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This talk: give a discipline for specifying syntaxes
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Motivating example: dLC

syntax of dLC = differential A-calculus [Ehrhard-Regnier 2003].

e explicitly involves equations €.g. s+t =t+s
e specifically taylored: (not an instance of a general framework/scheme)

inductive definition of a set + ad-hoc structure
e.g. unary substitution

Our proposal = a discipline for presenting syntaxes
e signature = operations + equations
e [Fiore-Hure 2010]: alternative approach, for simply typed syntaxes

= our approach explicitly relies on monads and modules (untyped case).
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Syntax of dLC: [Ehrhard-Regnier 2003]

Let be given a denumerable set of variables. We define by induction on k£ an
increasing family of sets (4;). We set 4g=( and Ay, is defined as follows.
Monotonicity: if t belongs to 4; then ¢ belongs to 4, .

Variable: if n€ N, x is a variable, iy,...,i, € N" =N\{0} and u,...,u, € 4, then

D.i],...,.inx ) (H], sy un)

belongs to A, . This term is identified with all the terms of the shape D
(Uo(1)s- - -»Ug(n)) € Ax+1 Where ¢ is a permutation on {1,...,n}.
Abstraction: if n€ N, x is a variable, uy,...,u, € A, and t € A;, then

i5(1) s fa(m) ™

Diixt- (uy,...,uy,)

belongs to Aii;. This term is identified with all the terms of the shape DjAx¢-
(Us(1)s - - - » Ug(m)) € Axy1 Where o is a permutation on {I,...,n}.
Application: if s € Ay and t € R(Ay), then

(s)t

belongs to 4, .

Setting n =0 in the first two clauses, and restricting application by the constraint
that 1 € A, C R(A;), one retrieves the usual definition of lambda-terms which shows
that differential terms are a superset of ordinary lambda-terms.

The permutative identification mentioned above will be called equality up to differ-
ential permutation. We also work up to a-conversion.
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Setting n =0 in the first two clauses, and restricting application by the constraint
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Syntax of dLC: [BEM 2010]

A syntax for the differential A-calculus by mutual induction:
[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

A° . st = x| Ar.s|sT |Ds-t

Differential A-terms:

A% T

0|s|s+T
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Syntax of dLC: [BEM 2010]

A syntax for the differential A-calculus by mutual induction:
[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms: variable

A° . st :mx.ﬂsT\Ds-t
}\ modulo a-renaming of z
0|s|s+T

Differential A-terms:

A% T

neutral element for + Q .
modulo commutativity

N\ = FreeCommutativeMonoid(A%)

Syntax: specified by operations and equations.

But which ones are allowed ? What is the limit ?
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Syntax of dLC: Our version

Which operations/equations are allowed to specify a syntax ?

A stand-alone presentation of differential A-terms:

Allow sums everywhere (not only in the right arg of application)

Differential A-terms:

AY:o8sT

x| x.S|ST|DS-T
0| S+ T

neutral element for + Q . L
modulo commutativity and associativity

)\Clizztz = Ez)\ib‘tz
(Zztz)u = Eitiu
D(Zztz) . (Eju]') = ZZZ]th " Uy

Macros in [BEM 2010]:
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Syntax of dLC: Conclusion

How can we compare these different versions ?
In which sense are they syntaxes ?

Which operations/equations are we allowed to specify in a syntax ?
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How can we compare these different versions ?
In which sense are they syntaxes ?

Which operations/equations are we allowed to specify in a syntax ?

What is a syntax ?
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What is a syntax?

Recursion

Signature

(initial model)

Category of Models \1 -
Substitution

generates a syntax = existence of the initial model
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Table of contents

1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion
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Table of contents

1. 1-Signatures and models based on monads and modules
* Substitution and monads

e 1-Signatures and their models

2. Equations

3. Recursion
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Substitution and monads

Example: differential A-calculus
A ST = x|Xz.S|ST|DS-T
0| S+ T
Free variable indexing:
dLC : X — {terms taking free variables in X'}

dLC(0) = {0, z.z,...}
dLC({x,y}) ={0, z.2,...,x,y,x +y,...}
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Substitution and monads

Example: differential A-calculus
A ST = x|Xz.S|ST|DS-T
0| S+ T
Free variable indexing:
dLC : X — {terms taking free variables in X'}

dLC(0) = {0, z.z,...}
dLC({x,y}) ={0, z.2,...,x,y,x +y,...}

Parallel substitution:
bind; : dLC(X) —  dLC(Y)

where f:X — dLC(Y)
t — tx = f(x)]

= (dLC, vary : X ¢ dLC(X) , bind) = monad on Set

monad morphism = mapping preserving variables and substitutions.
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Preview: Operations are module morphisms

+ commutes with substitution

(t+ u)[z = v.] =tz = v, + ufx — v,]

W

Categorical formulation

dLC x dLC supports  ~ " _, dLC x dLC is a module over dLC
dLC-substitution

+ commutes ~ s +:dLC X dLC — dLC'Is a
with substitution module morphism
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Building blocks for specifying operations

Essential constructions of modules over a monad R:

e Ritself

e M x N for any modules M and N

e.g. R x R: f: X — R(Y)

(tyu) [x = f(x)] = (tlx—1(x)], ulx — f(x)]) . .
disjoint union
(fresh variable

/

e M' = derivative of a module M: M'(X)=MX][{}).
used to model an operation binding a variable (Cf next slide).
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Syntactic operations are module morphisms

operations = module morphisms = maps commuting with substitution.

0: 1 — dLC app : dLC x dLC — dLC

+ :dLC x dLC — dLC abs : dALC’ — dLC

absy : dLC(X ] {¢}) — dLC(X)
¢ — Ao.t

13/ 38
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1-signatures and their models

A 1l-signature XY = functorial assignment: Example: (0,+)
R — Y(R) So+(R)=1][(R x R)
A model of X is a pair: dLC = model of ¥ ,
(R, p:X(R)— R) 0,+] : 1] [(dLC x dLC) — dLC

A model morphism m : (R,p) = (S,0) = monad morphism commuting

with the module morphism: E(R)L, R

z(ml l m

X(8) ——> 8§
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1-signatures and their models

A 1-signature X = functorial assignment: Example: (0,+)
~ R — Y(R) So+(R)=1][(R x R)
monad . module over R
A model of X is a pair: dLC = model of ¥ ,
SA%, p:2(R)— R) 0,+] : 1] [(dLC x dLC) — dLC
monad module morphism

A model morphism m : (R,p) = (S,0) = monad morphism commuting

with the module morphism: E(R)L, R

z(ml l m

X(8) ——> 8§
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Syntax

— Definition

Given a 1-signature %, its syntax is an initial object in its category

of models.

Question: Does the syntax exist for every 1-signature?

Answer: No.
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Syntax

— Definition

Given a 1-signature %, its syntax is an initial object in its category

of models.

Question: Does the syntax exist for every 1-signature?
Answer: No.

Counter-example: the 1-signature R+— #°R.

/

powerset endofunctor on Set
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Examples of 1-signatures generating syntax

(0,+) language:

Signature: R+— 1]] (R x R)

Model: (R, 0:1 2R, +:RxR—R)
Syntax: (B, 0:1—-B, +:BxB-— B)

lambda calculus:

Sighature: R— R'J] (R x R)
Model: (R, abs:R'— R, app:RXxXR— R)
Syntax: (A, abs: A" —= A, app:AxA— A)

Can we generalize this pattern?
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Initial semantics for algebraic 1-signatures

— Theorem [Hirschowitz & Maggesi 2007]
Syntax exists for any algebraic 1-signature, i.e. 1-signature built out

of derivatives, products, disjoint unions, and the 1-signature R — R.

Algebraic 1-signatures correspond to the binding signatures
described in [Fiore-Plotkin-Turi 1999]

(binding signature = lists of natural numbers specify n-ary

operations, possibly binding variables)

Question: Can we enforce some equations in the syntax ?

e.g. associativity and commutativity of + for the differential A-calculus.
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Quotients of algebraic 1-signatures

[AHLM CSL 2018]: notion of quotients of 1-signatures.

Theorem [AHLM CSL 2018]
Syntax exists for any "quotient" of algebraic 1-signature.

Examples:
e a commutative binary operation

e application of the differential A-calculus (original variant)
app : dLC x FreeCommutativeMonoid(dLC) — dLC

18/ 38



Quotients of algebraic 1-signatures

[AHLM CSL 2018]: notion of quotients of 1-signatures.

Theorem [AHLM CSL 2018]
Syntax exists for any "quotient" of algebraic 1-signature.

Examples:

a commutative binary operation

application of the differential A-calculus (original variant)
app : dLC x FreeCommutativeMonoid(dLC) — dLC

... but not enough for the differential A-calculus:

associativity of +

linearity of the operations
18/ 38



Table of contents

1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion
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Example: a commutative binary operation

Specification of a binary operation

1-Signature: R— R xR
Model: (R, +: RxR—R)

What is an appropriate notion of model for a commutative
binary operation ?
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Example: a commutative binary operation

Specification of a commutative binary operation

1-Signature: R— R xR
Model: (R, +: RxR—R) s.t. tt+u=u+17t (1)

What is an appropriate notion of model for a commutative

binary operation ?
Answer: a monad equipped with a commutative binary operation
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Example: a commutative binary operation

Specification of a commutative binary operation

1-Signature: R— R xR
Model: (R, +: RxR—R) s.t. tt+u=u+17t (1)

What is an appropriate notion of model for a commutative
binary operation ?
Answer: a monad equipped with a commutative binary operation

Equation (1) states an equality between R-module morphisms:

+

/—\
R xR

swap
20/ 38



Equations

Given a 1-signature X%, (e.g. binary operation: X(R)=R xR)

a Y-equation A = B is a functorial assignment: e.g. commutativity:
/RH(A(R)jB(R)) RH(RXR&R)
+oswap
model of X

parallel pair of module
morphisms over R

A 2-signature is a pair

(%, E)

o

1-signature set of 2-equations

model of a 2-signature (X%, E):

 a model R of
e s.t. V(A = B) € E, the two morphisms A(R) = B(R) are equal

21/ 38



Initial semantics for algebraic 2-signatures

Algebraic 2-signature: (Z E)
Y

/A A\ set of elementary

algebraic 1-signature _
2-equations

Theorem |
Syntax exists for any algebraic 2-signature.

Main instances of elementary 2-equations A = B:
« A = algebraic 1-signature e.g. A(R) =RxR
* B(R) =R
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Initial semantics for algebraic 2-signatures

Algebraic 2-signature: (Z E)
Y

/A A\ set of elementary

algebraic 1-signature _
2-equations

Theorem |
Syntax exists for any algebraic 2-signature.

Main instances of elementary 2-equations A = B:
« A = algebraic 1-signature e.g. A(R) =RxR
* B(R) =R

Sketch of the construction of the syntax:
Quotient the initial model R of 2 by the following relation:
x~yin R(X) iff forany model S of (X, E), i(x) =i(y)

N

initial ¥-model morphismi:R — S
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Example: A-calculus modulo Bn

The algebraic 2-signature (3rcgn, Ercgn) Of A-calculus modulo Bn:
Sropn (R) = Sio(R) = (R x R) [[ R

model of ¥ .= monad R with module morphisms:
app: R xR —R abs:R'— R
B-equation: (Ax.t) u = t[x — u] n-equation: t = Ax.(t x)

—
OR(tau)

Ercpn = { B-equation, n-equation }
23/ 38



Example: A-calculus modulo Bn

The algebraic 2-signature (3rcgn, Ercgn) Of A-calculus modulo Bn:
Sropn (R) = Sio(R) = (R x R) [[ R

model of ¥ .= monad R with module morphisms:

app: R xR —R abs:R'— R

B-equation: (Ax.t) u = t[x — u] n-equation: t = Ax.(t x)
—
OR(tau)
OR ldR
/\ A
R'<R R R R
~ o RxR_—_—_ —7 -~ o R 7
abs X R app Ru abs

Ercpn = { B-equation, n-equation }
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Example: fixpoint operator

— Definition [AHLM CSL 2018]
A fixpoint operator in a monad R is a module morphism fix: R' -+ R

s.t. foranyterm t e RX[[{¢}), fix(t) =tlo— f(t)]

Intuition:
e fix(t) := let rec ¢ = t in ¢

* [AHLM CSL 2018] Fixpoint operator in LCg, = fixpoint combinators

24/ 38



Example: fixpoint operator

— Definition [AHLM CSL 2018]
A fixpoint operator in a monad R is a module morphism fix: R' -+ R

s.t. foranyterm t e RX[[{¢}), fix(t) =tlo— f(t)]

Intuition:
e fix(t) := let rec ¢ = t in ¢

* [AHLM CSL 2018] Fixpoint operator in LCg, = fixpoint combinators

Algebraic 2-signature (X, Es,) Of a fixpoint operator:

( fix(t)

R//_\
t\/

tlo—>fix(t)]

Y (R) := R Erixy = 4 R
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Combining algebraic 2-signatures

Algebraic 2-signatures can be combined:

fixpoint operator A-calculus modulo Bn
(Eﬁm Eﬁx) + (ZLCBm ELCBF])

(Zax 11 Zrepn » EsxU Ercpn)

|

A-calculus modulo Bn with an explicit fixpoint operator

25/ 38



Example: free commutative monoid

Algebraic 2-signature (X,,,., E...,) for the free commutative monoid monad:
Yon(R):=1]] (R xR)

model of X, = monad R with module morphisms:

0:1 =R +:RxR—=R

26/ 38



Example: free commutative monoid

Algebraic 2-signature (X,,,., E...,) for the free commutative monoid monad:
Yon(R):=1]] (R xR)
model of X, = monad R with module morphisms:

0:1—R +:RxR—=R
3 elementary 2-equations:

(s+t)+u
s, t,u
s+(t+u) }%//////—_ﬁ\\\\>1]%
» t\/
S t
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Our target: dLC

Syntax of the differential A-calculus:

Differential A-terms

s,;t "= X
Ax.t
A-calculus
St
Ds -t
S+t
0 free commutative monoid

and (bi)linearity of operations with respect to +:
Ax.(s+t) = Ax.s + Ax.t
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Algebraic 1-signature for dLC

Syntax of the differential A-calculus:

Differential A-terms Corresponding 1-signature
s,t "= X (variables C R for any monad R)
Ax.t
¢ Yro(R) =R'[] (R xR)
S
Ds - R— R xR

s+t
0 } mon _1H(RXR)

28/ 38



Algebraic 1-signature for dLC

Syntax of the differential A-calculus:

Differential A-terms Corresponding 1-signature
s,t "= X (variables C R for any monad R)

Ax.t
<t Yc(R) =R'[] (R X R)
Ds - t R— R xR
S+t
0 Yoon(R)=1]] (R x R)

Resulting algebraic 1-signature: Yac(R) =2c(R) [T (R X R) [] Zron(R)
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Elementary equations for dLC

Commutative monoidal structure:

s+t=t+s
Emon S-|—(t—|—U.):(S—|—t)—|—U.
0+t=t

Linearity:

Ax.(s+t) = Ax.s + Ax.t
D(s+t)-u = Ds*u + Dt-u
Ds-(t+u) = Ds't 4+ Ds-u

RxR =R
RxRxR =R

R=R

RxR =R
RxRxR =R
RxRxR =R

29/ 38



n-ary fixpoint operator

Reminder: unary fixpoint operator in a monad R

RX[[{e}) — R(X) s.t. fors T =1
t — t
Intuition: ¢t = let rec ¢ = t in ¢

n-ary fixpoint operator:

. RX T {cs.. .00 — R(X o1 1y
Y 1 E{l,..,n}, ( H { 1y ’ ) (_ ) s.t Vit _ t_
ti)eet, =t T >t _ ¢
Op > Un
Intuition: {, = let rec ¢, = t; and .. and ¢, = t, in 9,
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n-ary fixpoint operator

Reminder: unary fixpoint operator in a monad R

RX[[{e}) — R(X) s.t. fors T =1
t — t
Intuition: ¢t = let rec ¢ = t in ¢

n-ary fixpoint operator:

. RX T {cs.. .00 — R(X o1 1y
Y 1 E{l,..,n}, ( H { 1y ’ ) (_ ) s.t Vit _ t_
ti)eet, =t T >t _ ¢
Op > Un
Intuition: {, = let rec ¢, = t; and .. and ¢, = t, in 9,

= specifiable as an algebraic 2-signature
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Fixpoint operators

Syntax with fixpoint operators:

e for each n, a n-ary operator:
let rec ¢; = t; and .. and ¢, = t, in <,

e compatibility between these operators [AHLM CSL 2018]
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Fixpoint operators

Syntax with fixpoint operators:
e for each n, a n-ary operator:

let rec ¢; = t; and .. and ¢, = t, in ¢,

e compatibility between these operators [AHLM CSL 2018]

o invariance under permutation:

let rec ¢, = t, let rec ¢; = t,[0; 4> <Osl
and ¢, = t, — and ¢, = t, [0, <> Oyl
in ¢, in <,
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Fixpoint operators

Syntax with fixpoint operators:
e for each n, a n-ary operator:

let rec ¢; = t; and .. and ¢, = t, in ¢,

e compatibility between these operators [AHLM CSL 2018]

o invariance under permutation:

let rec ¢, = t, let rec ¢; = t,[0; 4> <Osl
and ¢, = t, — and ¢, = t, [0, <> Oyl
in ¢, in <,

o invariance under repetition:

let rec ¢, = t let rec ¢; = t[0y— O]

and <>2 in <>1
in ¢,
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Fixpoint operators

Syntax with fixpoint operators:
e for each n, a n-ary operator:

let rec ¢; = t; and .. and ¢, = t, in ¢,

e compatibility between these operators [AHLM CSL 2018]

general form:

let rec o; = t;[0, = Oyl let rec ¢; = tyq)
and oy = ty[o; oyl and O, = ty(p
in <>u(j) in <>J

where u: {1,...,p} = {1,...,q}
t1,...,tg € R(X [[{o1,- .. 0p})
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Fixpoint operators

Syntax with fixpoint operators:
e for each n, a n-ary operator:

let rec ¢; = t; and .. and ¢, = t, in ¢,

e compatibility between these operators [AHLM CSL 2018]

general form:

let rec o; = t;[0, = Oyl let rec ¢; = tyq)
and oy = ty[o; oyl and O, = ty(p
in <>u(j) in <>J

where u: {1,...,p} = {1,...,q}
t1,...,tg € R(X [[{o1,- .. 0p})

= Expressible as elementary equations (R ’)* = R. 32/ 38
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Principle of recursion

Recursion on the syntax = Initiality in the category of models
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f:R—S
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Principle of recursion

Recursion on the syntax = Initiality in the category of models

Recipe for constructing "by recursion” a monad morphism:

f:R—S

)

initial model of a 2-signature (%, E)

1. Give a module morphism s: X(S) — S
= induces a 2-model (S, s)

2. Show that all the equations in E are satisfied for this model
= induces a model of (X, E)

Initiality of R = model morphism R —S = monad morphism R — S
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Example: Computing the set of free variables

A-calculus monad
AN ,— power set monad

fvy : LC(X) — P(X)
t — (exact) set of free variables of t
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Example: Computing the set of free variables

A-calculus monad
A ,—  bower set monad

fvy : LC(X) — P(X)
t — (exact) set of free variables of t

.. as a monad morphism fv: LC — P

LC = initial model of (2., ©) Yic(R)=(RxR)][]R
= make P a model of X,
JU: PxP—=P \o}: P =P
Initiality of LC = fv:LC — P

Equalities as a monad morphism:

fv(z) = {«} vtz »u@)]) = () fv(u(x))
Equalities as a model morphism: retv(t)
fv(app(t,u)) = fv(t) U fv(u) fv(abs(t)) = fv(t) \ {o}
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Example: Translating A-calculus with fixpoint

A-calculus modulo Bn compilation
L _ — A-calculus modulo Bn
+ fixpoint operator fix
fix(t) — 7
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fix(t) — 7
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LCp11ix = initial model of (Xycpn , Evcpn) + (Zix s Egy)

= make LCg, @ model of (Zrcpn s Eropn) + (Zhx» Esy):
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— Proposition [AHLM CSL 2018] |
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Example: Translating A-calculus with fixpoint

compilation
— A-calculus modulo Bn

fix(t) — app(Y, abs(t))

A-calculus modulo Bn
+ fixpoint operator fix

...as a monad morphism LGCg 5, — LCg,

o a chosen fixpoint
LCBn+ﬁX = |nitial model of (ZLCBn : ELCBQ) + (Zgx s Epy) P

combinator
= make LCg, @ model of (Zrcpn s Eropn) + (Zhx» Esy):
app, abs a fixpoint operatoryin LCgp
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Example: Translating A-calculus with fixpoint

compilation
— A-calculus modulo Bn

fix(t) — app(Y, abs(t))

A-calculus modulo Bn
+ fixpoint operator fix

...as a monad morphism LGCg 5, — LCg,

o a chosen fixpoint
LCBn+ﬁX = |nitial model of (ZLCBn : ELCBQ) + (Zgx s Epy) P

combinator
= make LCg, @ model of (Zrcpn s Eropn) + (Zhx» Esy):
app, abs a fixpoint operatoryin LCgp

Y : t— app(Y, abs(t))
— Proposition [AHLM CSL 2018] .
Fixpoint operators in LCy, are in one to one correspondance with

fixpoint combinators (i.e. A-terms Y's.t. ¢ (Yt) = Yt for any t).

Initiality of LCg,,,s, = monad morphism LCg,, s, — LCp,
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Example: Computing the size of a term

A-calculus monad s(z) =0

N s(Az.x) =1
t +— number of constructors in ¢ SUAL-E/Y) =

.. @as a monad morphisms: LC —» N
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t +— number of constructors in ¢ SUAL-E/Y) =

.. as aMmorphism s:LC— N

A N is not a monad !

Solution [CSL AHLM 2018]: continuation monad C(X) = N(Nx)
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1. define f:LC — C by recursion

2. deduce s:LC — N
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A-calculus monad s(z) =0

N s(Az.x) =1

SX . LC(X)% N .
t — number of constructors in t s((Az.z) y) =2

.. as aMmorphism s:LC— N

A N is not a monad !

Solution [CSL AHLM 2018]:

1. define f:LC — C by recursion
2 deduce s:LC — N assigns an arbitrary size to each variable
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Example: Computing the size of a term

A-calculus monad s(z) =0

N s(Az.x) =1

SX . LC(X)% N .
t — number of constructors in t s((Az.z) y) =2

.. as aMmorphism s:LC— N

A N is not a monad !

Solution [CSL AHLM 2018]:

1. define f:LC — C by recursion
2 deduce s:LC — N assigns an arbitrary size to each variable

Intuition: f:LC(X)— vy P : LC X/

g(z, u) = u(z)

X
continuation monad C(X) = N™)

s(t) = g(t, (x —0))
\ variables are of size 0 37/ 38



Conclusion

Summary of the talk:
 notion of 1-signature and models based on monads and modules
e 2-signature = 1-signature + set of equations

e algebraic 2-signatures generate a syntax, e.g. differential A-calculus.

Main theorems formalized in Coq using the UniMath library.

Future work:
e add the notion of reductions;

e extend our work to simply typed syntaxes.
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 notion of 1-signature and models based on monads and modules
e 2-signature = 1-signature + set of equations

e algebraic 2-signatures generate a syntax, e.g. differential A-calculus.

Main theorems formalized in Coq using the UniMath library.

Future work:
e add the notion of reductions;

e extend our work to simply typed syntaxes.

Thank you!
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