	Operads		

Shapely monads for graphical calculi

Richard Garner¹ Tom Hirschowitz²

¹CNRS and Université Savoie Mont Blanc Le Bourget-du-Lac

> ²Macquarie University Sydney

December 1, 2016

Introduction	Operads		
Outline			

$\widehat{1}$ Introduction

2 Preliminaries

3 Operads

4 Graphical operads

5 Shapely monads

Certain algebraic structures with

- obvious graphical intuition;
- tedious formal definition.

E.g., operads, properads, polycategories, PROPs, and variants.

Computer science motivation

Graphical calculi with

- obvious graphical intuition;
- tedious formal definition;
- involved or non-existent notion of model.
- E.g., took quite long to work out for proof nets¹!

Example

Interaction nets, (multiplicative) proof nets, bigraphs, ZX-calculus.

¹Bierman. On Intuitionistic Linear Logic. PhD thesis, Cambridge, 1993.

Introduction		Operads		
Contribu	itions			

- Make graphical intuition rigorous thanks to presheaf theory.
- ~ Alternative definition of

maths: the algebraic structure in question comp. sci.: a notion of model for the graphical calculus in question.

• View old definition as economical characterisation:

	old definition	new definition
statement	hard	easy
construction	easy	hard

Need to explain these terms, at least intuitively.

- Rightmost part: standard categorical approach to algebra.
- Difficult part in red!

	Preliminaries	Operads		
Outline				

1 Introduction

2 Preliminaries

3 Operads

4 Graphical operads

5 Shapely monads

	Preliminaries	Operads		
Categor	ies			

Objects, and morphisms between them.

Example

	Objects	Morphisms
Set	Sets	Functions
Mon	Monoids	Monoid homomorphisms
Grp	Groups	Group homomorphisms

	Preliminaries	Operads		
Functors				

Functor = morphism of categories.

Example

• Action on objects:

$$L(X) = \sum_{n} X^{n}$$

- = sequences of elements of X,
- = free monoid on X.

Multiplication:

$$(x_1,\ldots,x_n),(x_{n+1},\ldots,x_p)\mapsto (x_1,\ldots,x_p).$$

• Action on morphisms:

$$\begin{array}{rcl} L(X \xrightarrow{f} Y) \colon L(X) & \to & L(Y) \\ (x_1, \ldots, x_n) & \mapsto & (f(x_1), \ldots, f(x_n)). \end{array}$$

• Other example: U(M) = |M|, carrier of M.

	Preliminaries	Operads		
Monads				

Monad = endofunctor + structure.

Example

- Composite $T = U \circ L$.
- T(X) = free monoid viewed as a set.
- T is a monad.

Example: previous T

- T(X) = free monoid viewed as a set.
- So *m* maps sequences (x_1, \ldots, x_n) to elements.
- Thought of as multiplication.

Example *T*-algebra: $m: T(\mathbb{N}) \rightarrow \mathbb{N}$ $(n_1, \ldots, n_p) \mapsto \sum_i n_i.$

Morphisms of *T*-algebras

- $f(m(x_1,...,x_n)) = m'(f(x_1),...,f(x_n)).$
- $\bullet \ \ Morphism = structure-preserving \ map.$

Proposition (in the monoids example)

T-algebras form a category T-Alg, equivalent to Mon.

Moral (standard, but very important!)

Algebraic structure (monoids) \leftarrow monad T.

T describes 'free' algebraic structures.

Preliminaries	Operads		

Other examples on sets

Algebraic structure	T(X)
Monoids	$\sum_{n} X^{n}$
Commutative monoids	$\sum_{n} X^{n} / \mathfrak{S}_{n}$
Rings, modules, algebras,	
Complete semi-lattices	$\mathcal{P}(X)$

Non-example: fields, as there are no free fields over a set.

	Operads		
Outline			

1 Introduction

2) Preliminaries

③ Operads

4 Graphical operads

5 Shapely monads

- Running example: (nonsymmetric, coloured) operads.
- Well-known case: T already known!
- Result specialises to: characterisation of T as a free shapely monad.

```
 \begin{array}{ccc} \text{family of} & & \\ \text{presheaves} & & \sim \text{endofunctor } B & \sim \text{monad } T & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &
```

- Running example: (nonsymmetric, coloured) operads.
- Well-known case: T already known!
- Result specialises to: characterisation of T as a free shapely monad.

```
\begin{array}{c} \mbox{family of} \\ \mbox{multigraphs} \rightarrow \mbox{endofunctor} \ B \rightarrow \mbox{monad} \ T \longrightarrow \ T\mbox{-algebras} \\ & & & & & \\ & & & & & \\ \mbox{pictures} & & & \mbox{algebraic structures} \end{array}
```

		Operads		
Multigra	phs			

Multigraph $X \approx$ graph whose edges may have several sources. Diagram

- X_{\star} : vertices;
- X_n: edges with *n* sources;

- $s_{n,i}(e)$: *i*th source of *n*-ary *e*;
- $t_n(e)$: target of e.

		Operads		
Example	multigrap	h		

- $X_{\star} = \{a, b, c, d, e\},\$
- $X_2 = \{x, y\},$
- $X_n = \emptyset$ otherwise,
- $t_2(x) = x \cdot t = a$ (notation!),
- $x \cdot s_1 = b$, $x \cdot s_2 = c$, $y \cdot t = c$, $y \cdot s_1 = d$, $y \cdot s_2 = e$.

Morphism = map preserving target and sources.

Proposition Multigraphs form a category MGph. A (nonsymmetric, coloured) operad (in sets) \mathcal{O} is a multigraph \mathcal{O} with 'plugging', e.g., for all $x \in \mathcal{O}_2$ and $y \in \mathcal{O}_3$ with $y \cdot t = x \cdot s_1$, one may form

in \mathcal{O}_4 .

Notation

Denoted by
$$x \circ_1^{2,3} y$$
.

Plugging should satisfy obvious graphical axioms, e.g.,

A (nonsymmetric, coloured) operad (in sets) is

- a multigraph \mathcal{O} , together with
- for all $m, n, i, x \in \mathcal{O}_m$ and $y \in \mathcal{O}_n$ such that $x \cdot s_i = y \cdot t$, an element

$$x \circ_i^{m,n} y \in \mathcal{O}_{m+n-1};$$

- for all $a \in \mathcal{O}_{\star}$, an element $id_a \in \mathcal{O}_1$;
- satisfying axioms like

$$(x \circ_{i}^{m,n} y) \circ_{j}^{m+n-1,p} z = \begin{cases} (x \circ_{j}^{m,p} z) \circ_{i+p-1}^{m+p-1,n} y & \text{(if } j < i) \\ x \circ_{i}^{m,n+p-1} (y \circ_{j-i+1}^{n,p} z) & \text{(if } i \le j < i+n) \end{cases}$$

for all $x \in \mathcal{O}_m$, $y \in \mathcal{O}_n$, $z \in \mathcal{O}_p$.

	Operads	Graphical operads	
Outline			

1 Introduction

2 Preliminaries

3 Operads

4 Graphical operads

5 Shapely monads

Introduction Preliminaries Operads Graphical operads Shapely monads Conclusion

Endofunctors from multigraphs

IntroductionPreliminariesOperadsGraphical operadsShapely monadsConclusionCrucial point II:arguments for composition = multigraph morphisms

- \bullet Recall the picture for composition in $\mathcal{O},$ on the right.
- View it as a multigraph, say X.

(Morphisms $X \to \mathcal{O}$) \Leftrightarrow (choices of (x, y)):

- $x \in \mathcal{O}_2$ and $y \in \mathcal{O}_3$,
- such that $x \cdot s_1 = y \cdot t$.
- = potential arguments for $\circ_1^{2,3}$ if it existed.

	Operads	Graphical operads	
Arities			

Definition (Basic arities)

- X is the arity of $\circ_1^{2,3}$.
- Obvious generalisation: $X_i^{m,n}$ is the arity of $\circ_i^{m,n}$.
- Similarly, arity of *id*: multigraph with just one vertex (wire).

Introduction Preliminaries Operads Graphical operads Shapely monads Conclusion Making sense of h_X -algebras

- Recall our example multigraph X on the right.
- Consider the functor $h_X : \mathsf{MGph} \to \mathsf{MGph}$ defined by:
 - $h_X(Y)_{\star} = Y_{\star},$
 - ▶ h_X(Y)₄ = MGph(X, Y), the set of multigraph morphisms from X to Y,
 - $h_X(Y)_n = \emptyset$ for $n \neq 4$.
- So $h_X(Y)_4 = \{(x',y') \in Y_2 \times Y_3 \mid x' \cdot s_1 = y' \cdot t\}.$
- An algebra $h_X(Y) \to Y$ is determined by:
 - a multigraph Y,
 - plus a map $h_X(Y)_4 \rightarrow Y_4$, i.e.,
 - an interpretation of $\circ_1^{2,3}$!

Summary

Multigraph $X \rightsquigarrow$ functor which specifies an operation of arity X.

I.e., algebras have such an operation.

Graphical definition of operads

Need to define arities for all derived operations:

Definition

Let \mathcal{T}_n denote the class of planar trees with *n* leaves.

Define T: MGph \rightarrow MGph by:

•
$$T(Y)_{\star} = Y_{\star}$$
,

• $T(Y)_n = \sum_{X \in \mathcal{T}_n} MGph(X, Y)$, the set of multigraph morphisms from some n-ary tree X to Y.

Lemma

The functor T is a monad on MGph.

Theorem

Operads are equivalent to T-algebras.

	Operads	Shapely monads	
Outline			

1 Introduction

2 Preliminaries

3 Operads

4 Graphical operads

5 Shapely monads

• Goal: generate *T* automatically from basic arities.

- Compositions $X_i^{n,m}$.
- Identities I_a.

Let \mathcal{B}_n denote the set of basic arities with *n* leaves.

Intuition: filiform trees of depth 2.

Define $B: MGph \rightarrow MGph$ by:

- $B(Y)_{\star} = Y_{\star}$,
- B(Y)_n = ∑_{X∈B_n} MGph(X, Y), the set of multigraph morphisms from some *n*-ary basic arity X to Y.

Question: how to generate T from B?

Well-known correspondence

 $\mathcal{M}(B)$ -algebras do not satisfy any of the axioms!

Which monads do enforce them? Shapely ones!

Subcategory

 $\mathsf{Framed}(\mathsf{MGph}) \subseteq \mathsf{Cell}(\mathsf{MGph}) \subseteq \mathsf{Analytic}(\mathsf{MGph}) \subseteq \mathsf{Endo}(\mathsf{MGph}).$

Stable under composition.

• Has a terminal object \top , automatically a monad.

Definition

```
Shapely = subfunctor of \top in Framed(MGph).
Graphical calculus = shapely monad.
```

Intuition: at most one operation of each arity.

		Operads	Shapely monads	
Generat	ion result			

Theorem

 $T = \bigcup_n (id \cup B)^{\cdot n}$ is the free shapely monad over B.

 $B \cdot B$ denotes the image of $B \circ B$: $B \circ B \twoheadrightarrow B \cdot B \hookrightarrow \top$.

		Operads	Shapely monads	
Illustrati	ion of $B \cdot I$	3		

Shapely monads for graphical calculi

		Operads	Shapely monads	
General	result			

• Consider any presheaf category with a subterminal object \top .

At most one morphism from any object to \top .

- Consider \top -analytic functors, i.e., analytic functors with a map to \top .
- Suppose they are stable under composition.
- Example: framed endofunctors.

Definition

Shapely functor = subfunctor of \top .

Theorem

The free shapely monad on a shapely endofunctor B is $\bigcup_n (id \cup B)^{\cdot n}$.

		Operads	Shapely monads	
Applicat	ions			

- Characterisation of the monads for polycategories, properads, PROPs, etc, as free shapely monads.
- Definition of free shapely monads for interation nets and fragments of proof nets.

		Operads		Conclusion
Conclusi	on			

If you wonder what a model for your graphical calculus is, you could try to:

- Formalise pictures as presheaves.
- Derive monad automatically from them.
- Then work on an intelligible characterisation of algebras.

		Operads		Conclusion
Perspect	ives			

- Further applications, e.g., to PROP rewriting (started long ago with Adrien D., idle).
- Framed functors: 2-levels, level 1 fixed. Generalisation?
- Notion of representable algebra, as in representable operad.

Existence of a tensor product.

- Notion of weak algebra (suggested by Kris W.), as in ∞ -operad.
- Generalise to not strictly shapely, e.g., proof net boxes.

	Operads		Conclusion
Thanks			

- Restrict to functors with at most one operation per arity.
- There should be one 'full' such functor ⊤, with one operation for each possible arity.
- This functor \top should be a monad.
- Selecting basic arities \Leftrightarrow picking a subfunctor $B \subseteq \top$.
- Generating $T \approx \bigcup_n (id \cup B)^{\cdot n}$, the smallest submonad of \top containing B.

Find a subcategory C of Endo(MGph)

- stable under composition and
- having a terminal object \top .

I.e., such that $\forall C \in C, \exists! \text{ morphism } C \to \top$.

Indeed:

- \top automatically a monad *via* $\top \circ \top \rightarrow \top$;
- can then generate $\bigcup_n B^n$ amongst subfunctors of \top .

Towards shapely functors I: analytic functors

Subcategory Analytic(MGph) \subseteq Endo(MGph) of functors s.t.

$$T(Y)_n = \sum_{x \in T(1)_n} \mathsf{MGph}(A(x), Y) / G(x)$$

where

- A(x) is the arity of x,
- $G(x) \triangleleft \mathfrak{S}_{A(x)}$ is a subgroup of the automorphism group of A(x).
- Generalisation of Joyal's analytic endofunctors on sets.

Miss again!

- Does have a terminal object.
- Not stable under composition.

		Operads					Conclusion
– –		C .			с .		
lowards	shapely	functors	1111	cellular	functor	ſS	

$\mathsf{Subcategory}\ \mathsf{Cell}(\mathsf{MGph}) \subseteq \mathsf{Analytic}(\mathsf{MGph}) \subseteq \mathsf{Endo}(\mathsf{MGph}).$

Miss again!

- Stable under composition.
- No terminal object!