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This talk: give a discipline for specifying syntaxes



Motivating example: dLC
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syntax of dLC = differential λ-calculus  [Ehrhard-Regnier 2003]. 

e.g. s+t = t+s

e.g. unary substitution

• explicitly involves equations

• specifically taylored: (not an instance of a general framework/scheme)

      inductive definition of a set        +       ad-hoc structure

    

Our proposal = a discipline for presenting syntaxes

• signature = operations + equations

• [Fiore-Hure 2010]: alternative approach, for simply typed syntaxes

  ⇒ our approach explicitly relies on monads and modules (untyped case).



Syntax of dLC: [Ehrhard-Regnier 2003]
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Syntax of dLC: [Ehrhard-Regnier 2003]

4 38/

as an operation: Λ × FreeCommutativeMonoid(Λ) → Λ



Syntax of dLC: [BEM 2010]
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A syntax for the differential λ-calculus by mutual induction: 

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

Differential λ-terms:
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A syntax for the differential λ-calculus by mutual induction: 

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

modulo α-renaming of x

variable

neutral element for +
modulo commutativity

Differential λ-terms:
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A syntax for the differential λ-calculus by mutual induction: 

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

modulo α-renaming of x

variable

neutral element for +
modulo commutativity

Differential λ-terms:

Λd = FreeCommutativeMonoid(Λs) 
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A syntax for the differential λ-calculus by mutual induction: 

[Bucciarelli-Ehrhard-Manzonetto 2010]

Syntax: specified by operations and equations.

Simple terms:

modulo α-renaming of x

variable

neutral element for +
modulo commutativity

Differential λ-terms:

Λd = FreeCommutativeMonoid(Λs) 
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A syntax for the differential λ-calculus by mutual induction: 

[Bucciarelli-Ehrhard-Manzonetto 2010]

Syntax: specified by operations and equations.

But which ones are allowed ? What is the limit ?

Simple terms:

modulo α-renaming of x

variable

neutral element for +
modulo commutativity

Differential λ-terms:

Λd = FreeCommutativeMonoid(Λs) 



Syntax of dLC: Our version
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Differential λ-terms:

Allow sums everywhere (not only in the right arg of application)

A stand-alone presentation of differential λ-terms:

|  0  |  S + T

Which operations/equations are allowed to specify a syntax ?

S T
d S S T

modulo commutativity and associativity
neutral element for +

Macros in [BEM 2010]:

S,T



Syntax of dLC: Conclusion
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How can we compare these different versions ?

In which sense are they syntaxes ?

Which operations/equations are we allowed to specify in a syntax ?
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How can we compare these different versions ?

In which sense are they syntaxes ?

Which operations/equations are we allowed to specify in a syntax ?

What is a syntax ?



What is a syntax?
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Syntax

Signature
= operations + equations

Category of Models

Recursion

Substitution

(initial model)

generates a syntax = existence of the initial model



Table of contents
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1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion
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Substitution and monads
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Free variable indexing:

Example: differential λ-calculus

|  0  |  S + T
S T

d S S TS,T



Substitution and monads
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Parallel substitution:

Free variable indexing:

Example: differential λ-calculus

|  0  |  S + T
S T

d S S TS,T

t         ↦     t[x ↦ f(x)]



Substitution and monads

10 38/

Parallel substitution:

Free variable indexing:

⇒ (dLC, varX : X ⊂ dLC(X) , bind) = monad on Set

Example: differential λ-calculus

|  0  |  S + T
S T

d S S TS,T

f : X → dLC(Y)wherebindf    :  dLC(X)   →      dLC(Y)
t         ↦     t[x ↦ f(x)]



Substitution and monads
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Parallel substitution:

Free variable indexing:

⇒ (dLC, varX : X ⊂ dLC(X) , bind) = monad on Set

Example: differential λ-calculus

|  0  |  S + T
S T

d S S TS,T

f : X → dLC(Y)wherebindf    :  dLC(X)   →      dLC(Y)
t         ↦     t[x ↦ f(x)]

monad morphism = mapping preserving variables and substitutions.



Preview: Operations are module morphisms
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+ commutes with substitution

Categorical formulation

+ commutes
with substitution

+ : dLC × dLC → dLC is a 

module morphism

dLC × dLC supports 
dLC-substitution 

dLC × dLC is a module over dLC



Building blocks for specifying operations
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Essential constructions of modules over a monad R:

•  R itself 

•  M × N for any modules M and N

    M' = derivative of a module M:      M '(X) = M(X ∐ { ⋄ }).

f : X → R(Y)e.g. R × R:

(t,u)[x ↦ f(x)] := (t[x↦f(x)], u[x ↦ f(x)])

 used to model an operation binding a variable  (Cf next slide).

●●

disjoint union
fresh variable



Syntactic operations are module morphisms
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operations = module morphisms = maps commuting with substitution.

app : dLC × dLC → dLC

+ : dLC × dLC → dLC

0 :          1           → dLC  

abs : dLC'            → dLC

absX : dLC(X ∐ {⋄}) → dLC(X)
                          t           ↦   λ⋄.t
       



Syntactic operations are module morphisms
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operations = module morphisms = maps commuting with substitution.

Combining operations into a single one using disjoint union

app : dLC × dLC → dLC

[app, abs] : (dLC × dLC) ∐ dLC'  → dLC

[0, +] : 1 ∐  (dLC × dLC)        → dLC

+ : dLC × dLC → dLC

0 :          1           → dLC  

abs : dLC'            → dLC

absX : dLC(X ∐ {⋄}) → dLC(X)
                          t           ↦   λ⋄.t
       



Syntactic operations are module morphisms
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operations = module morphisms = maps commuting with substitution.

Combining operations into a single one using disjoint union

app : dLC × dLC → dLC

[app, abs] : (dLC × dLC) ∐ dLC'  → dLC

[0, +] : 1 ∐  (dLC × dLC)        → dLC

[app, abs, 0, +] : (dLC × dLC) ∐ dLC' ∐ 1 ∐  (dLC × dLC) → dLC

+ : dLC × dLC → dLC

0 :          1           → dLC  

abs : dLC'            → dLC

absX : dLC(X ∐ {⋄}) → dLC(X)
                          t           ↦   λ⋄.t
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A 1-signature Σ = functorial assignment:

A model of Σ is a pair:

Example: (0,+)

dLC = model of Σ0,+

Σ(R)

Σ(S)

Σ(m)

R

m

ρ

σ
S

A model morphism m : (R,ρ) → (S,σ) = monad morphism commuting 

with the module morphism:
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A 1-signature Σ = functorial assignment:

monad

A model of Σ is a pair:

Example: (0,+)

dLC = model of Σ0,+

Σ(R)

Σ(S)

Σ(m)

R

m

ρ

σ
S

A model morphism m : (R,ρ) → (S,σ) = monad morphism commuting 

with the module morphism:
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A 1-signature Σ = functorial assignment:

monad module over R

A model of Σ is a pair:

Example: (0,+)

dLC = model of Σ0,+

Σ(R)

Σ(S)

Σ(m)

R

m

ρ

σ
S

A model morphism m : (R,ρ) → (S,σ) = monad morphism commuting 

with the module morphism:
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A 1-signature Σ = functorial assignment:

monad

monad

module over R

A model of Σ is a pair:

Example: (0,+)

dLC = model of Σ0,+

Σ(R)

Σ(S)

Σ(m)

R

m

ρ

σ
S

A model morphism m : (R,ρ) → (S,σ) = monad morphism commuting 

with the module morphism:
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A 1-signature Σ = functorial assignment:

monad

monad

module over R

module morphism

A model of Σ is a pair:

Example: (0,+)

dLC = model of Σ0,+

Σ(R)

Σ(S)

Σ(m)

R

m

ρ

σ
S

A model morphism m : (R,ρ) → (S,σ) = monad morphism commuting 

with the module morphism:



Syntax
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Question: Does the syntax exist for every 1-signature?

Answer:    No.

Given a 1-signature Σ, its syntax is an initial object in its category 

of models.

Definition



Syntax
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Question: Does the syntax exist for every 1-signature?

Answer:    No.

Counter-example: the 1-signature R ↦ 𝒫 ∘R.

powerset endofunctor on Set

Given a 1-signature Σ, its syntax is an initial object in its category 

of models.

Definition



Examples of 1-signatures generating syntax
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    (0,+) language:

    lambda calculus:

R ↦ 1 ∐ (R × R)

R ↦ R' ∐ (R × R) 

Signature:

Signature:

Model:

Model:

Syntax:

Syntax:

 (R ,   0 : 1 → R ,    + : R × R → R)

 (R ,   abs : R' → R ,    app : R × R → R)

 (Λ ,   abs : Λ' → Λ  ,    app : Λ × Λ → Λ)

 (B ,   0 : 1 → B ,    + : B × B → B)

●

●

Can we generalize this pattern?



Initial semantics for algebraic 1-signatures
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Algebraic 1-signatures correspond to the binding signatures 

described in [Fiore-Plotkin-Turi 1999]

Question: Can we enforce some equations in the syntax ?

   e.g. associativity and commutativity of + for the differential λ-calculus.

(binding signature = lists of natural numbers specify n-ary

                                 operations, possibly binding variables)

Theorem [Hirschowitz & Maggesi 2007]
Syntax exists for any algebraic 1-signature, i.e. 1-signature built out 

of derivatives, products, disjoint unions, and the 1-signature R ↦ R.



Quotients of algebraic 1-signatures
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Theorem [AHLM CSL 2018]
Syntax exists for any "quotient" of algebraic 1-signature.

[AHLM CSL 2018]: notion of quotients of 1-signatures.

   Examples:

   • a commutative binary operation

   • application of the differential λ-calculus (original variant)

app : dLC × FreeCommutativeMonoid(dLC) → dLC



Quotients of algebraic 1-signatures
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   ... but not enough for the differential λ-calculus:

   • associativity of + 

   • linearity of the operations

Theorem [AHLM CSL 2018]
Syntax exists for any "quotient" of algebraic 1-signature.

[AHLM CSL 2018]: notion of quotients of 1-signatures.

   Examples:

   • a commutative binary operation

   • application of the differential λ-calculus (original variant)

app : dLC × FreeCommutativeMonoid(dLC) → dLC



Table of contents  
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1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion

  



Example: a commutative binary operation
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Specification of a binary operation

What is an appropriate notion of model for a commutative 

binary operation ?

R ↦  R × R 1-Signature:

Model:  (R ,  + : R × R → R)



Example: a commutative binary operation
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Specification of a  commutative binary operation

What is an appropriate notion of model for a commutative 

binary operation ?

Answer: a monad equipped with a commutative binary operation

R ↦  R × R 1-Signature:

Model: s.t. (1) (R ,  + : R × R → R)



Example: a commutative binary operation
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Specification of a  commutative binary operation

What is an appropriate notion of model for a commutative 

binary operation ?

Answer: a monad equipped with a commutative binary operation

Equation (1) states an equality between R-module morphisms:

R ↦  R × R 1-Signature:

Model: s.t. (1) (R ,  + : R × R → R)

R × R R
R × R

+

swap +



Equations
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Given a 1-signature Σ, 

a Σ-equation A ⇉ B is a functorial assignment:

A 2-signature is a pair

model of a 2-signature (Σ, E):

• a model R of Σ

• s.t. ∀ (A ⇉ B) ∈ E, the two morphisms A(R) ⇉ B(R) are equal

model of Σ parallel pair of module 
morphisms over R

(Σ, E)

1-signature set of Σ-equations

(e.g. binary operation: 

e.g. commutativity:

Σ(R) = R × R )



Initial semantics for algebraic 2-signatures
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Main instances of elementary Σ-equations A ⇉ B:

• A = algebraic 1-signature     e.g. A(R) = R×R

• B(R) = R

Algebraic 2-signature: (Σ, E)

algebraic 1-signature
set of elementary   

      Σ-equations

Theorem
Syntax exists for any algebraic 2-signature.



Initial semantics for algebraic 2-signatures
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Main instances of elementary Σ-equations A ⇉ B:

• A = algebraic 1-signature     e.g. A(R) = R×R

• B(R) = R

Algebraic 2-signature: (Σ, E)

algebraic 1-signature
set of elementary   

      Σ-equations

Theorem
Syntax exists for any algebraic 2-signature.

Sketch of the construction of the syntax:

Quotient the initial model R of Σ by the following relation: 

       x ~ y in R(X)    iff     for any model S of (Σ, E) ,  i(x) = i(y)

initial Σ-model morphism i : R → S



Example: λ-calculus modulo βη
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The algebraic 2-signature (ΣLCβη, ELCβη) of λ-calculus modulo βη:

ELCβη = { β-equation, η-equation }

ΣLCβη (R) := ΣLC(R) = (R × R) ∐ R'

model of Σ
LC = monad R with module morphisms:

β-equation: (λx.t) u = t[x ↦ u] η-equation: t = λx.(t x)

app : R × R → R         abs : R' → R
{

σR(t,u)



Example: λ-calculus modulo βη
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R'×R R
R × R

abs × R app

σR

R R
R'

Rι₁ abs

idR

The algebraic 2-signature (ΣLCβη, ELCβη) of λ-calculus modulo βη:

ELCβη = { β-equation, η-equation }

ΣLCβη (R) := ΣLC(R) = (R × R) ∐ R'

model of Σ
LC = monad R with module morphisms:

β-equation: (λx.t) u = t[x ↦ u] η-equation: t = λx.(t x)

app : R × R → R         abs : R' → R
{

σR(t,u)



Example: fixpoint operator
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A  fixpoint operator in a monad R is a module morphism fix: R' → R 

s.t. for any term t ∈ R(X ∐ { ⋄ }), fix(t) = t[⋄ ↦ f(t)]

Definition [AHLM CSL 2018]

[AHLM CSL 2018]   Fixpoint operator in LCβη ≃  fixpoint combinators

Intuition: 

•

•

:=  let rec ⋄ = t in ⋄



Example: fixpoint operator
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A  fixpoint operator in a monad R is a module morphism fix: R' → R 

s.t. for any term t ∈ R(X ∐ { ⋄ }), fix(t) = t[⋄ ↦ f(t)]

Definition [AHLM CSL 2018]

Algebraic 2-signature (Σfix, Efix) of a fixpoint operator:

[AHLM CSL 2018]   Fixpoint operator in LCβη ≃  fixpoint combinators

Σfix (R) := R'

Intuition: 

•

•

:=  let rec ⋄ = t in ⋄



Combining algebraic 2-signatures
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Algebraic 2-signatures can be combined:

(Σfix, Efix) 

(Σfix ∐ ΣLCβη   ,   Efix ∪ ELCβη)

fixpoint operator

(ΣLCβη, ELCβη)

λ-calculus modulo βη

λ-calculus modulo βη with an explicit fixpoint operator

+

=



Example: free commutative monoid
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Algebraic 2-signature (Σmon, Emon) for the free commutative monoid monad:

model of Σmon = monad R with module morphisms:

Σmon(R) := 1 ∐ (R × R)

0 : 1 → R         + : R × R → R



Example: free commutative monoid
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Algebraic 2-signature (Σmon, Emon) for the free commutative monoid monad:

model of Σmon = monad R with module morphisms:

3 elementary Σ-equations:

Σmon(R) := 1 ∐ (R × R)

0 : 1 → R         + : R × R → R



Our target: dLC
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Syntax of the differential λ-calculus:

and (bi)linearity of operations with respect to +:

λ-calculus

free commutative monoid

λx.(s+t) = λx.s + λx.t …

Differential λ-terms

::=   x 

|    s t   

|    λx.t   

|    Ds · t

|    s + t 

s,t

|    0 }

}



Algebraic 1-signature for dLC
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Syntax of the differential λ-calculus:

ΣLC(R) = R' ∐ (R × R)

(variables ⊂ R for any monad R)

Corresponding 1-signature

R ↦ R × R

Σmon(R) = 1 ∐ (R × R)

Differential λ-terms

::=   x 

|    s t   

|    λx.t   

|    Ds · t

|    s + t 

s,t

|    0 }

}



Algebraic 1-signature for dLC
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Syntax of the differential λ-calculus:

ΣLC(R) = R' ∐ (R × R)

(variables ⊂ R for any monad R)

Corresponding 1-signature

Resulting algebraic 1-signature: ΣdLC(R) = ΣLC(R) ∐ (R × R) ∐ Σmon(R) 

R ↦ R × R

Σmon(R) = 1 ∐ (R × R)

Differential λ-terms

::=   x 

|    s t   

|    λx.t   

|    Ds · t

|    s + t 

s,t

|    0 }

}



Elementary equations for dLC
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R×R ⇉ R

R×R×R ⇉ R

R×R ⇉ R

R×R×R ⇉ R

R×R×R ⇉ R

R ⇉ R

Emon

Commutative monoidal structure:

Linearity:

s + t = t + s

s + (t + u) = (s + t) + u

0 + t = t

λx.(s+t) = λx.s + λx.t

D(s+t)·u = Ds·u + Dt·u

Ds·(t+u) = Ds·t + Ds·u

…

}



n-ary fixpoint operator
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Reminder: unary fixpoint operator in a monad R

n-ary fixpoint operator:

Intuition:

Intuition:

s.t.

s.t.  ∀ i,

t

t1,...,tn

R(X ∐ {⋄})

R(X ∐ {⋄1,…,⋄n})n

R(X)

R(X)

↦

↦

:=

:=

→

→ ∀ i ∈{1,..,n},

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i  

 let rec ⋄ = t in ⋄



n-ary fixpoint operator
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Reminder: unary fixpoint operator in a monad R

n-ary fixpoint operator:

⇒ specifiable as an algebraic 2-signature

Intuition:

Intuition:

s.t.

s.t.  ∀ i,

t

t1,...,tn

R(X ∐ {⋄})

R(X ∐ {⋄1,…,⋄n})n

R(X)

R(X)

↦

↦

:=

:=

→

→ ∀ i ∈{1,..,n},

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i  

 let rec ⋄ = t in ⋄



Fixpoint operators
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Syntax with fixpoint operators: 

• for each n, a n-ary operator:

• compatibility between these operators [AHLM CSL 2018] 

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i  



Fixpoint operators
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Syntax with fixpoint operators: 

• for each n, a n-ary operator:

• compatibility between these operators [AHLM CSL 2018] 

∘ invariance under permutation:

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i  

 let rec ⋄1 = t1 

     and ⋄2 = t2 

 in ⋄1  

 let rec ⋄1 = t2[⋄1 ↔ ⋄2] 

    and ⋄2 = t1[⋄1 ↔ ⋄2]

 in ⋄2  

=



Fixpoint operators
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Syntax with fixpoint operators: 

• for each n, a n-ary operator:

• compatibility between these operators [AHLM CSL 2018] 

∘ invariance under permutation:

∘ invariance under repetition:

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i  

 let rec ⋄1 = t1 

     and ⋄2 = t2 

 in ⋄1  

 let rec ⋄1 = t 

     and ⋄2 = t 

 in ⋄1  

 let rec ⋄1 = t2[⋄1 ↔ ⋄2] 

    and ⋄2 = t1[⋄1 ↔ ⋄2]

 in ⋄2  

 let rec ⋄1 = t[⋄2 ↦ ⋄1] 

 in ⋄1  

=

=



Fixpoint operators
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Syntax with fixpoint operators: 

• for each n, a n-ary operator:

• compatibility between these operators [AHLM CSL 2018] 

general form:

where

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i  

let rec ⋄1 = t1[⋄
i  

↦ ⋄u(i)] 

          …

    and ⋄q = tq[⋄i ↦ ⋄u(i)] 

in ⋄u(j)  

let rec ⋄1 = tu(1)
          …

    and ⋄p = tu(p)
in ⋄j  

=



Fixpoint operators
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Syntax with fixpoint operators: 

• for each n, a n-ary operator:

• compatibility between these operators [AHLM CSL 2018] 

general form:

where

⇒ Expressible as elementary equations (R'…')q ⇉ R.

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i  

let rec ⋄1 = t1[⋄
i  

↦ ⋄u(i)] 

          …

    and ⋄q = tq[⋄i ↦ ⋄u(i)] 

in ⋄u(j)  

let rec ⋄1 = tu(1)
          …

    and ⋄p = tu(p)
in ⋄j  

=
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1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion

  



Principle of recursion
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Recursion on the syntax ≃ Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)
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Recursion on the syntax ≃ Initiality in the category of models

1.   Give a module morphism s : Σ(S) → S

  

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)



Principle of recursion
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Recursion on the syntax ≃ Initiality in the category of models

⇒ induces a Σ-model (S , s)

1.   Give a module morphism s : Σ(S) → S

  

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)



Principle of recursion

34 38/

Recursion on the syntax ≃ Initiality in the category of models

⇒ induces a Σ-model (S , s)

1.   Give a module morphism s : Σ(S) → S

  

2.   Show that all the equations in E are satisfied for this model

  

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)



Principle of recursion
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Recursion on the syntax ≃ Initiality in the category of models

⇒ induces a Σ-model (S , s)

⇒ induces a model of (Σ , E)

1.   Give a module morphism s : Σ(S) → S

  

2.   Show that all the equations in E are satisfied for this model

  

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)



Principle of recursion

34 38/

Recursion on the syntax ≃ Initiality in the category of models

⇒ induces a Σ-model (S , s)

⇒ induces a model of (Σ , E)

1.   Give a module morphism s : Σ(S) → S

  

2.   Show that all the equations in E are satisfied for this model

  

monad morphism R → S⇒Initiality of R    ⇒   model morphism R → S

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)



Example: Computing the set of free variables
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λ-calculus monad
power set monad

t     ↦  (exact) set of free variables of t
fvX   :   LC(X)   →   P(X) 



Example: Computing the set of free variables
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λ-calculus monad

LC = initial model of (ΣLC , ∅) 

power set monad

ΣLC(R) = (R × R) ∐ R' 

fv(x) = {x}

fv(app(t,u)) = fv(t) ∪ fv(u) fv(abs(t)) = fv(t) \ {⋄}

.. as a monad morphism fv : LC → P 

t     ↦  (exact) set of free variables of t
fvX   :   LC(X)   →   P(X) 

⇒ make P a model of ΣLC

∪ :  P × P → P _\{ ⋄ } :  P'  → P 

Initiality of LC   ⇒    fv : LC → P

Equalities as a monad morphism:

Equalities as a model morphism:
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    λ-calculus modulo βη 

+ fixpoint operator fix

LCβη+fix =  initial model of (ΣLCβη , ELCβη) + (Σfix ,  Efix)

λ-calculus modulo βη
compilation

a chosen fixpoint 
combinator

fix(t)   ↦   app(Y, abs(t))

...as a monad morphism 

⇒ make LCβη a model of (ΣLCβη , ELCβη) + (Σfix ,  Efix):

⇒

Initiality of LCβη+fix   ⇒   monad morphism LCβη+fix → LCβη  

LCβη+fix → LCβη  

Ŷ : 
a fixpoint operator in LCβηapp, abs

t ↦ app(Y, abs(t))

Fixpoint operators in LCβη are in one to one correspondance with 

fixpoint combinators (i.e. λ-terms Y s.t. t (Y t) = Y t for any t).

Proposition [AHLM CSL 2018]
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.. as a monad morphism s : LC → N 
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s(x) = 0

s(λx.x) = 1

s((λx.x) y) = 2

Solution [CSL AHLM 2018]:  

1. define    f : LC → C by recursion

2. deduce  s : LC → ℕ

Intuition:    fX : LC(X) → ℕ(ℕ
X

) g : LC(X)×ℕX → ℕ

ℕ  is not a monad !

s(t) = g(t, (x ↦ 0))

g(x, u) = u(x)

assigns an arbitrary size to each variable

continuation monad C(X) = ℕ(ℕ
X

)

variables are of size 0

λ-calculus monad

t     ↦   number of constructors in t
sX   :   LC(X) →   N 

.. as a monad morphism s : LC → N 

uncurry
⇒
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Future work:

    add the notion of reductions;

    extend our work to simply typed syntaxes.

Main theorems formalized in Coq using the UniMath library.

Summary of the talk:

    notion of 1-signature and models based on monads and modules

    2-signature = 1-signature + set of equations

    algebraic 2-signatures generate a syntax, e.g. differential λ-calculus.



Conclusion

38 38/

Future work:

    add the notion of reductions;

    extend our work to simply typed syntaxes.

Main theorems formalized in Coq using the UniMath library.

Summary of the talk:

    notion of 1-signature and models based on monads and modules

    2-signature = 1-signature + set of equations

    algebraic 2-signatures generate a syntax, e.g. differential λ-calculus.

Thank you!


