
Geometric semantics for asynchronous
computability

Jérémy Ledent
joint work with Éric Goubault and Samuel Mimram

École Polytechnique

CHoCoLa
June 6, 2019

1 / 28

A topological approach for
asynchronous computability

1 / 28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

I They must attack simultaneously.
I They communicate by sending messengers.
I Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

A B

2 / 28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

I They must attack simultaneously.

I They communicate by sending messengers.
I Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

A B

2 / 28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

I They must attack simultaneously.
I They communicate by sending messengers.

I Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

A B

2 / 28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

I They must attack simultaneously.
I They communicate by sending messengers.
I Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

A B

2 / 28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

I They must attack simultaneously.
I They communicate by sending messengers.
I Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

A B

2 / 28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

I They must attack simultaneously.
I They communicate by sending messengers.
I Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

A B

Attack
at dawn

2 / 28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

I They must attack simultaneously.
I They communicate by sending messengers.
I Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

A B

Ack

2 / 28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

I They must attack simultaneously.
I They communicate by sending messengers.
I Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

A B

Ack2

2 / 28

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Prove that a given concurrent task is unsolvable in a given
computational model.

I Shared memory or message-passing
I Communication primitives: read/write, test&set, CAS...
I Type of errors: crashes, lost messages, byzantine failures...

I Tasks: Consensus, weak symmetry breaking, renaming...

Remark: Usually, impossibility results come from a lack of
information about the system, not from a lack of computing power.

3 / 28

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Prove that a given concurrent task is unsolvable in a given
computational model.

I Shared memory or message-passing
I Communication primitives: read/write, test&set, CAS...
I Type of errors: crashes, lost messages, byzantine failures...

I Tasks: Consensus, weak symmetry breaking, renaming...

Remark: Usually, impossibility results come from a lack of
information about the system, not from a lack of computing power.

3 / 28

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Prove that a given concurrent task is unsolvable in a given
computational model.

I Shared memory or message-passing
I Communication primitives: read/write, test&set, CAS...
I Type of errors: crashes, lost messages, byzantine failures...
I Tasks: Consensus, weak symmetry breaking, renaming...

Remark: Usually, impossibility results come from a lack of
information about the system, not from a lack of computing power.

3 / 28

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Prove that a given concurrent task is unsolvable in a given
computational model.

I Shared memory or message-passing
I Communication primitives: read/write, test&set, CAS...
I Type of errors: crashes, lost messages, byzantine failures...
I Tasks: Consensus, weak symmetry breaking, renaming...

Remark: Usually, impossibility results come from a lack of
information about the system, not from a lack of computing power.

3 / 28

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Prove that a given concurrent task is unsolvable in a given
computational model.

I Shared memory or message-passing
I Communication primitives: read/write, test&set, CAS...
I Type of errors: crashes, lost messages, byzantine failures...
I Tasks: Consensus, weak symmetry breaking, renaming...

Remark: Usually, impossibility results come from a lack of
information about the system, not from a lack of computing power.

3 / 28

A topological approach

Herlihy and Shavit, 1999
2004 Gödel prize

Herlihy, Kozlov, Rajsbaum,
2013

4 / 28

A topological approach

Herlihy and Shavit, 1999
2004 Gödel prize

Herlihy, Kozlov, Rajsbaum,
2013

4 / 28

Simplicial complexes

Definition
An (abstract) simplicial complex is a pair 〈V, S〉 where V is a set
of vertices and S is a downward-closed family of subsets of V
called simplices (i.e., X ∈ S and Y ⊆ X implies Y ∈ S).

5 / 28

Simplicial complexes

Definition
An (abstract) simplicial complex is a pair 〈V, S〉 where V is a set
of vertices and S is a downward-closed family of subsets of V
called simplices (i.e., X ∈ S and Y ⊆ X implies Y ∈ S).

5 / 28

Simplicial complexes

Definition
An (abstract) simplicial complex is a pair 〈V, S〉 where V is a set
of vertices and S is a downward-closed family of subsets of V
called simplices (i.e., X ∈ S and Y ⊆ X implies Y ∈ S).

5 / 28

Simplicial complexes

Definition
An (abstract) simplicial complex is a pair 〈V, S〉 where V is a set
of vertices and S is a downward-closed family of subsets of V
called simplices (i.e., X ∈ S and Y ⊆ X implies Y ∈ S).

5 / 28

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

6 / 28

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

6 / 28

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

1

6 / 28

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

1

0

0

6 / 28

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

1

0

0

6 / 28

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

1

0

0

6 / 28

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

1

0

0

6 / 28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i], but everyone can read it.

When Pi calls immediate_snapshot(x):
I It writes its input value x in its own cell A[i].
I Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,Q,R with inputs 1, 2, 3.

A =

P ’s view: 1 2 3
Q’s view: 2 3
R’s view: 2 3

7 / 28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i], but everyone can read it.

When Pi calls immediate_snapshot(x):
I It writes its input value x in its own cell A[i].
I Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,Q,R with inputs 1, 2, 3.

A =

P ’s view: 1 2 3
Q’s view: 2 3
R’s view: 2 3

7 / 28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i], but everyone can read it.

When Pi calls immediate_snapshot(x):
I It writes its input value x in its own cell A[i].
I Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,Q,R with inputs 1, 2, 3.

A = 2

P ’s view: 1 2 3
Q’s view: 2 3
R’s view: 2 3

7 / 28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i], but everyone can read it.

When Pi calls immediate_snapshot(x):
I It writes its input value x in its own cell A[i].
I Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,Q,R with inputs 1, 2, 3.

A = 2 3

P ’s view: 1 2 3
Q’s view: 2 3
R’s view: 2 3

7 / 28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i], but everyone can read it.

When Pi calls immediate_snapshot(x):
I It writes its input value x in its own cell A[i].
I Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,Q,R with inputs 1, 2, 3.

A = 2 3

P ’s view: 1 2 3
Q’s view: 2 3

R’s view: 2 3
7 / 28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i], but everyone can read it.

When Pi calls immediate_snapshot(x):
I It writes its input value x in its own cell A[i].
I Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,Q,R with inputs 1, 2, 3.

A = 2 3

P ’s view: 1 2 3

Q’s view: 2 3
R’s view: 2 3

7 / 28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i], but everyone can read it.

When Pi calls immediate_snapshot(x):
I It writes its input value x in its own cell A[i].
I Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,Q,R with inputs 1, 2, 3.

A = 1 2 3

P ’s view: 1 2 3

Q’s view: 2 3
R’s view: 2 3

7 / 28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i], but everyone can read it.

When Pi calls immediate_snapshot(x):
I It writes its input value x in its own cell A[i].
I Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,Q,R with inputs 1, 2, 3.

A = 1 2 3
P ’s view: 1 2 3
Q’s view: 2 3
R’s view: 2 3

7 / 28

Protocol complex for immediate snapshot

1 2

3 Immediate Snapshot

Input Complex

Protocol Complex

1 2

3

1 21 2

1 3

1 3

2 3

2 31 2 3

8 / 28

Protocol complex for immediate snapshot

1 2

3 Immediate Snapshot

Input Complex

Protocol Complex

1 2

3

1 21 2

1 3

1 3

2 3

2 31 2 3

8 / 28

The (binary) consensus task

There is a fixed number n of processes.
Each process Pi has a binary input ini ∈ {0, 1}.
After communicating, it decides an output di ∈ {0, 1}.

Specification:
I Agreement: di = dj for all i, j.
I Validity: di ∈ {ini | 1 ≤ i ≤ n} for all i.

Examples: for 3 processes
I if the inputs are (0, 0, 0), the outputs must be (0, 0, 0).
I if the inputs are (1, 0, 1), the outputs can be either (0, 0, 0) or

(1, 1, 1).

9 / 28

The (binary) consensus task

There is a fixed number n of processes.
Each process Pi has a binary input ini ∈ {0, 1}.
After communicating, it decides an output di ∈ {0, 1}.

Specification:
I Agreement: di = dj for all i, j.
I Validity: di ∈ {ini | 1 ≤ i ≤ n} for all i.

Examples: for 3 processes
I if the inputs are (0, 0, 0), the outputs must be (0, 0, 0).
I if the inputs are (1, 0, 1), the outputs can be either (0, 0, 0) or

(1, 1, 1).

9 / 28

The (binary) consensus task

There is a fixed number n of processes.
Each process Pi has a binary input ini ∈ {0, 1}.
After communicating, it decides an output di ∈ {0, 1}.

Specification:
I Agreement: di = dj for all i, j.
I Validity: di ∈ {ini | 1 ≤ i ≤ n} for all i.

Examples: for 3 processes
I if the inputs are (0, 0, 0), the outputs must be (0, 0, 0).
I if the inputs are (1, 0, 1), the outputs can be either (0, 0, 0) or

(1, 1, 1).

9 / 28

Topological definition of task solvability

Input complex

Protocol complex

Computation

0 0

0

1 1

1

Output complex

Task
specification

Decision

∃ ?

10 / 28

Topological definition of task solvability

Input complex

Protocol complex

Computation

0 0

0

1 1

1

Output complex

Task
specification

Decision

∃ ?

10 / 28

Topological definition of task solvability

Input complex

Protocol complex

Computation

0 0

0

1 1

1

Output complex

Task
specification

Decision

∃ ?

10 / 28

Topological definition of task solvability

Input complex

Protocol complex

Computation

0 0

0

1 1

1

Output complex

Task
specification

Decision

∃ ?

10 / 28

Asynchronous computability theorem

Theorem (Herlihy and Shavit, 1999)
A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from a subdivision
of the input complex into the output complex such that [...].

What if:
I we replace “wait-free” by “t-resilient”?
I we use other objects instead of read/write registers?
I we use a message-passing architecture?

Goal: an asynchronous computability theorem for any objects.

11 / 28

Asynchronous computability theorem

Theorem (Herlihy and Shavit, 1999)
A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from a subdivision
of the input complex into the output complex such that [...].

What if:
I we replace “wait-free” by “t-resilient”?
I we use other objects instead of read/write registers?
I we use a message-passing architecture?

Goal: an asynchronous computability theorem for any objects.

11 / 28

Asynchronous computability theorem

Theorem (Herlihy and Shavit, 1999)
A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from a subdivision
of the input complex into the output complex such that [...].

What if:
I we replace “wait-free” by “t-resilient”?
I we use other objects instead of read/write registers?
I we use a message-passing architecture?

Goal: an asynchronous computability theorem for any objects.

11 / 28

Specifying concurrent objects

11 / 28

Objects vs Tasks

“Can we solve the task T using the objects A1, . . . , Ak?”

Objects:
I Long-lived

I Have a sequential flavor

Tasks:
I Used only once

I Intrinsically concurrent

But in practice:
“I can solve consensus using X, and I can solve Y using consensus
objects, so I can solve Y using X”

−→ We would like a composable notion of “solving”.

12 / 28

Objects vs Tasks

“Can we solve the task T using the objects A1, . . . , Ak?”

Objects:
I Long-lived

I Have a sequential flavor

Tasks:
I Used only once

I Intrinsically concurrent

But in practice:
“I can solve consensus using X, and I can solve Y using consensus
objects, so I can solve Y using X”

−→ We would like a composable notion of “solving”.

12 / 28

Objects vs Tasks

“Can we solve the task T using the objects A1, . . . , Ak?”

Objects:
I Long-lived
I Have a sequential flavor

Tasks:
I Used only once
I Intrinsically concurrent

But in practice:
“I can solve consensus using X, and I can solve Y using consensus
objects, so I can solve Y using X”

−→ We would like a composable notion of “solving”.

12 / 28

Objects vs Tasks

“Can we solve the task T using the objects A1, . . . , Ak?”

Objects:
I Long-lived
I Have a sequential flavor

Tasks:
I Used only once
I Intrinsically concurrent

But in practice:
“I can solve consensus using X, and I can solve Y using consensus
objects, so I can solve Y using X”

−→ We would like a composable notion of “solving”.

12 / 28

Objects vs Tasks

“Can we solve the task T using the objects A1, . . . , Ak?”

Objects:
I Long-lived
I Have a sequential flavor

Tasks:
I Used only once
I Intrinsically concurrent

But in practice:
“I can solve consensus using X, and I can solve Y using consensus
objects, so I can solve Y using X”

−→ We would like a composable notion of “solving”.

12 / 28

Objects

From now on, everything is an object:

I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message-passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

“Can we implement the object B using the objects A1, . . . , Ak?”

−→ How do we specify a concurrent object?
−→ What does it mean to implement an object?

13 / 28

Objects

From now on, everything is an object:
I Hardware: Read/Write registers, test&set, CAS, . . .

I Data structures: lists, queues, hashmaps, . . .
I Message-passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

“Can we implement the object B using the objects A1, . . . , Ak?”

−→ How do we specify a concurrent object?
−→ What does it mean to implement an object?

13 / 28

Objects

From now on, everything is an object:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .

I Message-passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

“Can we implement the object B using the objects A1, . . . , Ak?”

−→ How do we specify a concurrent object?
−→ What does it mean to implement an object?

13 / 28

Objects

From now on, everything is an object:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message-passing interfaces

I Immediate-snapshot, consensus, set-agreement, . . .

“Can we implement the object B using the objects A1, . . . , Ak?”

−→ How do we specify a concurrent object?
−→ What does it mean to implement an object?

13 / 28

Objects

From now on, everything is an object:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message-passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

“Can we implement the object B using the objects A1, . . . , Ak?”

−→ How do we specify a concurrent object?
−→ What does it mean to implement an object?

13 / 28

Objects

From now on, everything is an object:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message-passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

“Can we implement the object B using the objects A1, . . . , Ak?”

−→ How do we specify a concurrent object?
−→ What does it mean to implement an object?

13 / 28

Objects

From now on, everything is an object:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message-passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

“Can we implement the object B using the objects A1, . . . , Ak?”

−→ How do we specify a concurrent object?

−→ What does it mean to implement an object?

13 / 28

Objects

From now on, everything is an object:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message-passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

“Can we implement the object B using the objects A1, . . . , Ak?”

−→ How do we specify a concurrent object?
−→ What does it mean to implement an object?

13 / 28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

14 / 28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

14 / 28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

T = ipush,0
0 · rok

0 · ipush,2
2 · ipop

1 · r2
1 · ipop

0 · rok
2 · r0

0

Trace formalism:
I Time is abstracted away.
I Alternation of invocations and responses on each process.

14 / 28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

14 / 28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

Write T for the set of all execution traces.
I A concurrent specification is a subset σ ⊆ T .

I A program implements a specification σ if all the traces that
it can produce belong to σ.

14 / 28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

Write T for the set of all execution traces.
I A concurrent specification is a subset σ ⊆ T .
I A program implements a specification σ if all the traces that
it can produce belong to σ.

14 / 28

Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

15 / 28

Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

15 / 28

Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

15 / 28

Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

15 / 28

Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

15 / 28

Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.

I Cannot specify: validity, write-snapshot.

Interval-linearizability (Castañeda, Rajsbaum, Raynal, 2015)

P0

P1

P2

I Can specify every task!

16 / 28

Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.
I Cannot specify: validity, write-snapshot.

Interval-linearizability (Castañeda, Rajsbaum, Raynal, 2015)

P0

P1

P2

I Can specify every task!

16 / 28

Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.
I Cannot specify: validity, write-snapshot.

Interval-linearizability (Castañeda, Rajsbaum, Raynal, 2015)

P0

P1

P2

I Can specify every task!

16 / 28

Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.
I Cannot specify: validity, write-snapshot.

Interval-linearizability (Castañeda, Rajsbaum, Raynal, 2015)

P0

P1

P2

I Can specify every task!
16 / 28

Overview
Concurrent specifications

17 / 28

Overview
Concurrent specifications

Linearizability

stack
queue

test&set

17 / 28

Overview
Concurrent specifications

Linearizability

stack
queue

test&set

exchanger

set-agreement

immediate snapshot

17 / 28

Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

17 / 28

Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot validity

write-snapshot

17 / 28

Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

17 / 28

Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

?

17 / 28

Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

?

Prefix-closed concurrent specifications

17 / 28

Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

?

Prefix-closed concurrent specifications

This talk: add a few more "desirable" properties

17 / 28

Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot validity

write-snapshot

Prefix-closed concurrent specifications

Interval-linearizability

17 / 28

Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications σ ⊆ T
satisfying the following properties.

(1) prefix-closure: if t · t′ ∈ σ then t ∈ σ,
(2) non-emptiness: ε ∈ σ,
(3) receptivity: if t ∈ σ and t has no pending invocation of

process i, then t · ixi ∈ σ for every input value x,

(4) totality: if t ∈ σ and t has a pending invocation of process i,
then there exists an output x such that t · rx

i ∈ σ,
(5) σ has the expansion property.

18 / 28

Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications σ ⊆ T
satisfying the following properties.

(1) prefix-closure: if t · t′ ∈ σ then t ∈ σ,
(2) non-emptiness: ε ∈ σ,
(3) receptivity: if t ∈ σ and t has no pending invocation of

process i, then t · ixi ∈ σ for every input value x,
(4) totality: if t ∈ σ and t has a pending invocation of process i,

then there exists an output x such that t · rx
i ∈ σ,

(5) σ has the expansion property.

18 / 28

Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications σ ⊆ T
satisfying the following properties.

(1) prefix-closure: if t · t′ ∈ σ then t ∈ σ,
(2) non-emptiness: ε ∈ σ,
(3) receptivity: if t ∈ σ and t has no pending invocation of

process i, then t · ixi ∈ σ for every input value x,
(4) totality: if t ∈ σ and t has a pending invocation of process i,

then there exists an output x such that t · rx
i ∈ σ,

(5) σ has the expansion property.

18 / 28

Expansion of intervals
A concurrent specification satisfies the expansion property if:

For any correct execution trace,

a b

c d

e f

j `

h k

g i

P0

P1

P2

if we expand the intervals,

a b

c d

e f

j `

h k

g i

P0

P1

P2

then the resulting trace is still correct.

19 / 28

Expansion of intervals
A concurrent specification satisfies the expansion property if:

For any correct execution trace,

a b

c d

e f

j `

h k

g i

P0

P1

P2

if we expand the intervals,

a b

c d

e f

j `

h k

g i

P0

P1

P2

then the resulting trace is still correct.

19 / 28

Expansion of intervals
A concurrent specification satisfies the expansion property if:

For any correct execution trace,

a b

c d

e f

j `

h k

g i

P0

P1

P2

if we expand the intervals,

a b

c d

e f

j `

h k

g i

P0

P1

P2

then the resulting trace is still correct.
19 / 28

Example: the Exchanger object

Similar to the one available in Java1: “A synchronization point at
which threads can pair and swap elements within pairs”.
Here, we consider a wait-free variant.

A typical execution of the exchanger looks like this:

exchange(0) 2

exchange(42) Fail

exchange(2) 0

exchange(’a’) Fail

exchange(’b’) ’c’

exchange(’c’) ’b’

P0

P1

P2

1java.util.concurrent.Exchanger<V>
20 / 28

Example: the Exchanger object

Similar to the one available in Java1: “A synchronization point at
which threads can pair and swap elements within pairs”.
Here, we consider a wait-free variant.

A typical execution of the exchanger looks like this:

exchange(0) 2

exchange(42) Fail

exchange(2) 0

exchange(’a’) Fail

exchange(’b’) ’c’

exchange(’c’) ’b’

P0

P1

P2

1java.util.concurrent.Exchanger<V>
20 / 28

Example: the Exchanger object (2)
The following execution is correct:

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

Hence, according to the expansion property,

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

should be considered correct too!

21 / 28

Example: the Exchanger object (2)
The following execution is correct:

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

Hence, according to the expansion property,

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

should be considered correct too!

21 / 28

Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) ∈ ConcSpec.

Proof.
If some execution trace is linearizable,

P0

P1

P2

Then any trace obtained by expanding it is still linearizable.
P0

P1

P2

22 / 28

Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) ∈ ConcSpec.

Proof.
If some execution trace is linearizable,

P0

P1

P2

Then any trace obtained by expanding it is still linearizable.
P0

P1

P2

22 / 28

Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) ∈ ConcSpec.

Proof.
If some execution trace is linearizable,

P0

P1

P2

Then any trace obtained by expanding it is still linearizable.
P0

P1

P2

22 / 28

Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) ∈ ConcSpec.

Proof.
If some execution trace is linearizable,

P0

P1

P2

Then any trace obtained by expanding it is still linearizable.
P0

P1

P2

22 / 28

Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) ∈ ConcSpec.

Proof.
If some execution trace is linearizable,

P0

P1

P2

Then any trace obtained by expanding it is still linearizable.
P0

P1

P2

22 / 28

A Galois connection

SeqSpec ConcSpec

Lin

Theorem
The maps Lin and U form a Galois connection: for every
σ ∈ SeqSpec and τ ∈ ConcSpec,

Lin(σ) ⊆ τ ⇐⇒ σ ⊆ U(τ)

23 / 28

A Galois connection

SeqSpec ConcSpec

Lin

U

Theorem
The maps Lin and U form a Galois connection: for every
σ ∈ SeqSpec and τ ∈ ConcSpec,

Lin(σ) ⊆ τ ⇐⇒ σ ⊆ U(τ)

23 / 28

A Galois connection

SeqSpec ConcSpec>

Lin

U

Theorem
The maps Lin and U form a Galois connection: for every
σ ∈ SeqSpec and τ ∈ ConcSpec,

Lin(σ) ⊆ τ ⇐⇒ σ ⊆ U(τ)

23 / 28

Applications

I By the properties of Galois connections,

Lin(U(Lin(σ))) = Lin(σ)

This yields a simple criterion to check whether a given
specification τ is linearizable: check whether Lin(U(τ)) = τ .

I The Galois connection for interval linearizability has the
following corollary:

Theorem
ConcSpec is the set of interval-linearizable specifications.

24 / 28

Applications

I By the properties of Galois connections,

Lin(U(Lin(σ))) = Lin(σ)

This yields a simple criterion to check whether a given
specification τ is linearizable: check whether Lin(U(τ)) = τ .

I The Galois connection for interval linearizability has the
following corollary:

Theorem
ConcSpec is the set of interval-linearizable specifications.

24 / 28

A computational model

We fix a set {A1, . . . , Ak} of shared objects, along with their
concurrent specifications.

A program P using these
objects can:

I call the objects,
I do local computations,
I use branching, loops.

A protocol P consists of one
program for each process.

con sen su s (v) {
b . w r i t e (v) ;
x := t . tes t&set () ;
i f (x = 0)

r e t u r n v ;
e l s e

v ’ := a . r ead () ;
r e t u r n v ’ ;

}

25 / 28

A computational model

We fix a set {A1, . . . , Ak} of shared objects, along with their
concurrent specifications.

A program P using these
objects can:

I call the objects,
I do local computations,
I use branching, loops.

A protocol P consists of one
program for each process.

con sen su s (v) {
b . w r i t e (v) ;
x := t . tes t&set () ;
i f (x = 0)

r e t u r n v ;
e l s e

v ’ := a . r ead () ;
r e t u r n v ’ ;

}

25 / 28

A computational model (2)

P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

b.write(1)

P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0)

b.write(1)

P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0)

b.write(1) done

a.write(0) done
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0) 0

b.write(1) done

a.write(0) done
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0) 0

b.write(1) done

a.write(0) done

t.test&set() 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0) 0

b.write(1) done

t.test&set() 1
a.write(0) done

t.test&set() 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0) 0

b.write(1) done

t.test&set() 1
a.write(0) done

t.test&set() 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0) 0

b.write(1) done

t.test&set() 1
a.write(0) done

t.test&set() 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0) 0

b.write(1) done

t.test&set() 1

a.read() 0

a.write(0) done

t.test&set() 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0) 0

b.write(1) done

t.test&set() 1

a.read() 0

a.write(0) done

t.test&set() 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0) 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0) 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

A computational model (2)

consensus(1) 0

consensus(0) 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
it can produce.
It implements an object specification S ∈ ConcSpec if JPK ⊆ S.

Theorem
For any wait-free protocol P, JPK ∈ ConcSpec.

26 / 28

Asynchronous computability theorem

I Tasks are now a particular kind of concurrent object:

Tasks ↪−→ ConcSpec

I Define the protocol complex for a given protocol P:

Views of process Pi ' States of the CFG of its program

Theorem
A wait-free protocol implements a task if and only if there exists a
decision map from the protocol complex to the output complex
that makes the diagram commute.

27 / 28

Asynchronous computability theorem

I Tasks are now a particular kind of concurrent object:

Tasks ↪−→ ConcSpec

I Define the protocol complex for a given protocol P:

Views of process Pi ' States of the CFG of its program

Theorem
A wait-free protocol implements a task if and only if there exists a
decision map from the protocol complex to the output complex
that makes the diagram commute.

27 / 28

Asynchronous computability theorem

I Tasks are now a particular kind of concurrent object:

Tasks ↪−→ ConcSpec

I Define the protocol complex for a given protocol P:

Views of process Pi ' States of the CFG of its program

Theorem
A wait-free protocol implements a task if and only if there exists a
decision map from the protocol complex to the output complex
that makes the diagram commute.

27 / 28

Future work

I Get rid of the wait-free requirement:
t-resilient protocols
allows to model objects such as semaphores, barriers, . . .

I All tasks are objects, but not all objects are tasks: find a
topological characterization for the other objects.
→ Rajsbaum et al. proposed a notion of refined tasks.

I Game semantics perspective
our notion of implementation looks like the composition of
strategies
can we characterize the immediate-snapshot strategies, and
deduce impossibility results from it?

28 / 28

Future work

I Get rid of the wait-free requirement:
t-resilient protocols
allows to model objects such as semaphores, barriers, . . .

I All tasks are objects, but not all objects are tasks: find a
topological characterization for the other objects.
→ Rajsbaum et al. proposed a notion of refined tasks.

I Game semantics perspective
our notion of implementation looks like the composition of
strategies
can we characterize the immediate-snapshot strategies, and
deduce impossibility results from it?

28 / 28

Future work

I Get rid of the wait-free requirement:
t-resilient protocols
allows to model objects such as semaphores, barriers, . . .

I All tasks are objects, but not all objects are tasks: find a
topological characterization for the other objects.
→ Rajsbaum et al. proposed a notion of refined tasks.

I Game semantics perspective
our notion of implementation looks like the composition of
strategies
can we characterize the immediate-snapshot strategies, and
deduce impossibility results from it?

28 / 28

Thanks!

28 / 28

