Using the Size-Change Principle for checking
totality of recursive definitions

Pierre Hyvernat®
* Laboratoire de mathématiques, université Savoie Mont Blanc

chocola, Lyon, September 2016

LAMA

Laboratoire de Mathématiques
Université Savoie Mont-Blanc

w, v and SCP

ﬁThe “Size-Change Principle”

® Relevant instance of the SCP:
{ Head = x1::x2; Tail = { Head = x3 ; Tail = x4 } }
=>
{ Head = Q::<00,-2>x4 ; Tail = <o>x4 }, .<<-2>>

w, v and SCP

S SCPadv SCPanduand v
ﬁThe “Size-Change Principle”

® Relevant instance of the SCP:

{ Head = x1::x2; Tail = { Head = x3 ; Tail = x4 } }
=
{ Head = Q::<00,-2>x4 ; Tail = <o>x4 }, .<<-2>>

® Non relevant instance of the SCP:

@, v and SCP

S SCPadv SCPanduand v
ﬁ Plan

(1) ‘“size-change principle” and inductive types

1, v and SCP

SCP and SCP and

ﬁ Goal

W typed functional language

W algebraic datatypes

» sums (constructors)
» products (structures)
> initial algebras (inductive types)

W call-by-value (?)

w, v and SCP

SCP and p

ﬁ Goal

W typed functional language

W algebraic datatypes

» sums (constructors)
» products (structures)
> initial algebras (inductive types)

W call-by-value (?)

W arbitrary recursive definitions via equations

@, v and SCP

SCP and

(cf Haskell, Caml)

SCP and 1 SCP and p a

ﬁ Goal

W typed functional language

W algebraic datatypes

» sums (constructors)
» products (structures)
> initial algebras (inductive types)

W call-by-value (?)
W arbitrary recursive definitions via equations (cf Haskell, Caml)

W termination checker to validate definitions

w, v and SCP

SCP and p 1 SCP and p and 1

ﬁ Goal

W typed functional language

W algebraic datatypes

» sums (constructors)
» products (structures)
> initial algebras (inductive types)

W call-by-value (?)
W arbitrary recursive definitions via equations (cf Haskell, Caml)

W termination checker to validate definitions

Termination checker: adaptation of the “size-change principle”
(Lee, Jones et Ben-Amram 2001, P.H. 2014)

w, v and SCP

SCP and p

ﬁ Examples

val add m (n+1) = (add nm) + 1
| addm® =m

w, v and SCP

SCP and

ﬁ Examples

val add m (n+1)
| addm ® =m

val sum [] = O
| sum [n] = n
| sum m::n::1

(add nm) + 1

sum ((add m n)::1)

w, v and SCP

SCP and SCP and p a

ﬁ Examples

val add m (n+1)
| addm ® =m
val sum [] = O
| sum [n] = n
| sum m::n::1

(add nm) + 1

sum ((add m n)::1)

Both functions terminate (on appropriate types)
ﬁ add (m+1) (n+l) = add n (m+l) = add m n: arguments decrease

ﬁ sum _::(_::1) = sum ?::1: tail of the argument decreases

w, v and SCP

SCP and SCP and p a

ﬁ Examples

val add m (n+1)
| addm ® =m
val sum [] = O
| sum [n] = n
| sum m::n::1

(add nm) + 1

sum ((add m n)::1)

Both functions terminate (on appropriate types)
ﬁ add (m+1) (n+l) = add n (m+l) = add m n: arguments decrease

ﬁ sum _::(_::1) = sum ?::1: tail of the argument decreases
however

W add m (n+1) = add n m: no decrease with single call

n’ sum n::m::1 = sum ((add m n)::1): no decrease in whole argument

w, v and SCP

SCP and SCP and ¢4

vSCP: idea

Abstract interpretation of recursive call, keeping only
W first order arguments

W constants (constructors and structures)

w, v and SCP

SCP and SCP and p and 1

vSCP: idea

Abstract interpretation of recursive call, keeping only
W first order arguments
W constants (constructors and structures)

Example: for add et sum:

add m (n+1) = add nm

sum n::m::1 = sum Q::1

w, v and SCP

SCP and p

vSCP: idea

Abstract interpretation of recursive call, keeping only

W first order arguments

SCP and p and 1

W constants (constructors and structures)
Example: for add et sum:

add m (n+1) = add nm

sum n::m::1 = sum Q::1

We get in this way a call graph.

(vertices: mutually defined functions)

Pierre Hyvernat™® w, v and SCP

SCP and SCP and ¢4

vSCP: idea — 2

A bunch of mutually defined functions terminate if:

there are no infinite sequence of recursive calls to them.

w, v and SCP

SCP and SCP and p and 1

vSCP: idea — 2

A bunch of mutually defined functions terminate if:

there are no infinite sequence of recursive calls to them.

The call graph contains cycles and thus, infinite path,

w, v and SCP

SCP and SCP and p and 1

v SCP: idea — 2
A bunch of mutually defined functions terminate if:

there are no infinite sequence of recursive calls to them.

The call graph contains cycles and thus, infinite path, but not all
these path correspond to actual computations:

W the transition £ (A x) = £ (B x) cannot be taken twice in a row
(incompatibility),

Pierre Hyvernat™® w, v and SCP

SCP and p SCP and p and 1

v SCP: idea — 2
A bunch of mutually defined functions terminate if:

there are no infinite sequence of recursive calls to them.

The call graph contains cycles and thus, infinite path, but not all
these path correspond to actual computations:

W the transition £ (A x) = £ (B x) cannot be taken twice in a row
(incompatibility),

W the transition £ (B x) = f x cannot be taken infinitely many
times in a row (decrease).

w, v and SCP

SCP and p SCP and p and 1

v SCP: idea — 2
A bunch of mutually defined functions terminate if:

there are no infinite sequence of recursive calls to them.

The call graph contains cycles and thus, infinite path, but not all
these path correspond to actual computations:

W the transition £ (A x) = £ (B x) cannot be taken twice in a row
(incompatibility),

W the transition £ (B x) = f x cannot be taken infinitely many
times in a row (decrease).

“Size-change principle”: sufficient condition for

no infinite path in the call graph corresponds to an actual
computation path.

w, v and SCP

SCP and SCP and 1 SCP and p and 1

ﬁ SCP: idea — 2
A bunch of mutually defined functions terminate if:

there are no infinite sequence of recursive calls to them.

The call graph contains cycles and thus, infinite path, but not all
these path correspond to actual computations:

W the transition £ (A x) = £ (B x) cannot be taken twice in a row
(incompatibility),

W the transition £ (B x) = f x cannot be taken infinitely many
times in a row (decrease).

“Size-change principle”: sufficient condition for

no infinite path in the call graph corresponds to an actual
computation path.

(all infinite path deconstruct an infinite branch in an argument)

w, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

@, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):

@, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):
- fx= £(S5(Sx)

@, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):
- fx= £(S5(Sx)
- fx= £ (5 (SO

@, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):
- fx= £(S5(Sx)
- fx= £ (5 (SO
S fx = £(S (S (S AON

@, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):
- fx= £(S5(Sx)
= £ (S (S (S)

S fx = £(S (S (S AON
=

- fx £ (S (S (S (2N

- fx

@, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):
- fx= £(S5(Sx)

- fx= £ (5 (SO

S fx = £(S (S (S AON

S fx = £ (S (S (S {DON
=

- fx £ (S (S (S {o)x)))

@, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):

- fx= £ (5K

- fx= £ (5 (SO

S fx = £ (S (S (SR
S fx = £ (S (S (S
- fx = £ (S (S (S {(OHK)))
S fx = £ (S (S (S (DR

@, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):

fx
fx
fx
fx
fx
fx

Ll el

Fh Fh Fh Fh Fh b

(s
S
(s
(s
S
(s

(s
S
(s
(s
S
(s

withg (S x) = g x:
x)) - g (x))=9x
[CE)))

[CREN=9D))

s (20N

(s (o0)x)))

(s (o))

@, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):

fx
fx
fx
fx
fx
fx

Ll el

Fh Fh Fh Fh Fh b

(s
S
(s
(s
S
(s

(s
S
(s
(s
S
(s

withg (S x) = g x:
x)) - g (x))=9x
[CE))) - g (S (S (X)) =>gx
[CREN=9D))

s (20N

(s (o0)x)))

(s (o))

@, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):

- fx
- fx
- fx
- fx
- fx
- fx

Ll el

Fh Fh Fh Fh Fh b

(s
S
(s
(s
S
(s

(s
S
(s
(s
S
(s

x))

(s x)))

(S (1))
(S {2)1)))
(S (00)x)))
(S <{o0yx)))

withg (S x) = g x:
- g X)) =>9x
- g (S x))) =>g9gx
- g (GG =g{-x

, v and SCP

SCP and ¢

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):

- fx
- fx
- fx
- fx
- fx
- fx

Ll el

Fh Fh Fh Fh Fh b

(s
S
(s
(s
S
(s

(s
S
(s
(s
S
(s

x))

(s x)))

(S (1))
(S {2)1)))
(S (00)x)))
(S <{o0yx)))

W|thg Sx)=9x
g (S (x)=9x
- g (S x))) =>g9gx
- g (GG =g{-x
- g (GG =g{—2x

, v and SCP

SCP and ¢

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x): wmhg(Sx):»gx
- fx= £ (S (S g (S (x)=9x
- fx= £ (S (S (SN S g6 GO =>gx
- fx = £ (S (S (SON - g (GG =g{-x
- fx= £ (S ODON - g (8BS = g{(—2x
- fx = £ (S (S (S {0 - g (S (S (S = g{—3)x
- fx = £ (S (S (S {(OH))

@, v and SCP

SCP and ¢

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x): wmhg(Sx):»gx
- fx= £ (S (S g (S (x)=9x
- fx= £ (S SO - g () =gx
- fx = £ (S (S (SON - g (GG =g{-x
- fx= £ (S ODON - g (8BS = g{(—2x
- fx = £ (S (S (S {0 - g (S (S (S = g{—3)x
- fx = f (S (S (S o)) - g (GG =g{-3x

w, v and SCP

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x):

Composition of path: unification + truncation

fx
fx
fx
fx
fx
fx

Ll el

Fh Fh Fh Fh Fh b

(s
S
(s
(s
S
(s

(s
S
(s
(s
S
(s

x))

(s x)))

(S (1N
(S {2)1)))
(S (00)x)))
(S <{o0yx)))

W|thg Sx)=9x

@ @ @ @ @ Q@

w, v and SCP

(s
S
(s
(s
S
(s

(S x)) = g9gx

(S
(s
(s
s
(s

s

x)))
x)))
x)))
x)))
x)))

=
=
=
=
=

g X

g (—Dx
9 (—2)x
g (—3)x
g (—3)x

SCP and p

vSCP: more details

We compute a faithful approximation of the set of path:

with £ x = £ (S x): wmhg(Sx):»gx
- fx= £ (S (S g (S (x)=9x
- fx= £ (S SO g (S (S (X)) =gx
- fx = £ (S (S (SON g (S (G =g{-1x
- fx= £ (S ODON - g (8BS = g{(—2x
- fx = £ (S (S (S {0 g (S (S (Sx) = g {(—3)x
- fx = f (S (S (S o)) g (S (S (5 = g<{—3x

Composition of path: unification + truncation
with 2 parameters

W a depth > 0 for terms (here 3)

W a bound > 0 on coefficients (here 3)

w, v and SCP

SCP and p

v SCP: details — 2

Note: { Fst = x ; Snd = y } is approximated by (1)x + (1)y
(+ is commutative, associative and idempotent)

@, v and SCP

SCP and SCP and 1 SCP and p and 1

ﬁ SCP: details — 2

Note: { Fst = x ; Snd = y } is approximated by (1)x + (1)y
(+ is commutative, associative and idempotent)

Theorem (Rramsey, Lee, Jones, Ben-Amram, p..)

“_ 1

All infinite path in the call graph end with an infinity of loops ‘“c
satisfying ¢ < cc.
<: equal up to approximating coefficients

Pierre Hyverna w, v and SCP

SCP and SCP and 1 SCP and p and v

ﬁ SCP: details — 2

Note: { Fst = x ; Snd = y } is approximated by (1)x + (1)y
(+ is commutative, associative and idempotent)

Theorem (Rramsey, Lee, Jones, Ben-Amram, p..)

“_ 1

All infinite path in the call graph end with an infinity of loops ‘“c
satisfying ¢ < cc.
<: equal up to approximating coefficients

We just need to check that all the loops ¢ < cc have a decreasing
argument.

Pierre Hyverna w, v and SCP

SCP and SCP and 1 SCP and p and 1

ﬁ SCP: details — 2

Note: { Fst = x ; Snd = y } is approximated by (1)x + (1)y
(+ is commutative, associative and idempotent)

Theorem (Rramsey, Lee, Jones, Ben-Amram, p..)

“_ 1

All infinite path in the call graph end with an infinity of loops ‘“c
satisfying ¢ < cc.
<: equal up to approximating coefficients

We just need to check that all the loops ¢ < cc have a decreasing
argument.

We get structural recursion in subterms, lexicographic combinations,
argument permutations, locale size increase, ...

, v and SCP

ﬁ Plan

(2) ‘“size-change principle” et productivity

1, v and SCP

P and p SCP and v

v Example

val sums : stream(list(nat)) -> stream(nat)

w, v and SCP

SCP and pu SCP and v

v Example

val sums : stream(list(nat)) -> stream(nat)
| sums { Head=[]; Tail=s } = { Head=0; Tail=sums s }

w, v and SCP

SCP and p SCP and v SCP and p and 1

v Example

val sums : stream(list(nat)) -> stream(nat)
| sums { Head=[]; Tail=s } { Head=0; Tail=sums s }
| sums { Head=[n]; Tail=s } = { Head=n; Tail=sums s }

w, v and SCP

SCP and p

v Example

sums :

val

sums
sums
sums

SCP and v

{ Head=[]; Tail=s }

stream(list(nat)) -> stream(nat)

SCP and p and 1

{ Head=0; Tail=sums s }

{ Head=[n]; Tail=s } = { Head=n; Tail=sums s }

{ Head=n::m::1; Tail=s }
sums { Head=(add n m):

:1 ; Tail=s }

Pierre Hyve

w, v and SCP

SCP and v SCP and p and 1

v Example

val sums : stream(list(nat)) -> stream(nat)
| sums { Head=[]; Tail=s } = { Head=0; Tail=sums s }
| sums { Head=[n]; Tail=s } = { Head=n; Tail=sums s }
| sums { Head=n::m::1; Tail=s } =
sums { Head=(add n m)::1 ; Tail=s }

ﬁ structures are lazy
W the third recursive call isn't guarded (Coquand 1993)

W but the definition is productive

w, v and SCP

Pierre

SCP and v SCP and p and 1

vSCP and productivity

In addition to arguments, we also keep track of the result.
(Altenkirch & Danielsson 2010, Raffalli & Hyvernat 2014)

@, v and SCP

SCP and v SCP and p and 1

vSCP and productivity

In addition to arguments, we also keep track of the result.
(Altenkirch & Danielsson 2010, Raffalli & Hyvernat 2014)

(sums { Head=[]; Tail=s }) .Tail = sums s
(sums { Head=[n]; Tail=s }) .Tail = sums s
sums { Head=n::m::1; Tail=s } =

sums { Head=Q::1 ; Tail=s }

Pierre * w, v and SCP

SCP and p

vSCP and productivity

SCP and v

In addition to arguments, we also keep track of the result.
(Altenkirch & Danielsson 2010, Raffalli & Hyvernat 2014)
(sums { Head=[]; Tail=s })

(sums { Head=[n]; Tail=s })
sums { Head=n::m::1; Tail=s } =

sums { Head=Q::1 ; Tail=s }

.Tail = sums s
.Tail = sums s

A recursive definition is productive if for all infinite path:

- an ‘inductive” branch in an argument is infinite (cf. previous slides),

- the “coinductive” branch of the result is infinite.

Pierre Hyve

@, v and SCP

SCP and p and 1

SCP and p

vSCP and productivity

SCP and v

In addition to arguments, we also keep track of the result.
(Altenkirch & Danielsson 2010, Raffalli & Hyvernat 2014)
(sums { Head=[]; Tail=s })

(sums { Head=[n]; Tail=s })
sums { Head=n::m::1; Tail=s } =

sums { Head=Q::1 ; Tail=s }

.Tail = sums s
.Tail = sums s

A recursive definition is productive if for all infinite path:

- an ‘inductive” branch in an argument is infinite (cf. previous slides),

- the “coinductive” branch of the result is infinite.

The test is very similar, the coinductive branch of the result is seen
as an additional argument.

Pierre Hyve

@, v and SCP

SCP and p and 1

ﬁ Plan

(3) ‘“size-change principle” and totality

1, v and SCP

SCP and p and v

ﬁ (Counter) example

data tree where -- (empty) inductive type
| Node : stream(tree) -> tree

w, v and SCP

SCP and p and v

ﬁ (Counter) example

data tree where -- (empty) inductive type
| Node : stream(tree) -> tree

val bad_s : stream(tree)
| bad_s = { Head=Node bad_s ; Tail=bad_s }

w, v and SCP

ﬁ (Counter) example

data tree where -- (empty) inductive type
| Node : stream(tree) -> tree

val bad_s : stream(tree)

| bad_s { Head=Node bad_s ; Tail=bad_s }
val bad_t : tree

| bad_t = Node bad_s

SCP and p and v

w, v and SCP

ﬁ (Counter) example

data tree where -- (empty) inductive type
| Node : stream(tree) -> tree

val bad_s : stream(tree)

| bad_s { Head=Node bad_s ; Tail=bad_s }
val bad_t : tree

| bad_t = Node bad_s

W the definition is well-typed (Hindley-Milner)
W the definition is productive
W evaluation of bad_t (and all its subterms) terminates

W bad_t is not an element of the (empty) type tree

SCP and p and v

Pierre * w, v and SCP

SCP and p 1 SCP and p and v

ﬁ Goal

W typed functional language

W algebraic datatypes
» sums (constructors)
» products (structures)
> initial algebras (inductive types)
» terminal coalgebras (coinductive types)

W call-by-value and lazy structures (?) (cf charity by R. Cockett)

w, v and SCP

SCP and p

ﬁ Goal

W typed functional language

W algebraic datatypes

» sums (constructors)

» products (structures)

> initial algebras (inductive types)

» terminal coalgebras (coinductive types)

W call-by-value and lazy structures (?)

W arbitrary recursive definitions via equations

SCP and p and v

(cf charity by R. Cockett)

w, v and SCP

SCP and p

ﬁ Goal

W typed functional language

W algebraic datatypes

» sums (constructors)

» products (structures)

> initial algebras (inductive types)

» terminal coalgebras (coinductive types)

W call-by-value and lazy structures (?)
W arbitrary recursive definitions via equations

W totality checker to validate definitions

SCP and p and v

(cf charity by R. Cockett)

w, v and SCP

SCP and p 1 SCP and p and v

ﬁ Goal

W typed functional language

W algebraic datatypes

» sums (constructors)

» products (structures)

> initial algebras (inductive types)

» terminal coalgebras (coinductive types)

W call-by-value and lazy structures (?) (cf charity by R. Cockett)
W arbitrary recursive definitions via equations

W totality checker to validate definitions

totality test: generalizes termination and productivity test
(SCP + “guard conditions” inspired by L. Santocanale’s circular proofs)

w, v and SCP

SCP and

ﬁ Totality

Datatypes are interpreted by “lazy” domains.

v and SCP

SCP and p and v

ﬁ Totality

Succ(Succ Zero)

o

Succ Zero Succ(Succ 1)
N ~
Zero Succ L

~ 7
!

w, v and SCP

P and p SCP and 1 SCP and p and v

ﬁ Totality

Datatypes are interpreted by “lazy” domains.

data and codata are identical.

w, v and SCP

SCP and p SCP and p and v

ﬁ Totality

Datatypes are interpreted by “lazy” domains.
data and codata are identical.

Every recursive definition induces a continuous function between
the corresponding domains.

Pierre Hyvernat™® w, v and SCP

SCP and u SCP and v SCP and p and v

ﬁ Totality

Datatypes are interpreted by “lazy” domains.
data and codata are identical.

Theorem
Every recursive definition induces a continuous function between
the corresponding domains.

To distinguish inductive and coinductive types, we use the set
theOI’etIC intel’pl’etation (cf. Knaster Tarski theorem)

Definition
A (maximal) element of such a domain is total if it belongs to the
corresponding set theoretic interpretation.

Pierre Hyvernat™® , v and SCP

SCP and p SCP and v SCP and p and v

ﬁ Totality

Datatypes are interpreted by “lazy” domains.

data and codata are identical.

Theorem
Every recursive definition induces a continuous function between
the corresponding domains.

To distinguish inductive and coinductive types, we use the set
theOI’etIC intel’pl’etation (cf. Knaster Tarski theorem)

Definition
A (maximal) element of such a domain is total if it belongs to the
corresponding set theoretic interpretation.

Goal: find a decidable totality criterion.

Pierre Hyvernat™® w, v and SCP

SCP and p and v

ﬁ Parity games and totality

Coinductive “Rose trees”:

codata stree(’x) where
| Root : stree(’x) > 'x
| Branches : stree(’x) -> list(stree(’x))

@, v and SCP

SCP and u SCP and 1 SCP and p and v

ﬁ Parity games and totality

Coinductive “Rose trees”:

X <«<—— tree(X) unit
Root
Branches

\) Nil

list(stree(X

Fst
Snd () Cons
codata stree(’x) where stree(X) x list(stree(X))
| Root : stree(’x) > 'x

| Branches : stree(’x) -> list(stree(’x))

@, v and SCP

SCP and u SCP and p and v

ﬁ Parity games and totality

Coinductive “Rose trees”:

®

Branches

Fst

codata stree(’x) where
| Root : stree(’x) > 'x
| Branches : stree(’x) -> list(stree(’x))

| stree(X) x list(stree(X)) |

@, v and SCP

SCP and u SCP and p and v

ﬁ Parity games and totality

Coinductive “Rose trees”:

D)

codata stree(’x) where
| Root : stree(’x) > 'x
| Branches : stree(’x) -> list(stree(’x))

| stree(X) x list(stree(X))’ |

@, v and SCP

SCP and p SCP and 1 SCP and p and v

ﬁ Parity games and totality

Coinductive “Rose trees”:

D)

codata stree(’x) where
| Root : stree(’x) > 'x
| Branches : stree(’x) -> list(stree(’x))

| stree(X) x list(stree(X))’ |

Theorem (L. Santocanale 2002)

Total elements of a type are exactly the winning strategies for the
associated parity game.

, v and SCP

ﬁ Totality and strategies

Rules of the game: @

v play on odd vertices

Branches

d(

rtree(X) x list(rtree(X))° |

SCP and p and v

ﬁ Totality and strategies

Rules of the game: @

v play on odd vertices

Branches

d(

rtree(X) x list(rtree(X))° |

v loose if | can't play

, v and SCP

SCP and p and v

ﬁ Totality and strategies

Rules of the game: @

v play on odd vertices

v loose if | can't play

Branches
Wi the play is infinite, | win if the -
maximum value that is visited
infinitely often is even [rtree(x) x List(rtree(x))’]

w, v and SCP

SCP and p and v

vSCP and strategies

W we keep track of the arguments and the result (like for productivity)

@, v and SCP

SCP and p

SCP and p and v

vSCP and strategies

W we keep track of the arguments and the result (like for productivity)
W criterion: for all infinite path in the call graph,
» either an argument contains an infinite branch where the
maximal infinitely visited vertex is odd,

» either the result contains an infinite branch where the maximal
infinitely visited vertex is even

@, v and SCP

SCP and p SCP and p and v

vSCP and strategies

W we keep track of the arguments and the result (like for productivity)

W criterion: for all infinite path in the call graph,

» either an argument contains an infinite branch where the
maximal infinitely visited vertex is odd,

» either the result contains an infinite branch where the maximal
infinitely visited vertex is even

we need to keep a coefficient corresponding to the priority of a
vertex during truncation:

Cons! { Fst? = Succ! x ; Snd? =y }
becomes
Q',1%)x + (14, 1%y

@, v and SCP

SCP and p SCP and p and v

vSCP and strategies

W we keep track of the arguments and the result (like for productivity)

W criterion: for all infinite path in the call graph,

» either an argument contains an infinite branch where the
maximal infinitely visited vertex is odd,

» either the result contains an infinite branch where the maximal
infinitely visited vertex is even

we need to keep a coefficient corresponding to the priority of a
vertex during truncation:

Cons! { Fst? = Succ! x ; Snd? =y }
becomes
Q',1%)x + (14, 1%y

algorithm: SCP, yet again

Pierre Hyvernat™® w, v and SCP

SCP and p and v

that's missing

Some kind of definitions break the criterion:

W val total (Fork ts) = sum (list_map total ts)

partially applied recursive function: the test always fails

w, v and SCP

SCP and p and v

that's missing

Some kind of definitions break the criterion:

W val total (Fork ts) = sum (list_map total ts)
partially applied recursive function: the test always fails

this can be solved by a smart static analysis (PML1)

W val f (x::xs8) = f (list_map (add 1) xs)

parameter under an application: unknown size ()

Pierre Hyvernat™® w, v and SCP

SCP and p SCP and p and v

that's missing

Some kind of definitions break the criterion:

W val total (Fork ts) = sum (list_map total ts)
partially applied recursive function: the test always fails

this can be solved by a smart static analysis (PML1)

W val f (x::xs8) = f (list_map (add 1) xs)
parameter under an application: unknown size ()

idea: complement the criterion with “sized types”, as in Agda.

Pierre * w, v and SCP

	``size-change principle'' and inductive types
	``size-change principle'' et productivity
	``size-change principle'' and totality

