
 - I₂ is not well-ordered
 - \bullet $J_n \hookrightarrow J_{n+1}$
 -]_{n+1} \rightarrow]_n
 - $J_m \times J_n \equiv J_{mn}$
- some kind of non-commutative forcing : more power ?

A short digression through models

- Initially designed for PA^2 , but we can design model of ZF, and in particular simulate Cohen's forcing.
- Remember there is no $t \Vdash \forall x \text{Nat}(x)$? In fact, there is $\bot \bot$ s.t.:

$$(\mathcal{M}, \perp \!\!\!\perp) \Vdash \exists x \neg \mathsf{Nat}(x)$$

- ullet As a "consequence", we can build a model of ZF in which $\mathbb R$
 - J₂ is not well-ordered
 - \bullet $J_n \hookrightarrow J_{n+1}$
 -]_{n+1} \rightarrow]_n
 - $J_m \times J_n \equiv J_{mn}$
- some kind of non-commutative forcing : more power ?

A short digression through models

- Initially designed for PA^2 , but we can design model of ZF, and in particular simulate Cohen's forcing.
- Remember there is no $t \Vdash \forall x \text{Nat}(x)$? In fact, there is $\bot \text{s.t.}$:

$$(\mathcal{M}, \perp \!\!\!\perp) \Vdash \exists x \neg \mathsf{Nat}(x)$$

- As a "consequence", we can build a model of ZF in which \mathbb{R} has some "pathological" subsets \mathfrak{I}_n :
 - J_2 is not well-ordered
 - $J_n \hookrightarrow J_{n+1}$
 - $J_{n+1} \not\rightarrow J_n$
 - $\gimel_m \times \gimel_n \equiv \gimel_{mn}$
- some kind of non-commutative forcing : more power ?

Our problem

Introduction

Specification of A

Can we give a characterization of $\{t \in \Lambda_c : t \Vdash A\}$?

Absoluteness

Are arithmetical formulæ absolute for realizability models $(\mathcal{M}, \perp\!\!\!\perp)$?

The specification problem

A first example of specification

Two ways of building poles from any set P of processes.

goal-oriented :

$$\perp \!\!\! \perp \equiv \{ p \in \Lambda_c \star \Pi : \exists p' \in P, \ p \succ p' \}$$

$$th_p = \{p' \in \Lambda_c * \Pi : p \succ p'\}$$

$$\perp \!\!\! \perp \equiv (\bigcup_{p \in P} th_p)^c \equiv \bigcap_{p \in P} th_p^c$$

$$t \Vdash \forall X.(X \Rightarrow X)$$
 if and only if $\forall k \forall \pi (t \star k \cdot \pi \succ k \star \pi)$

A first example of specification

Two ways of building poles from any set P of processes.

goal-oriented :

$$\bot\!\!\!\bot \equiv \{ p \in \Lambda_c \star \Pi : \exists p' \in P, \ p \succ p' \}$$

$$th_p = \{p' \in \Lambda_c \star \Pi : p \succ p'\}$$

$$\perp \!\!\! \perp \equiv (\bigcup_{p \in P} th_p)^c \equiv \bigcap_{p \in P} th_p^c$$

$$t \Vdash \forall X.(X \Rightarrow X)$$
 if and only if $\forall k \forall \pi (t \star k \cdot \pi \succ k \star \pi)$

Two ways of building poles from any set P of processes.

• goal-oriented :

$$\perp \!\!\! \perp \equiv \{ p \in \Lambda_c \star \Pi : \exists p' \in P, \ p \succ p' \}$$

thread-oriented:

Thread of a process p

$$th_p = \{p' \in \Lambda_c \star \Pi : p \succ p'\}$$

$$\perp \!\!\! \perp \equiv (\bigcup_{p \in P} th_p)^c \equiv \bigcap_{p \in P} th_p^c$$

Ex. on board

$$t \Vdash \forall X.(X \Rightarrow X)$$
 if and only if $\forall k \forall \pi (t \star k \cdot \pi \succ k \star \pi)$

A first example of specification

Two ways of building poles from any set P of processes.

• goal-oriented :

$$\bot\!\!\!\bot \equiv \{ p \in \Lambda_c \star \Pi : \exists p' \in P, \ p \succ p' \}$$

thread-oriented :

Thread of a process p

$$th_p = \{p' \in \Lambda_c \star \Pi : p \succ p'\}$$

$$\bot\!\!\!\bot \equiv (\bigcup_{p \in P} th_p)^c \equiv \bigcap_{p \in P} th_p^c$$

Ex. on board

$$t \Vdash \forall X.(X \Rightarrow X)$$
 if and only if $\forall k \forall \pi (t \star k \cdot \pi \succ k \star \pi)$

A first example of specification

Classical realizability

Two ways of building poles from any set P of processes.

goal-oriented :

$$\bot\!\!\!\bot \equiv \{ p \in \Lambda_c \star \Pi : \exists p' \in P, \ p \succ p' \}$$

thread-oriented :

Thread of a process p

$$th_p = \{p' \in \Lambda_c \star \Pi : p \succ p'\}$$

$$\bot\!\!\!\bot \equiv (\bigcup_{p \in P} th_p)^c \equiv \bigcap_{p \in P} th_p^c$$

Ex. on board:

$$t \Vdash \forall X.(X \Rightarrow X)$$
 if and only if $\forall k \forall \pi (t \star k \cdot \pi \succ k \star \pi)$

$$t_0 \Vdash \forall X.(X \Rightarrow X) \Rightarrow X \Rightarrow X \text{ iff ???}$$

$$t_{0} \star \kappa_{s} \cdot \kappa_{z} \cdot \pi \succ \kappa_{s} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi \qquad \succ \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \kappa_{z} \star \pi$$

• Define $p_i := t_i \star \pi$, $\bot := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $||X|| = \{\pi\}$: • $\kappa_z \Vdash_i X$ implies $\kappa_s \nvDash_i X \Rightarrow X$ and $p_i \succ \kappa_s \star t_{i+1} \cdot \pi$ • $\kappa_z \nvDash_i X$ implies $p_i \succ \kappa_z \star \pi'$

Termination:

If $\forall i \in \mathbb{N}(\kappa_z \not\Vdash_i X)$, define $\perp \!\!\! \perp_{\infty} := \bigcap_{i \in \mathbb{N}} (th(p_i))^c$, get a contradiction

Introduction

G2: general case

Conclusion

 $t_0 \star \kappa_s \cdot \kappa_z \cdot \pi \succ \kappa_s \star t_1 \cdot \pi$

$$t_{1} \star \pi \qquad \succ \quad \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \quad \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \quad \kappa_{z} \star \pi$$

• Define $p_i := t_i \star \pi$, $\perp \!\!\! \perp_i := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $||X|| = \{\pi\}$: • $\kappa_z \Vdash_i X$ implies $\kappa_s \nvDash_i X \Rightarrow X$ and $p_i \succ \kappa_s \star t_{i+1} \cdot \pi$ • $\kappa_z \nvDash_i X$ implies $p_i \succ \kappa_z \star \pi'$

Termination:

If $\forall i \in \mathbb{N}(\kappa_z \not \Vdash_i X)$, define $\perp \!\!\! \perp_{\infty} := \bigcap_{i \in \mathbb{N}} (th(p_i))^c$, get a contradiction

$$t_{0} \star \kappa_{s} \cdot \kappa_{z} \cdot \pi \succ \kappa_{s} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi \qquad \succ \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \kappa_{z} \star \pi$$

- Define $p_0 := t_0 \star \kappa_s \cdot \kappa_z \cdot \pi, \perp \downarrow_0 := (th(p_0))^c$ and $||X|| = \{\pi\}: \Leftrightarrow \kappa_z \Vdash_0 X \text{ implies } \kappa_s \nvDash_0 X \Rightarrow X \text{ and } p_0 \succ \kappa_s \star t_1 \cdot \pi$
- ① Define $p_i := t_i \star \pi$, $\coprod_i := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $\|X\| = \{\pi\}$: $\hookrightarrow \kappa_z \Vdash_i X$ implies $\kappa_s \not\Vdash_i X \Rightarrow X$ and $p_i \succ \kappa_s \star t_{i+1} \cdot \pi$ $\hookrightarrow \kappa_z \not\Vdash_i X$ implies $p_i \succ \kappa_z \star \pi'$

Termination

f $\forall i \in \mathbb{N}(\kappa_z \not\Vdash_i X)$, define $\perp \!\!\! \perp_{\infty} := \bigcap_{i \in \mathbb{N}} (th(p_i))^c$, get a

$t_0 \Vdash \forall X.(X \Rightarrow X) \Rightarrow X \Rightarrow X \text{ iff ???}$

$$t_{0} \star \kappa_{s} \cdot \kappa_{z} \cdot \pi \succ \kappa_{s} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi \qquad \succ \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \kappa_{z} \star \pi$$

- Define $p_0 := t_0 \star \kappa_s \cdot \kappa_z \cdot \pi, \perp \downarrow_0 := (th(p_0))^c$ and $||X|| = \{\pi\}: \Leftrightarrow \kappa_z \Vdash_0 X \text{ implies } \kappa_s \nvDash_0 X \Rightarrow X \text{ and } p_0 \succ \kappa_s \star t_1 \cdot \pi \Leftrightarrow \kappa_z \nvDash_0 X \text{ implies } p_0 \succ \kappa_z \star \pi$
- ① Define $p_i := t_i \star \pi$, $\coprod_i := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $\|X\| = \{\pi\}$: $\hookrightarrow \kappa_z \Vdash_i X$ implies $\kappa_s \nvDash_i X \Rightarrow X$ and $p_i \succ \kappa_s \star t_{i+1} \cdot \pi$ $\hookrightarrow \kappa_z \nvDash_i X$ implies $p_i \succ \kappa_z \star \pi'$

Termination

If $\forall i \in \mathbb{N}(\kappa_z \not\Vdash_i X)$, define $\perp \!\!\! \perp_{\infty} := \bigcap_{i \in \mathbb{N}} (th(p_i))^c$, get a

 $t_0 \star \kappa_s \cdot \kappa_z \cdot \pi \succ \kappa_s \star t_1 \cdot \pi$

$t_0 \Vdash \forall X.(X \Rightarrow X) \Rightarrow X \Rightarrow X \text{ iff ???}$

$$t_{1} \star \pi \qquad \succ \quad \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \quad \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \quad \kappa_{z} \star \pi$$

① Define
$$p_i := t_i \star \pi$$
, $\bot := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $\|X\| = \{\pi\}$:
 $\hookrightarrow \kappa_z \Vdash_i X$ implies $\kappa_s \nvDash_i X \Rightarrow X$ and $p_i \succ \kappa_s \star t_{i+1} \cdot \pi$
 $\hookrightarrow \kappa_z \nvDash_i X$ implies $p_i \succ \kappa_z \star \pi'$

Termination

If $\forall i \in \mathbb{N}(\kappa_z \not\Vdash_i X)$, define $\perp\!\!\!\perp_{\infty} := \bigcap_{i \in \mathbb{N}} (th(p_i))^c$, get a contradiction

$t_0 \Vdash \forall X.(X \Rightarrow X) \Rightarrow X \Rightarrow X \text{ iff ???}$

$$t_{0} \star \kappa_{s} \cdot \kappa_{z} \cdot \pi \succ \kappa_{s} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi \qquad \succ \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \kappa_{z} \star \pi$$

1 Define
$$p_i := t_i \star \pi$$
, $\perp \!\!\! \perp_i := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $||X|| = \{\pi\}$:

$$\hookrightarrow$$
 $\kappa_z \Vdash_i X$ implies $\kappa_s \nVdash_i X \Rightarrow X$ and $p_i \succ \kappa_s \star t_{i+1} \cdot \pi$

$$\hookrightarrow \kappa_z \, \mathbb{1}_i \, X \text{ implies } p_i \succ \kappa_z \star \pi'$$

Termination:

If $\forall i \in \mathbb{N}(\kappa_z \not \Vdash_i X)$, define $\perp \!\!\! \perp_{\infty} := \bigcap_{i \in \mathbb{N}} (th(p_i))^c$, get a contradiction.

$t_0 \Vdash \forall XY.(X \Rightarrow Y) \Rightarrow X \Rightarrow Y \text{ iff ???}$

$$t_{0} \star \kappa_{f} \cdot \kappa_{x} \cdot \pi \succ \kappa_{f} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi' \quad \succ \kappa_{f} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi' \quad \succ \kappa_{f} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi' \quad \succ \kappa_{x} \star \pi'$$

- - $\hookrightarrow \kappa_x \Vdash_0 X$ implies $\kappa_f \nVdash_0 X \Rightarrow Y$ and $p_0 \succ \kappa_f \star t_1 \cdot \pi$
- **1** Define $p_i := t_i \star \pi'$, $\perp \!\!\! \perp_i := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $||X|| = \{\pi'\}$:
 - $\hookrightarrow \kappa_{\mathsf{x}} \Vdash_{i} X$ implies $\kappa_{\mathsf{f}} \nVdash_{i} X \Rightarrow Y$ and $\mathsf{p}_{i} \succ \kappa_{\mathsf{f}} \star t_{i+1} \cdot \pi$

$$t_{0} \star \kappa_{f} \cdot \kappa_{x} \cdot \pi \succ \kappa_{f} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi' \succ \kappa_{f} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi' \succ \kappa_{f} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi' \succ \kappa_{x} \star \pi'$$

- - \hookrightarrow $\kappa_x \Vdash_0 X$ implies $\kappa_f \nVdash_0 X \Rightarrow Y$ and $p_0 \succ \kappa_f \star t_1 \cdot \pi$
- **1** Define $p_i := t_i \star \pi'$, $\perp \!\!\! \perp_i := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $||X|| = \{\pi'\}$:
 - $\mapsto \kappa_x \Vdash_i X \text{ implies } \kappa_f \nVdash_i X \Rightarrow Y \text{ and } p_i \succ \kappa_f \star t_{i+1} \cdot \pi$

$$t_{0} \star \kappa_{f} \cdot \kappa_{x} \cdot \pi \succ \kappa_{f} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi' \qquad \succ \kappa_{f} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi' \qquad \succ \kappa_{f} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi' \qquad \succ \kappa_{x} \star \pi'$$

- **①** Define $p_0 := t_0 \star \kappa_f \cdot \kappa_x \cdot \pi, \perp \downarrow_0 := (th(p_0))^c$ and $||Y|| = \{\pi\}$:
 - \hookrightarrow $\kappa_x \Vdash_0 X$ implies $\kappa_f \nvDash_0 X \Rightarrow Y$ and $p_0 \succ \kappa_f \star t_1 \cdot \pi$
- Define $p_i := t_i \star \pi'$, $\perp \!\!\! \perp_i := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $||X|| = \{\pi'\}$: • $\kappa_x \Vdash_i X$ implies $\kappa_f \nvDash_i X \Rightarrow Y$ and $p_i \succ \kappa_f \star t_{i+1} \cdot \pi$ • $\kappa_x \nvDash_i X$ implies $p_i \succ \kappa_x \star \pi'$

$$t_{0} \star \kappa_{f} \cdot \kappa_{x} \cdot \pi \succ \kappa_{f} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi' \qquad \succ \kappa_{f} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi' \qquad \succ \kappa_{f} \star t_{i+1} \cdot \pi$$

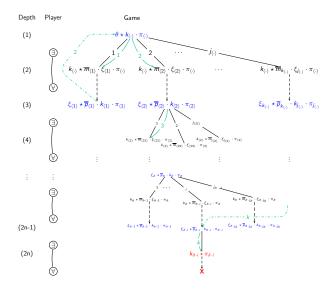
$$\vdots$$

$$t_{s} \star \pi' \qquad \succ \kappa_{x} \star \pi'$$

- - \hookrightarrow $\kappa_x \Vdash_0 X$ implies $\kappa_f \nVdash_0 X \Rightarrow Y$ and $p_0 \succ \kappa_f \star t_1 \cdot \pi$
- Define $p_i := t_i \star \pi'$, $\perp \!\!\! \perp_i := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $||X|| = \{\pi'\}$: • $\kappa_x \Vdash_i X$ implies $\kappa_f \nvDash_i X \Rightarrow Y$ and $p_i \succ \kappa_f \star t_{i+1} \cdot \pi$ • $\kappa_x \nvDash_i X$ implies $p_i \succ \kappa_x \star \pi'$

Arithmetical formulæ by hand

Classical realizability



Advertisement

Introduction

Problem

You want to specify A.

Methodology:

→ requirement: some intuition...

- **1 direct-style**: define the good poles,
- indirect-style: try the thread method,

Advertisement

Introduction

Problem

You want to specify A.

Methodology:

→ requirement: some intuition...

- **1 direct-style**: define the good poles,
- 2 indirect-style: try the thread method,
- induction-style: define a game (brand new!)

Conclusion

A first notion of game

Coquand's game

Arithmetical formula

$$\Phi_{2h}: \exists x_1 \forall y_1 \dots \exists x_h \forall y_h f(\vec{x}_h, \vec{y}_h) = 0$$

Rules:

- Players : Eloise (\exists) and Abelard (\forall) .
- Moves: at his turn, each player instantiates his variable
 - Eloise allowed to backtrack
- Final position : evaluation of $f(\vec{m}_h, \vec{n}_h) = 0$:
 - true : Floise wins
 - false : game continues
- Abelard wins if the game never ends

Coquand's game

Arithmetical formula

$$\Phi_{2h}: \exists x_1 \forall y_1 \ldots \exists x_h \forall y_h f(\vec{x}_h, \vec{y}_h) = 0$$

Rules:

Introduction

- Players : Eloise (\exists) and Abelard (\forall) .
- Moves : at his turn, each player instantiates his variable
 - Eloise allowed to backtrack
- Final position : evaluation of $f(\vec{m}_h, \vec{n}_h) = 0$:
 - true : Eloise wins
 - false : game continues
- Abelard wins if the game never ends

Winning strategy

Way of playing that ensures the victory, independently of the opponent moves.

Example

Introduction

Formula

$$\exists x \forall y \exists z (x \cdot y = 2 \cdot z)$$

$$\begin{array}{c|cccc} \textbf{Player} & \textbf{Action} & \textbf{Position} \\ & \textbf{Start} & P_0 = (\cdot, \cdot, \cdot) \\ \end{array}$$

Conclusion

Example

Introduction

Formula

$$\forall y \exists z (1 \cdot y = 2 \cdot z)$$

$$\begin{array}{c|cccc} \textbf{Player} & \textbf{Action} & \textbf{Position} \\ \hline & \textbf{Start} & P_0 = (\cdot, \cdot, \cdot) \\ \hline & & x := 1 & P_1 = (1, \cdot, \cdot) \\ \hline \end{array}$$

Conclusion

Example

Introduction

Formula

$$\exists z (1 = 2 \cdot z)$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\bigcirc	x := 1	$P_1=(1,\cdot,\cdot)$
\bigcirc	y := 1	$P_2=(1,1,\cdot)$
		,

Introduction

$$\forall y \exists z (2 \cdot y = 2 \cdot z)$$

Player	Action	Position
	Start	$P_0 = (\cdot, \cdot, \cdot)$
\bigcirc	x := 1	$P_0 = (\cdot, \cdot, \cdot)$ $P_1 = (1, \cdot, \cdot)$
\bigcirc	<i>y</i> := 1	$P_1 = (1, \cdot, \cdot)$ $P_2 = (1, 1, \cdot)$
\bigcirc	backtrack to $P_0 + x := 2$	$P_3=(2,\cdot,\cdot)$
		'

Introduction

$$\exists z (2 = 2 \cdot z)$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\exists	x := 1	$P_1=(1,\cdot,\cdot)$
\bigcirc	y := 1	$P_2=(1,1,\cdot)$
\bigcirc	backtrack to $P_0 + x := 2$	$P_3=(2,\cdot,\cdot)$
\bigcirc	y := 1	$P_4=(2,1,\cdot)$

Introduction

$$2 = 2$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\exists	x := 1	$P_1=(1,\cdot,\cdot)$
\bigcirc	y := 1	$P_2=(1,1,\cdot)$
\bigcirc	backtrack to $P_0 + x := 2$	$P_3=(2,\cdot,\cdot)$
\bigcirc	y := 1	$P_4=(2,1,\cdot)$
\exists	z := 1	$P_5 = (2,1,1)$

Introduction

$$2 = 2$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\exists	x := 1	$P_1=(1,\cdot,\cdot)$
\bigcirc	<i>y</i> := 1	$P_2=(1,1,\cdot)$
\bigcirc	backtrack to $P_0 + x := 2$	$P_3=(2,\cdot,\cdot)$
\bigcirc	y := 1	$P_4=(2,1,\cdot)$
\exists	z := 1	$P_5 = (2,1,1)$
	evaluation	\exists wins

Introduction

Formula

$$2 = 2$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\bigcirc	x := 1	$P_1=(1,\cdot,\cdot)$
\bigcirc	<i>y</i> := 1	$P_2=(1,1,\cdot)$
\bigcirc	backtrack to $P_0 + x := 2$	$P_3=(2,\cdot,\cdot)$
Θ	<i>y</i> := 1	$P_4=(2,1,\cdot)$
\bigcirc	z := 1	$P_5 = (2,1,1)$
	evaluation	\bigcirc wins

History

$$H := \bigcup_n P_n$$

Conclusion

\mathbb{G}^0 : deductive system

Rules:

Introduction

• If there exists $(\vec{m}_h, \vec{n}_h) \in H$ such that $\mathcal{M} \models f(\vec{m}_h, \vec{n}_h) = 0$:

$$\overline{H\in \mathbb{W}^0_\Phi}\ ^{\mathrm{Win}}$$

• For all i < h, $(\vec{m_i}, \vec{n_i}) \in H$ and $m \in \mathbb{N}$:

$$\frac{H \cup \{(\vec{m}_i \cdot m, \vec{n}_i \cdot n)\} \in \mathbb{W}_{\Phi}^0 \quad \forall n \in \mathbb{N}}{H \in \mathbb{W}_{\Phi}^0} \text{ PLAY}$$

Formulæ structure

$$\Phi \equiv \exists^{\mathsf{N}} x_1 \forall^{\mathsf{N}} y_1 \dots \exists^{\mathsf{N}} x_h \forall y_h (f(\vec{x}_h, \vec{y}_h) = 0)$$
$$\equiv \forall X_1 (\forall^{\mathsf{N}} x_1 (\forall^{\mathsf{N}} y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)$$

Formulæ structure

$$\Phi \equiv \exists^{N} x_{1} \forall^{N} y_{1} \dots \exists^{N} x_{h} \forall y_{h} (f(\vec{x}_{h}, \vec{y}_{h}) = 0)$$

$$\Phi_{0} \equiv \forall X_{1} (\forall^{N} x_{1} (\forall^{N} y_{1} \Phi_{1} \Rightarrow X_{1}) \Rightarrow X_{1})$$

$$\Phi_{i-1} \equiv \forall X_{i} (\forall^{N} x_{i} (\forall^{N} y_{i} \Phi_{i} \Rightarrow X_{i}) \Rightarrow X_{i})$$

$$\Phi_{h} \equiv \forall W (W (f(\vec{x}_{h}, \vec{y}_{h})) \Rightarrow W(0))$$

Formulæ structure

Introduction

$$\Phi_0 \equiv \forall X_1 (\forall^N x_1 (\forall^N y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)
\Phi_{i-1} \equiv \forall X_i (\forall^N x_i (\forall^N y_i \Phi_i \Rightarrow X_i) \Rightarrow X_i)
\Phi_h \equiv \forall W (W(f(\vec{x}_h, \vec{y}_h)) \Rightarrow W(0))$$

Realizability

$$||A \Rightarrow B|| = \{u \cdot \pi : u \in |A| \land \pi \in ||B||\}$$

$$||\forall^{N} \times A(x)|| = \bigcup_{n \in \mathbb{N}} \{\overline{n} \cdot \pi : \pi \in ||A(n)||\}$$

Formulæ structure

$$\Phi_0 \equiv \forall X_1 (\forall^N x_1 (\forall^N y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)$$

Start:

- Eloise proposes t_0 to defend Φ_0
- Abelard proposes $u_0 \cdot \pi_0$ to attack Φ_0

move	p_i (\exists -position)	history
0	$t_0\star u_0\cdot \pi_0$	$H_0 := \{(\emptyset, \emptyset, u_0, \pi_0)\}$

Formulæ structure

Introduction

$$\Phi_0 \equiv \forall X_1 (\forall^N x_1 (\forall^N y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)$$

Eloise reduces p_0 until

- $p_0 \succ u_0 \star \overline{m_1} \cdot t_1 \cdot \pi_0$
 - \hookrightarrow she can decide to play (m_1, t_1) and ask for Abelard's answer
 - \rightarrow Abelard must give $\overline{n_1} \cdot u' \cdot \pi'$.

Formulæ structure

Introduction

$$\Phi_0 \equiv \forall X_1 (\forall^N x_1 (\forall^N y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)$$

mov	vе	p_i (\exists -position)	history
0		$t_0\star u_0\cdot \pi_0$	$H_0:=\{(\emptyset,\emptyset,u_0,\pi_0)\}$
1		$t_1 \star \overline{n}_1 \cdot u_1 \cdot \pi_1$	$H_1 := \{(m_1, n_1, u_1, \pi_1)\} \cup H_0$

Eloise reduces p_0 until

- $p_0 \succ u_0 \star \overline{m_1} \cdot t_1 \cdot \pi_0$
 - \hookrightarrow she *can* decide to play (m_1, t_1) and ask for Abelard's answer
 - \hookrightarrow Abelard must give $\overline{n_1} \cdot u' \cdot \pi'$.

Formulæ structure

Introduction

$$\Phi_{i-1} \equiv \forall X_i (\forall^N x_i (\forall^N y_i \Phi_i \Rightarrow X_i) \Rightarrow X_i)$$

move	p_i (\exists -position)	history
1	$t_1 \star \overline{n}_1 \cdot u_1 \cdot \pi_1$	$H_1 := \{(m_1, n_1, u_1, \pi_1)\} \cup H_0$
:	:	i i
i	$t_i \star \overline{n}_i \cdot u_i \cdot \pi_i$	$H_i := \{(m_i, n_i, u_i, \pi_i)\} \cup H_{i-1}$

Eloise reduces p_i until

- $p_i \succ u \star \overline{m} \cdot t \cdot \pi$ with $(\vec{m_i}, \vec{n_i}, u, \pi) \in H_i$ where j < h.
 - \rightarrow she *can* decide to play (m_{i+1}, t_{i+1})
 - \hookrightarrow Abelard must give $\overline{n_i} \cdot u' \cdot \pi'$.

Formulæ structure

$$\Phi_h \equiv \forall W(W(f(\vec{x}_h, \vec{y}_h)) \Rightarrow W(0))$$

move	p_i (\exists -position)	history	
1	$t_1 \star \overline{n}_1 \cdot u_1 \cdot \pi_1$	$H_1 := \{(m_1, n_1, u_1, \pi_1)\} \cup H_0$	
:	:	<u> </u>	
i	$t_i \star \overline{n}_i \cdot u_i \cdot \pi_i$	$H_i := \{(m_i, n_i, u_i, \pi_i)\} \cup H_{i-1}$	

Eloise reduces p_i until

- $p_i \succ u \star \overline{m} \cdot t \cdot \pi$ with $(\vec{m}_j, \vec{n}_j, u, \pi) \in H_j$ where j < h.
 - \hookrightarrow she *can* decide to play (m_{i+1}, t_{i+1})
 - \hookrightarrow Abelard *must* give $\overline{n_i} \cdot u' \cdot \pi'$.
- $p_i \succ u \star \pi$ with $(\vec{m}_h, \vec{n}_h, u, \pi) \in H_j$ \rightarrow she wins iff $\mathcal{M} \models f(\vec{m}_h, \vec{n}_h) = 0$.

Introduction

• if $\exists (\vec{m}_h, \vec{n}_h, u, \pi) \in H$ s.t. $p \succ u \star \pi$ and $\mathcal{M} \models f(\vec{m}_h, \vec{n}_h) = 0$:

$$\overline{\langle \rho, H \rangle \in \mathbb{W}^1_\Phi} \ ^{\mathrm{Win}}$$

• for every $(\vec{m}_i, \vec{n}_i, u, \pi) \in H$, $m \in \mathbb{N}$ s.t. $p \succ u \star \overline{m} \cdot t \cdot \pi$:

$$\frac{\langle t \star \overline{n} \cdot u' \cdot \pi', H \cup \{(\overrightarrow{m}_i \cdot m, \overrightarrow{n}_i \cdot n, u', \pi')\} \rangle \in \mathbb{W}^1_{\Phi} \quad \forall (n', u', \pi')}{\langle p, H \rangle \in \mathbb{W}^1_{\Phi}} \quad \text{Play}$$

Winning strategy

 $t \in \Lambda_c$ s.t. for any handle $(u, \pi) \in \Lambda \times \Pi$

$$\langle t \star u \cdot \pi, \{(\emptyset, \emptyset, u, \pi)\} \rangle \in \mathbb{W}_{\delta}^{3}$$

\mathbb{G}^1 : formal definition

Introduction

• if $\exists (\vec{m}_h, \vec{n}_h, u, \pi) \in H$ s.t. $p \succ u \star \pi$ and $\mathcal{M} \models f(\vec{m}_h, \vec{n}_h) = 0$:

$$\overline{\langle p, H \rangle \in \mathbb{W}^1_\Phi}$$
 Win

• for every $(\vec{m}_i, \vec{n}_i, u, \pi) \in H$, $m \in \mathbb{N}$ s.t. $p \succ u \star \overline{m} \cdot t \cdot \pi$:

$$\frac{\langle t\star \overline{n}\cdot u'\cdot \pi', H\cup \{(\vec{m}_i\cdot m, \vec{n}_i\cdot n, u', \pi')\}\rangle \in \mathbb{W}^1_{\Phi} \quad \forall (n', u', \pi')}{\langle p, H\rangle \in \mathbb{W}^1_{\Phi}} \quad \mathrm{Play}$$

Winning strategy

 $t \in \Lambda_c$ s.t. for any handle $(u, \pi) \in \Lambda \times \Pi$:

$$\langle t \star u \cdot \pi, \{(\emptyset, \emptyset, u, \pi)\} \rangle \in \mathbb{W}^1_{\Phi}$$

Specification result

Adequacy

Introduction

If t is a winning strategy for \mathbb{G}^1_{Φ} , then $t \Vdash \Phi$

Proof (sketch):

- play a match with stacks from falsity value,
- conclude by anti-reduction.

Adequacy

Introduction

If t is a winning strategy for \mathbb{G}^1_{Φ} , then $t \Vdash \Phi$

Proof (sketch):

- play a match with stacks from falsity value,
- conclude by anti-reduction.

Classical realizability

Completeness of \mathbb{G}^1

If the calculus is deterministic and substitutive, then if $t \Vdash \Phi$ then t is a winning strategy for the game \mathbb{G}^1_{Φ}

Proof (sketch): by contradiction

- substitute Abelard's winning answers along the thread scheme,
- reach a winning position anyway.

Specification result

Adequacy

If t is a winning strategy for \mathbb{G}^1_{Φ} , then $t \Vdash \Phi$

Proof (sketch):

- play a match with stacks from falsity value,
- conclude by anti-reduction.

Classical realizability

Completeness of \mathbb{G}^1

If the calculus is deterministic and substitutive, then if $t \Vdash \Phi$ then t is a winning strategy for the game \mathbb{G}^1_{Φ}

Proof (sketch): by contradiction

- substitute Abelard's winning answers along the thread scheme,
- reach a winning position anyway.

The general case

Loosing the substition

quote

Introduction

quote
$$\star \varphi \cdot t \cdot \pi \succ t \star \overline{n_{\varphi}} \cdot \pi$$

- the calculus is no longer substitutive
- there are some wild realizers which are not winning strategies!

Consider
$$\Phi \leq \equiv \exists^{N} x \forall^{N} y (x \leq y)$$
 and $t \leq s.t.$

$$t \leq \star u \cdot \pi \succ T_0 \star \pi \succ u \star \overline{0} \cdot T_1 \cdot \pi$$

and

$$T_1 \star \overline{n} \cdot u' \cdot \pi' \succ \left\{ \begin{array}{ll} \mathbb{I} \star \pi' & \text{if } u' \equiv T_0 \text{ and } \pi \equiv \pi' \\ u' \star \pi' & \text{otherwise} \end{array} \right.$$

Loosing the substition

quote

Introduction

$$\mathtt{quote} \star \varphi \cdot t \cdot \pi \succ t \star \overline{\textit{\textbf{n}}_{\varphi}} \cdot \pi$$

- the calculus is no longer substitutive
- there are some wild realizers which are not winning strategies!

Consider
$$\Phi_{\leq} \equiv \exists^{N} x \forall^{N} y (x \leq y)$$
 and t_{\leq} s.t. :

$$t \leq \star u \cdot \pi \succ T_0 \star \pi \succ u \star \overline{0} \cdot T_1 \cdot \pi$$

and:

$$T_1 \star \overline{n} \cdot u' \cdot \pi' \succ \begin{cases} \mathbf{I} \star \pi' & \text{if } u' \equiv T_0 \text{ and } \pi \equiv \pi' \\ u' \star \pi' & \text{otherwise} \end{cases}$$

Loosing the substition

quote

Introduction

$$\mathtt{quote} \star \varphi \cdot t \cdot \pi \succ t \star \overline{\textit{\textbf{n}}_{\varphi}} \cdot \pi$$

- the calculus is no longer substitutive
- there are some wild realizers which are not winning strategies!

Consider
$$\Phi_{\leq} \equiv \exists^{N} x \forall^{N} y (x \leq y)$$
 and t_{\leq} s.t. :

$$t \leq \star u \cdot \pi \succ T_0 \star \pi \succ u \star \overline{0} \cdot T_1 \cdot \pi$$

and:

$$T_1 \star \overline{n} \cdot u' \cdot \pi' \succ \left\{ \begin{array}{ll} \mathbf{I} \star \pi' & \text{if } u' \equiv T_0 \text{ and } \pi \equiv \pi' \\ u' \star \pi' & \text{otherwise} \end{array} \right.$$

→ Idea: I've already been there...

\mathbb{G}^2 : non-substitutive case

- → Idea: I've already been there...
 - if $\exists (\vec{m}_h, \vec{n}_h, u, \pi) \in H$ s.t. $p \succ u \star \pi$ and $\mathcal{M} \vDash f(\vec{m}_h, \vec{n}_h) = 0$:

$$\overline{\langle p, H \rangle \in \mathbb{W}^1_\Phi}$$
 Win

• for every $(\vec{m}_i, \vec{n}_i, u, \pi) \in H$, $m \in \mathbb{N}$ s.t. $p \succ u \star \overline{m} \cdot t \cdot \pi$:

$$\frac{\langle t \star \overline{n} \cdot u' \cdot \pi', H \cup \{(\overrightarrow{m_i} \cdot m, \overrightarrow{n_i} \cdot n, u', \pi')\} \rangle \in \mathbb{W}^1_{\Phi} \quad \forall (n', u', \pi')}{\langle p, H \rangle \in \mathbb{W}^1_{\Phi}} \text{ PLAY}$$

\mathbb{G}^2 : non-substitutive case

Classical realizability

- → Idea: I've already been there...
 - if $\exists (\vec{m}_h, \vec{n}_h, u, \pi) \in H$, $\exists p \in \mathbf{P}$ s.t. $p \succ u \star \pi$ and $\mathcal{M} \models f(\vec{m}_h, \vec{n}_h) = 0$:

$$\overline{\langle \mathbf{P}, H \rangle \in \mathbb{W}_{\Phi}^2}$$
 Win

• for every $(\vec{m}_i, \vec{n}_i, u, \pi) \in H$, $m \in \mathbb{N}$ s.t. $\exists p \in \mathbf{P}$, $p \succ u \star \overline{m} \cdot t \cdot \pi$:

$$\frac{\langle \{t \star \overline{n} \cdot u' \cdot \pi'\} \cup \mathbf{P} \rangle, H \cup \{(\vec{m}_i \cdot m, \vec{n}_i \cdot n, u', \pi')\} \in \mathbb{W}_{\Phi}^2 \quad \forall (n', u', \pi')}{\langle \mathbf{P}, H \rangle \in \mathbb{W}_{\Phi}^2} \quad P$$

Specification result

Adequacy

Introduction

If t is a winning strategy for \mathbb{G}_{Φ}^2 , then $t \Vdash \Phi$

Proof (sketch):

- play a match with stacks from falsity value,
- conclude by anti-reduction.

Specification result

Adequacy

Introduction

If t is a winning strategy for \mathbb{G}_{Φ}^2 , then $t \Vdash \Phi$

Proof (sketch):

- play a match with stacks from falsity value,
- conclude by anti-reduction.

Completeness of \mathbb{G}^2

If $t \Vdash \Phi$ then t is a winning strategy for the game \mathbb{G}_{Φ}^2

Proof (sketch): by contradiction,

- build an increasing sequence $\langle P_i, H_i \rangle$ using (\forall) winning answers,
- define $\perp := (\bigcup_{p \in P_{\infty}} \mathbf{th}(p))^c$,
- reach a contradiction.

Consequences

Introduction

Proposition: Uniform realizer

There exists a term T such that if:

- $\mathcal{M} \models \exists x_1 \forall y_1 ... f(\vec{x}, \vec{y}) = 0$
- θ_f computes f then

$$T\theta_f \Vdash \exists x_1 \forall y_1 ... f(\vec{x}, \vec{y}) = 0$$

Proposition

There is a winning strategy iff $\mathcal{M} \models \exists x_1 \forall y_1...f(\vec{x}, \vec{y}) = 0$.

Theorem: Absoluteness

If Φ is an arithmetical formula, then

$$\exists t \in \Lambda_c, t \Vdash \Phi \quad \text{iff} \quad \mathcal{M} \models \Phi$$

Introduction

Proposition: Uniform realizer

There exists a term T such that if:

- $\mathcal{M} \models \exists x_1 \forall y_1 ... f(\vec{x}, \vec{y}) = 0$
- θ_f computes f then

$$T\theta_f \Vdash \exists x_1 \forall y_1 ... f(\vec{x}, \vec{y}) = 0$$

Proposition

There is a winning strategy iff $\mathcal{M} \models \exists x_1 \forall y_1...f(\vec{x}, \vec{y}) = 0$.

Theorem: Absoluteness

If Φ is an arithmetical formula, then

$$\exists t \in \Lambda_c, t \Vdash \Phi \quad \text{iff} \quad \mathcal{M} \models \Phi$$

Consequences

Introduction

Proposition: Uniform realizer

There exists a term T such that if:

-
$$\mathcal{M} \models \exists x_1 \forall y_1 ... f(\vec{x}, \vec{y}) = 0$$

- θ_f computes fthen

$$T\theta_f \Vdash \exists x_1 \forall y_1 ... f(\vec{x}, \vec{y}) = 0$$

Proposition

There is a winning strategy iff $\mathcal{M} \models \exists x_1 \forall y_1...f(\vec{x}, \vec{y}) = 0$.

Theorem: Absoluteness

If Φ is an arithmetical formula, then

$$\exists t \in \Lambda_c, t \Vdash \Phi \quad \text{iff} \quad \mathcal{M} \models \Phi$$

Comments & conclusion

About equality

$$\Phi_{2h}: \exists x_1 \forall y_1 \dots \exists x_h \forall y_h f(\vec{x}_h, \vec{y}_h) \neq 0$$

	$\ f(x)=0\ $	$ f(x)\neq 0 $
$\mathcal{M} \vDash f(x) = 0$	$\ \forall X.X \to X\ $	П
$\mathcal{M} \vDash f(x) \neq 0$	$\Lambda_c imes \Pi$	Ø

$$\forall n \in \mathbb{N}, \text{ there exists } t_n \in \Lambda_c \text{ s.t. } \forall f : \mathbb{N}^{2n} \to \mathbb{N},$$

$$\mathcal{M} \vDash \exists x_1 \forall y_1 \dots f(\vec{x}, \vec{y}) \neq 0 \quad \Rightarrow \quad t_n \Vdash \exists^N x_1 \forall^N y_1 \dots f(\vec{x}, \vec{y}) \neq 0.$$

About equality

Introduction

$$\Phi_{2h}: \exists x_1 \forall y_1 \dots \exists x_h \forall y_h f(\vec{x}_h, \vec{y}_h) \neq 0$$

	f(x)=0	$ f(x)\neq 0 $
$\mathcal{M} \vDash f(x) = 0$	$\ \forall X.X \to X\ $	П
$\mathcal{M} \vDash f(x) \neq 0$	$\Lambda_c imes \Pi$	Ø

Uniform realizer

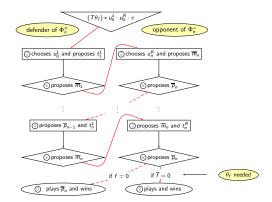
$$\forall n \in \mathbb{N}$$
, there exists $t_n \in \Lambda_c$ s.t. $\forall f : \mathbb{N}^{2n} \to \mathbb{N}$, $\mathcal{M} \models \exists x_1 \forall y_1 \dots f(\vec{x}, \vec{y}) \neq 0 \implies t_n \Vdash \exists^{N} x_1 \forall^{N} y_1 \dots f(\vec{x}, \vec{y}) \neq 0$.

→ t does not necessarily play according to the formula...

Combining strategies

Introduction

Forall n, there exists a term T_n s.t. if θ_f computes f, then $T_n\theta_f \Vdash \Phi_n^{\neq} \Rightarrow \Phi_n^{=}$



About absoluteness

Introduction

- it was already known
- it extends to realizability algebras
- we now know even more :

Shoenfield barrier

Every Σ_2^1/Π_2^1 -relation is absolute for all inner models $\mathcal M$ of ZF.

Krivine'14

There exists an ultrafilter on 12

Corollary

For any realizability algebra A, M^A contains a proper class M' which is an *inner model* of 7E.

About absoluteness

Introduction

- it was already known
- it extends to realizability algebras
- we now know even more :

Shoenfield barrier

Every Σ_2^1/Π_2^1 -relation is absolute for all *inner models* $\mathcal M$ of ZF.

Krivine'14

There exists an ultrafilter on 12

Corollary

For any realizability algebra \mathcal{A} , $\mathcal{M}^{\mathcal{A}}$ contains a proper class \mathcal{M}' which is an *inner model* of 7E.

Introduction

What we did:

- We defined two games for substitutive and non-substitutive cases
- We proved equivalence between universal realizers and winning strategies
- It solved both specification and absoluteness problems

Further work:

- classes of formulæ compatible with games ?
- transformation $\mathbb{G}^1 \leadsto \mathbb{G}^2$ generic ?
- combination of strategies ?

Conclusion

Introduction

What we did:

- We defined two games for substitutive and non-substitutive cases
- We proved equivalence between universal realizers and winning strategies
- It solved both specification and absoluteness problems

Further work:

- classes of formulæ compatible with games ?
- transformation $\mathbb{G}^1 \rightsquigarrow \mathbb{G}^2$ generic ?
- combination of strategies ?

Thank you for your attention.

Conclusion