
TITRE

1 38/

 joint work with
 Benedikt Ahrens, André Hirschowitz, Marco Maggesi

Ambroise Lafont

Higher-order Arities, Signatures
and Equations via Modules

Keywords associated with syntax

2 38/

Syntax

Induction/Recursion

Model

Operation/Construction Arity/Signature

Substitution

This talk: give a discipline for specifying syntaxes

Motivating example: dLC

3 38/

syntax of dLC = differential λ-calculus [Ehrhard-Regnier 2003].

e.g. s+t = t+s

e.g. unary substitution

• explicitly involves equations

• specifically taylored: (not an instance of a general framework/scheme)

 inductive definition of a set + ad-hoc structure

Our proposal = a discipline for presenting syntaxes

• signature = operations + equations

• [Fiore-Hure 2010]: alternative approach, for simply typed syntaxes

 ⇒ our approach explicitly relies on monads and modules (untyped case).

Syntax of dLC: [Ehrhard-Regnier 2003]

4 38/

Syntax of dLC: [Ehrhard-Regnier 2003]

4 38/

as an operation: Λ × FreeCommutativeMonoid(Λ) → Λ

Syntax of dLC: [BEM 2010]

5 38/

A syntax for the differential λ-calculus by mutual induction:

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

Differential λ-terms:

Syntax of dLC: [BEM 2010]

5 38/

A syntax for the differential λ-calculus by mutual induction:

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

modulo α-renaming of x

variable

neutral element for +
modulo commutativity

Differential λ-terms:

Syntax of dLC: [BEM 2010]

5 38/

A syntax for the differential λ-calculus by mutual induction:

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

modulo α-renaming of x

variable

neutral element for +
modulo commutativity

Differential λ-terms:

Λd = FreeCommutativeMonoid(Λs)

Syntax of dLC: [BEM 2010]

5 38/

A syntax for the differential λ-calculus by mutual induction:

[Bucciarelli-Ehrhard-Manzonetto 2010]

Syntax: specified by operations and equations.

Simple terms:

modulo α-renaming of x

variable

neutral element for +
modulo commutativity

Differential λ-terms:

Λd = FreeCommutativeMonoid(Λs)

Syntax of dLC: [BEM 2010]

5 38/

A syntax for the differential λ-calculus by mutual induction:

[Bucciarelli-Ehrhard-Manzonetto 2010]

Syntax: specified by operations and equations.

But which ones are allowed ? What is the limit ?

Simple terms:

modulo α-renaming of x

variable

neutral element for +
modulo commutativity

Differential λ-terms:

Λd = FreeCommutativeMonoid(Λs)

Syntax of dLC: Our version

6 38/

Differential λ-terms:

Allow sums everywhere (not only in the right arg of application)

A stand-alone presentation of differential λ-terms:

| 0 | S + T

Which operations/equations are allowed to specify a syntax ?

S T
d S S T

modulo commutativity and associativity
neutral element for +

Macros in [BEM 2010]:

S,T

Syntax of dLC: Conclusion

7 38/

How can we compare these different versions ?

In which sense are they syntaxes ?

Which operations/equations are we allowed to specify in a syntax ?

Syntax of dLC: Conclusion

7 38/

How can we compare these different versions ?

In which sense are they syntaxes ?

Which operations/equations are we allowed to specify in a syntax ?

What is a syntax ?

What is a syntax?

8 38/

Syntax

Signature
= operations + equations

Category of Models

Recursion

Substitution

(initial model)

generates a syntax = existence of the initial model

Table of contents

9 38/

1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion

Table of contents

9 38/

1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion

 Substitution and monads

 1-Signatures and their models

●

●

Substitution and monads

10 38/

Free variable indexing:

Example: differential λ-calculus

| 0 | S + T
S T

d S S TS,T

Substitution and monads

10 38/

Parallel substitution:

Free variable indexing:

Example: differential λ-calculus

| 0 | S + T
S T

d S S TS,T

t ↦ t[x ↦ f(x)]

Substitution and monads

10 38/

Parallel substitution:

Free variable indexing:

⇒ (dLC, varX : X ⊂ dLC(X) , bind) = monad on Set

Example: differential λ-calculus

| 0 | S + T
S T

d S S TS,T

f : X → dLC(Y)wherebindf : dLC(X) → dLC(Y)
t ↦ t[x ↦ f(x)]

Substitution and monads

10 38/

Parallel substitution:

Free variable indexing:

⇒ (dLC, varX : X ⊂ dLC(X) , bind) = monad on Set

Example: differential λ-calculus

| 0 | S + T
S T

d S S TS,T

f : X → dLC(Y)wherebindf : dLC(X) → dLC(Y)
t ↦ t[x ↦ f(x)]

monad morphism = mapping preserving variables and substitutions.

Preview: Operations are module morphisms

11 38/

+ commutes with substitution

Categorical formulation

+ commutes
with substitution

+ : dLC × dLC → dLC is a

module morphism

dLC × dLC supports
dLC-substitution

dLC × dLC is a module over dLC

Building blocks for specifying operations

12 38/

Essential constructions of modules over a monad R:

• R itself

• M × N for any modules M and N

 M' = derivative of a module M: M '(X) = M(X ∐ { ⋄ }).

f : X → R(Y)e.g. R × R:

(t,u)[x ↦ f(x)] := (t[x↦f(x)], u[x ↦ f(x)])

 used to model an operation binding a variable (Cf next slide).

●●

disjoint union
fresh variable

Syntactic operations are module morphisms

13 38/

operations = module morphisms = maps commuting with substitution.

app : dLC × dLC → dLC

+ : dLC × dLC → dLC

0 : 1 → dLC

abs : dLC' → dLC

absX : dLC(X ∐ {⋄}) → dLC(X)
 t ↦ λ⋄.t

Syntactic operations are module morphisms

13 38/

operations = module morphisms = maps commuting with substitution.

Combining operations into a single one using disjoint union

app : dLC × dLC → dLC

[app, abs] : (dLC × dLC) ∐ dLC' → dLC

[0, +] : 1 ∐ (dLC × dLC) → dLC

+ : dLC × dLC → dLC

0 : 1 → dLC

abs : dLC' → dLC

absX : dLC(X ∐ {⋄}) → dLC(X)
 t ↦ λ⋄.t

Syntactic operations are module morphisms

13 38/

operations = module morphisms = maps commuting with substitution.

Combining operations into a single one using disjoint union

app : dLC × dLC → dLC

[app, abs] : (dLC × dLC) ∐ dLC' → dLC

[0, +] : 1 ∐ (dLC × dLC) → dLC

[app, abs, 0, +] : (dLC × dLC) ∐ dLC' ∐ 1 ∐ (dLC × dLC) → dLC

+ : dLC × dLC → dLC

0 : 1 → dLC

abs : dLC' → dLC

absX : dLC(X ∐ {⋄}) → dLC(X)
 t ↦ λ⋄.t

1-signatures and their models

14 38/

A 1-signature Σ = functorial assignment:

A model of Σ is a pair:

Example: (0,+)

dLC = model of Σ0,+

Σ(R)

Σ(S)

Σ(m)

R

m

ρ

σ
S

A model morphism m : (R,ρ) → (S,σ) = monad morphism commuting

with the module morphism:

1-signatures and their models

14 38/

A 1-signature Σ = functorial assignment:

monad

A model of Σ is a pair:

Example: (0,+)

dLC = model of Σ0,+

Σ(R)

Σ(S)

Σ(m)

R

m

ρ

σ
S

A model morphism m : (R,ρ) → (S,σ) = monad morphism commuting

with the module morphism:

1-signatures and their models

14 38/

A 1-signature Σ = functorial assignment:

monad module over R

A model of Σ is a pair:

Example: (0,+)

dLC = model of Σ0,+

Σ(R)

Σ(S)

Σ(m)

R

m

ρ

σ
S

A model morphism m : (R,ρ) → (S,σ) = monad morphism commuting

with the module morphism:

1-signatures and their models

14 38/

A 1-signature Σ = functorial assignment:

monad

monad

module over R

A model of Σ is a pair:

Example: (0,+)

dLC = model of Σ0,+

Σ(R)

Σ(S)

Σ(m)

R

m

ρ

σ
S

A model morphism m : (R,ρ) → (S,σ) = monad morphism commuting

with the module morphism:

1-signatures and their models

14 38/

A 1-signature Σ = functorial assignment:

monad

monad

module over R

module morphism

A model of Σ is a pair:

Example: (0,+)

dLC = model of Σ0,+

Σ(R)

Σ(S)

Σ(m)

R

m

ρ

σ
S

A model morphism m : (R,ρ) → (S,σ) = monad morphism commuting

with the module morphism:

Syntax

15 38/

Question: Does the syntax exist for every 1-signature?

Answer: No.

Given a 1-signature Σ, its syntax is an initial object in its category

of models.

Definition

Syntax

15 38/

Question: Does the syntax exist for every 1-signature?

Answer: No.

Counter-example: the 1-signature R ↦ 𝒫 ∘R.

powerset endofunctor on Set

Given a 1-signature Σ, its syntax is an initial object in its category

of models.

Definition

Examples of 1-signatures generating syntax

16 38/

 (0,+) language:

 lambda calculus:

R ↦ 1 ∐ (R × R)

R ↦ R' ∐ (R × R)

Signature:

Signature:

Model:

Model:

Syntax:

Syntax:

 (R , 0 : 1 → R , + : R × R → R)

 (R , abs : R' → R , app : R × R → R)

 (Λ , abs : Λ' → Λ , app : Λ × Λ → Λ)

 (B , 0 : 1 → B , + : B × B → B)

●

●

Can we generalize this pattern?

Initial semantics for algebraic 1-signatures

17 38/

Algebraic 1-signatures correspond to the binding signatures

described in [Fiore-Plotkin-Turi 1999]

Question: Can we enforce some equations in the syntax ?

 e.g. associativity and commutativity of + for the differential λ-calculus.

(binding signature = lists of natural numbers specify n-ary

 operations, possibly binding variables)

Theorem [Hirschowitz & Maggesi 2007]
Syntax exists for any algebraic 1-signature, i.e. 1-signature built out

of derivatives, products, disjoint unions, and the 1-signature R ↦ R.

Quotients of algebraic 1-signatures

18 38/

Theorem [AHLM CSL 2018]
Syntax exists for any "quotient" of algebraic 1-signature.

[AHLM CSL 2018]: notion of quotients of 1-signatures.

 Examples:

 • a commutative binary operation

 • application of the differential λ-calculus (original variant)

app : dLC × FreeCommutativeMonoid(dLC) → dLC

Quotients of algebraic 1-signatures

18 38/

 ... but not enough for the differential λ-calculus:

 • associativity of +

 • linearity of the operations

Theorem [AHLM CSL 2018]
Syntax exists for any "quotient" of algebraic 1-signature.

[AHLM CSL 2018]: notion of quotients of 1-signatures.

 Examples:

 • a commutative binary operation

 • application of the differential λ-calculus (original variant)

app : dLC × FreeCommutativeMonoid(dLC) → dLC

Table of contents

19 38/

1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion

Example: a commutative binary operation

20 38/

Specification of a binary operation

What is an appropriate notion of model for a commutative

binary operation ?

R ↦ R × R 1-Signature:

Model: (R , + : R × R → R)

Example: a commutative binary operation

20 38/

Specification of a commutative binary operation

What is an appropriate notion of model for a commutative

binary operation ?

Answer: a monad equipped with a commutative binary operation

R ↦ R × R 1-Signature:

Model: s.t. (1) (R , + : R × R → R)

Example: a commutative binary operation

20 38/

Specification of a commutative binary operation

What is an appropriate notion of model for a commutative

binary operation ?

Answer: a monad equipped with a commutative binary operation

Equation (1) states an equality between R-module morphisms:

R ↦ R × R 1-Signature:

Model: s.t. (1) (R , + : R × R → R)

R × R R
R × R

+

swap +

Equations

21 38/

Given a 1-signature Σ,

a Σ-equation A ⇉ B is a functorial assignment:

A 2-signature is a pair

model of a 2-signature (Σ, E):

• a model R of Σ

• s.t. ∀ (A ⇉ B) ∈ E, the two morphisms A(R) ⇉ B(R) are equal

model of Σ parallel pair of module
morphisms over R

(Σ, E)

1-signature set of Σ-equations

(e.g. binary operation:

e.g. commutativity:

Σ(R) = R × R)

Initial semantics for algebraic 2-signatures

22 38/

Main instances of elementary Σ-equations A ⇉ B:

• A = algebraic 1-signature e.g. A(R) = R×R

• B(R) = R

Algebraic 2-signature: (Σ, E)

algebraic 1-signature
set of elementary

 Σ-equations

Theorem
Syntax exists for any algebraic 2-signature.

Initial semantics for algebraic 2-signatures

22 38/

Main instances of elementary Σ-equations A ⇉ B:

• A = algebraic 1-signature e.g. A(R) = R×R

• B(R) = R

Algebraic 2-signature: (Σ, E)

algebraic 1-signature
set of elementary

 Σ-equations

Theorem
Syntax exists for any algebraic 2-signature.

Sketch of the construction of the syntax:

Quotient the initial model R of Σ by the following relation:

 x ~ y in R(X) iff for any model S of (Σ, E) , i(x) = i(y)

initial Σ-model morphism i : R → S

Example: λ-calculus modulo βη

23 38/

The algebraic 2-signature (ΣLCβη, ELCβη) of λ-calculus modulo βη:

ELCβη = { β-equation, η-equation }

ΣLCβη (R) := ΣLC(R) = (R × R) ∐ R'

model of Σ
LC = monad R with module morphisms:

β-equation: (λx.t) u = t[x ↦ u] η-equation: t = λx.(t x)

app : R × R → R abs : R' → R
{

σR(t,u)

Example: λ-calculus modulo βη

23 38/

R'×R R
R × R

abs × R app

σR

R R
R'

Rι₁ abs

idR

The algebraic 2-signature (ΣLCβη, ELCβη) of λ-calculus modulo βη:

ELCβη = { β-equation, η-equation }

ΣLCβη (R) := ΣLC(R) = (R × R) ∐ R'

model of Σ
LC = monad R with module morphisms:

β-equation: (λx.t) u = t[x ↦ u] η-equation: t = λx.(t x)

app : R × R → R abs : R' → R
{

σR(t,u)

Example: fixpoint operator

24 38/

A fixpoint operator in a monad R is a module morphism fix: R' → R

s.t. for any term t ∈ R(X ∐ { ⋄ }), fix(t) = t[⋄ ↦ f(t)]

Definition [AHLM CSL 2018]

[AHLM CSL 2018] Fixpoint operator in LCβη ≃ fixpoint combinators

Intuition:

•

•

:= let rec ⋄ = t in ⋄

Example: fixpoint operator

24 38/

A fixpoint operator in a monad R is a module morphism fix: R' → R

s.t. for any term t ∈ R(X ∐ { ⋄ }), fix(t) = t[⋄ ↦ f(t)]

Definition [AHLM CSL 2018]

Algebraic 2-signature (Σfix, Efix) of a fixpoint operator:

[AHLM CSL 2018] Fixpoint operator in LCβη ≃ fixpoint combinators

Σfix (R) := R'

Intuition:

•

•

:= let rec ⋄ = t in ⋄

Combining algebraic 2-signatures

25 38/

Algebraic 2-signatures can be combined:

(Σfix, Efix)

(Σfix ∐ ΣLCβη , Efix ∪ ELCβη)

fixpoint operator

(ΣLCβη, ELCβη)

λ-calculus modulo βη

λ-calculus modulo βη with an explicit fixpoint operator

+

=

Example: free commutative monoid

26 38/

Algebraic 2-signature (Σmon, Emon) for the free commutative monoid monad:

model of Σmon = monad R with module morphisms:

Σmon(R) := 1 ∐ (R × R)

0 : 1 → R + : R × R → R

Example: free commutative monoid

26 38/

Algebraic 2-signature (Σmon, Emon) for the free commutative monoid monad:

model of Σmon = monad R with module morphisms:

3 elementary Σ-equations:

Σmon(R) := 1 ∐ (R × R)

0 : 1 → R + : R × R → R

Our target: dLC

27 38/

Syntax of the differential λ-calculus:

and (bi)linearity of operations with respect to +:

λ-calculus

free commutative monoid

λx.(s+t) = λx.s + λx.t …

Differential λ-terms

::= x

| s t

| λx.t

| Ds · t

| s + t

s,t

| 0 }

}

Algebraic 1-signature for dLC

28 38/

Syntax of the differential λ-calculus:

ΣLC(R) = R' ∐ (R × R)

(variables ⊂ R for any monad R)

Corresponding 1-signature

R ↦ R × R

Σmon(R) = 1 ∐ (R × R)

Differential λ-terms

::= x

| s t

| λx.t

| Ds · t

| s + t

s,t

| 0 }

}

Algebraic 1-signature for dLC

28 38/

Syntax of the differential λ-calculus:

ΣLC(R) = R' ∐ (R × R)

(variables ⊂ R for any monad R)

Corresponding 1-signature

Resulting algebraic 1-signature: ΣdLC(R) = ΣLC(R) ∐ (R × R) ∐ Σmon(R)

R ↦ R × R

Σmon(R) = 1 ∐ (R × R)

Differential λ-terms

::= x

| s t

| λx.t

| Ds · t

| s + t

s,t

| 0 }

}

Elementary equations for dLC

29 38/

R×R ⇉ R

R×R×R ⇉ R

R×R ⇉ R

R×R×R ⇉ R

R×R×R ⇉ R

R ⇉ R

Emon

Commutative monoidal structure:

Linearity:

s + t = t + s

s + (t + u) = (s + t) + u

0 + t = t

λx.(s+t) = λx.s + λx.t

D(s+t)·u = Ds·u + Dt·u

Ds·(t+u) = Ds·t + Ds·u

…

}

n-ary fixpoint operator

30 38/

Reminder: unary fixpoint operator in a monad R

n-ary fixpoint operator:

Intuition:

Intuition:

s.t.

s.t. ∀ i,

t

t1,...,tn

R(X ∐ {⋄})

R(X ∐ {⋄1,…,⋄n})n

R(X)

R(X)

↦

↦

:=

:=

→

→ ∀ i ∈{1,..,n},

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i

 let rec ⋄ = t in ⋄

n-ary fixpoint operator

30 38/

Reminder: unary fixpoint operator in a monad R

n-ary fixpoint operator:

⇒ specifiable as an algebraic 2-signature

Intuition:

Intuition:

s.t.

s.t. ∀ i,

t

t1,...,tn

R(X ∐ {⋄})

R(X ∐ {⋄1,…,⋄n})n

R(X)

R(X)

↦

↦

:=

:=

→

→ ∀ i ∈{1,..,n},

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i

 let rec ⋄ = t in ⋄

Fixpoint operators

31 38/

Syntax with fixpoint operators:

• for each n, a n-ary operator:

• compatibility between these operators [AHLM CSL 2018]

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i

Fixpoint operators

31 38/

Syntax with fixpoint operators:

• for each n, a n-ary operator:

• compatibility between these operators [AHLM CSL 2018]

∘ invariance under permutation:

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i

 let rec ⋄1 = t1

 and ⋄2 = t2

 in ⋄1

 let rec ⋄1 = t2[⋄1 ↔ ⋄2]

 and ⋄2 = t1[⋄1 ↔ ⋄2]

 in ⋄2

=

Fixpoint operators

31 38/

Syntax with fixpoint operators:

• for each n, a n-ary operator:

• compatibility between these operators [AHLM CSL 2018]

∘ invariance under permutation:

∘ invariance under repetition:

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i

 let rec ⋄1 = t1

 and ⋄2 = t2

 in ⋄1

 let rec ⋄1 = t

 and ⋄2 = t

 in ⋄1

 let rec ⋄1 = t2[⋄1 ↔ ⋄2]

 and ⋄2 = t1[⋄1 ↔ ⋄2]

 in ⋄2

 let rec ⋄1 = t[⋄2 ↦ ⋄1]

 in ⋄1

=

=

Fixpoint operators

32 38/

Syntax with fixpoint operators:

• for each n, a n-ary operator:

• compatibility between these operators [AHLM CSL 2018]

general form:

where

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i

let rec ⋄1 = t1[⋄
i

↦ ⋄u(i)]

 …

 and ⋄q = tq[⋄i ↦ ⋄u(i)]

in ⋄u(j)

let rec ⋄1 = tu(1)
 …

 and ⋄p = tu(p)
in ⋄j

=

Fixpoint operators

32 38/

Syntax with fixpoint operators:

• for each n, a n-ary operator:

• compatibility between these operators [AHLM CSL 2018]

general form:

where

⇒ Expressible as elementary equations (R'…')q ⇉ R.

 let rec ⋄1 = t1 and .. and ⋄n = tn in ⋄i

let rec ⋄1 = t1[⋄
i

↦ ⋄u(i)]

 …

 and ⋄q = tq[⋄i ↦ ⋄u(i)]

in ⋄u(j)

let rec ⋄1 = tu(1)
 …

 and ⋄p = tu(p)
in ⋄j

=

Table of contents

33 38/

1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion

Principle of recursion

34 38/

Recursion on the syntax ≃ Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)

Principle of recursion

34 38/

Recursion on the syntax ≃ Initiality in the category of models

1. Give a module morphism s : Σ(S) → S

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)

Principle of recursion

34 38/

Recursion on the syntax ≃ Initiality in the category of models

⇒ induces a Σ-model (S , s)

1. Give a module morphism s : Σ(S) → S

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)

Principle of recursion

34 38/

Recursion on the syntax ≃ Initiality in the category of models

⇒ induces a Σ-model (S , s)

1. Give a module morphism s : Σ(S) → S

2. Show that all the equations in E are satisfied for this model

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)

Principle of recursion

34 38/

Recursion on the syntax ≃ Initiality in the category of models

⇒ induces a Σ-model (S , s)

⇒ induces a model of (Σ , E)

1. Give a module morphism s : Σ(S) → S

2. Show that all the equations in E are satisfied for this model

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)

Principle of recursion

34 38/

Recursion on the syntax ≃ Initiality in the category of models

⇒ induces a Σ-model (S , s)

⇒ induces a model of (Σ , E)

1. Give a module morphism s : Σ(S) → S

2. Show that all the equations in E are satisfied for this model

monad morphism R → S⇒Initiality of R ⇒ model morphism R → S

Recipe for constructing "by recursion" a monad morphism:

f : R → S

initial model of a 2-signature (Σ, E)

Example: Computing the set of free variables

35 38/

λ-calculus monad
power set monad

t ↦ (exact) set of free variables of t
fvX : LC(X) → P(X)

Example: Computing the set of free variables

35 38/

λ-calculus monad

LC = initial model of (ΣLC , ∅)

power set monad

ΣLC(R) = (R × R) ∐ R'

.. as a monad morphism fv : LC → P

t ↦ (exact) set of free variables of t
fvX : LC(X) → P(X)

⇒ make P a model of ΣLC

∪ : P × P → P _\{ ⋄ } : P' → P

Example: Computing the set of free variables

35 38/

λ-calculus monad

LC = initial model of (ΣLC , ∅)

power set monad

ΣLC(R) = (R × R) ∐ R'

.. as a monad morphism fv : LC → P

t ↦ (exact) set of free variables of t
fvX : LC(X) → P(X)

⇒ make P a model of ΣLC

∪ : P × P → P _\{ ⋄ } : P' → P

Initiality of LC ⇒ fv : LC → P

Example: Computing the set of free variables

35 38/

λ-calculus monad

LC = initial model of (ΣLC , ∅)

power set monad

ΣLC(R) = (R × R) ∐ R'

fv(x) = {x}

fv(app(t,u)) = fv(t) ∪ fv(u) fv(abs(t)) = fv(t) \ {⋄}

.. as a monad morphism fv : LC → P

t ↦ (exact) set of free variables of t
fvX : LC(X) → P(X)

⇒ make P a model of ΣLC

∪ : P × P → P _\{ ⋄ } : P' → P

Initiality of LC ⇒ fv : LC → P

Equalities as a monad morphism:

Equalities as a model morphism:

Example: Translating λ-calculus with fixpoint

36 38/

 λ-calculus modulo βη

+ fixpoint operator fix
λ-calculus modulo βη

compilation

fix(t) ↦ ?

⇒

Example: Translating λ-calculus with fixpoint

36 38/

 λ-calculus modulo βη

+ fixpoint operator fix

LCβη+fix = initial model of (ΣLCβη , ELCβη) + (Σfix , Efix)

λ-calculus modulo βη
compilation

fix(t) ↦ ?

...as a monad morphism

⇒ make LCβη a model of (ΣLCβη , ELCβη) + (Σfix , Efix):

⇒

LCβη+fix → LCβη

Example: Translating λ-calculus with fixpoint

36 38/

 λ-calculus modulo βη

+ fixpoint operator fix

LCβη+fix = initial model of (ΣLCβη , ELCβη) + (Σfix , Efix)

λ-calculus modulo βη
compilation

fix(t) ↦ ?

...as a monad morphism

⇒ make LCβη a model of (ΣLCβη , ELCβη) + (Σfix , Efix):

⇒

LCβη+fix → LCβη

a fixpoint operator in LCβηapp, abs

Example: Translating λ-calculus with fixpoint

36 38/

 λ-calculus modulo βη

+ fixpoint operator fix

LCβη+fix = initial model of (ΣLCβη , ELCβη) + (Σfix , Efix)

λ-calculus modulo βη
compilation

fix(t) ↦ ?

...as a monad morphism

⇒ make LCβη a model of (ΣLCβη , ELCβη) + (Σfix , Efix):

⇒

LCβη+fix → LCβη

a fixpoint operator in LCβηapp, abs

Fixpoint operators in LCβη are in one to one correspondance with

fixpoint combinators (i.e. λ-terms Y s.t. t (Y t) = Y t for any t).

Proposition [AHLM CSL 2018]

Example: Translating λ-calculus with fixpoint

36 38/

 λ-calculus modulo βη

+ fixpoint operator fix

LCβη+fix = initial model of (ΣLCβη , ELCβη) + (Σfix , Efix)

λ-calculus modulo βη
compilation

a chosen fixpoint
combinator

fix(t) ↦ app(Y, abs(t))

...as a monad morphism

⇒ make LCβη a model of (ΣLCβη , ELCβη) + (Σfix , Efix):

⇒

LCβη+fix → LCβη

Ŷ :
a fixpoint operator in LCβηapp, abs

t ↦ app(Y, abs(t))

Fixpoint operators in LCβη are in one to one correspondance with

fixpoint combinators (i.e. λ-terms Y s.t. t (Y t) = Y t for any t).

Proposition [AHLM CSL 2018]

Example: Translating λ-calculus with fixpoint

36 38/

 λ-calculus modulo βη

+ fixpoint operator fix

LCβη+fix = initial model of (ΣLCβη , ELCβη) + (Σfix , Efix)

λ-calculus modulo βη
compilation

a chosen fixpoint
combinator

fix(t) ↦ app(Y, abs(t))

...as a monad morphism

⇒ make LCβη a model of (ΣLCβη , ELCβη) + (Σfix , Efix):

⇒

Initiality of LCβη+fix ⇒ monad morphism LCβη+fix → LCβη

LCβη+fix → LCβη

Ŷ :
a fixpoint operator in LCβηapp, abs

t ↦ app(Y, abs(t))

Fixpoint operators in LCβη are in one to one correspondance with

fixpoint combinators (i.e. λ-terms Y s.t. t (Y t) = Y t for any t).

Proposition [AHLM CSL 2018]

Example: Computing the size of a term

37 38/

s(x) = 0

s(λx.x) = 1

s((λx.x) y) = 2

λ-calculus monad

t ↦ number of constructors in t
sX : LC(X) → N

.. as a monad morphism s : LC → N

Example: Computing the size of a term

37 38/

s(x) = 0

s(λx.x) = 1

s((λx.x) y) = 2

ℕ is not a monad !

λ-calculus monad

t ↦ number of constructors in t
sX : LC(X) → N

.. as a monad morphism s : LC → N

Example: Computing the size of a term

37 38/

s(x) = 0

s(λx.x) = 1

s((λx.x) y) = 2

Solution [CSL AHLM 2018]:

1. define f : LC → C by recursion

2. deduce s : LC → ℕ

ℕ is not a monad !

continuation monad C(X) = ℕ(ℕ
X

)

λ-calculus monad

t ↦ number of constructors in t
sX : LC(X) → N

.. as a monad morphism s : LC → N

Example: Computing the size of a term

37 38/

s(x) = 0

s(λx.x) = 1

s((λx.x) y) = 2

Solution [CSL AHLM 2018]:

1. define f : LC → C by recursion

2. deduce s : LC → ℕ

Intuition: fX : LC(X) → ℕ(ℕ
X

) g : LC(X)×ℕX → ℕ

ℕ is not a monad !

g(x, u) = u(x)

assigns an arbitrary size to each variable

continuation monad C(X) = ℕ(ℕ
X

)

λ-calculus monad

t ↦ number of constructors in t
sX : LC(X) → N

.. as a monad morphism s : LC → N

uncurry
⇒

Example: Computing the size of a term

37 38/

s(x) = 0

s(λx.x) = 1

s((λx.x) y) = 2

Solution [CSL AHLM 2018]:

1. define f : LC → C by recursion

2. deduce s : LC → ℕ

Intuition: fX : LC(X) → ℕ(ℕ
X

) g : LC(X)×ℕX → ℕ

ℕ is not a monad !

s(t) = g(t, (x ↦ 0))

g(x, u) = u(x)

assigns an arbitrary size to each variable

continuation monad C(X) = ℕ(ℕ
X

)

variables are of size 0

λ-calculus monad

t ↦ number of constructors in t
sX : LC(X) → N

.. as a monad morphism s : LC → N

uncurry
⇒

Conclusion

38 38/

Future work:

 add the notion of reductions;

 extend our work to simply typed syntaxes.

Main theorems formalized in Coq using the UniMath library.

Summary of the talk:

 notion of 1-signature and models based on monads and modules

 2-signature = 1-signature + set of equations

 algebraic 2-signatures generate a syntax, e.g. differential λ-calculus.

Conclusion

38 38/

Future work:

 add the notion of reductions;

 extend our work to simply typed syntaxes.

Main theorems formalized in Coq using the UniMath library.

Summary of the talk:

 notion of 1-signature and models based on monads and modules

 2-signature = 1-signature + set of equations

 algebraic 2-signatures generate a syntax, e.g. differential λ-calculus.

Thank you!

