Geometric semantics for asynchronous
computability

Jérémy Ledent

joint work with Eric Goubault and Samuel Mimram

Ecole Polytechnique

CHoColLa
June 6, 2019

1/28

A topological approach for
asynchronous computability

1/28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

2/28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

» They must attack simultaneously.

2/28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

» They must attack simultaneously.

» They communicate by sending messengers.

2/28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

» They must attack simultaneously.
» They communicate by sending messengers.

» Messengers might be captured by the enemy, in which case,
the message is never received.

2/28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

» They must attack simultaneously.
» They communicate by sending messengers.

» Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

2/28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

» They must attack simultaneously.
» They communicate by sending messengers.

» Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

Attack
at dawn

2/28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

» They must attack simultaneously.
» They communicate by sending messengers.

» Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

2/28

The two generals problem

Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

» They must attack simultaneously.
» They communicate by sending messengers.

» Messengers might be captured by the enemy, in which case,
the message is never received.

How can they coordinate the attack?

2/28

Asynchronous computability

a.k.a. Fault-tolerant distributed computing

Goal: Prove that a given concurrent task is unsolvable in a given
computational model.

3/28

Asynchronous computability

a.k.a. Fault-tolerant distributed computing
Goal: Prove that a given concurrent task is unsolvable in a given
computational model.

» Shared memory or message-passing
» Communication primitives: read/write, test&set, CAS...

» Type of errors: crashes, lost messages, byzantine failures...

3/28

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Prove that a given concurrent task is unsolvable in a given
computational model.

» Shared memory or message-passing
» Communication primitives: read/write, test&set, CAS...
» Type of errors: crashes, lost messages, byzantine failures...

» Tasks: Consensus, weak symmetry breaking, renaming...

3/28

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Prove that a given concurrent task is unsolvable in a given
computational model.

v

Shared memory or message-passing
» Communication primitives: read/write, test&set, CAS...

Type of errors: crashes, lost messages, byzantine failures...

v

v

Tasks: Consensus, weak symmetry breaking, renaming...

3/28

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Prove that a given concurrent task is unsolvable in a given
computational model.

v

Shared memory or message-passing
» Communication primitives: read/write, test&set, CAS...

Type of errors: crashes, lost messages, byzantine failures...

v

v

Tasks: Consensus, weak symmetry breaking, renaming...

Remark: Usually, impossibility results come from a lack of
information about the system, not from a lack of computing power.

3/28

A topological approach

input simplex

set of legal output simplexes

FiG. 13, Asynchronous computability theorem.

THEOREM 3.1 (ASYNCHRONOUS COMPUTABILITY THEOREM). A decision task
(%, 0, A) has a wait-free protocol using read-write memory if and only if there exists
a chromatic subdivision o of $ and a color-preserving simplicial map

pio($) >0

such that for each simplex S in o($), p(S) € A(carrier(S, $)).

Herlihy and Shavit, 1999
2004 Godel prize

428

A topological approach

/ input simplex
/ set of legal output simplexes

FiG. 13, Asynchronous computability theorem.

THEOREM 3.1 (ASYNCHRONOUS COMPUTABILITY THEOREM). A decision task
(9, 0, A) has a wait-free protocol using read-write memory if and only if there exists
a chromatic subdivision o of $ and a color-preserving simplicial map

i o($) > 0
such that for each simplex S in a(%), u(S) € A(carrier(s, %)).

Herlihy and Shavit, 1999
2004 Godel prize

DisTRIBUTED COMPUTING

Herlihy, Kozlov, Rajsbaum,
2013

428

Simplicial complexes

Definition

An (abstract) simplicial complex is a pair (V,S) where V is a set
of vertices and S is a downward-closed family of subsets of V'
called simplices (i.e., X € S and Y C X implies Y € 5).

5/28

Simplicial complexes

Definition

An (abstract) simplicial complex is a pair (V,S) where V is a set
of vertices and S is a downward-closed family of subsets of V'
called simplices (i.e., X € S and Y C X implies Y € 5).

5/28

Simplicial complexes

Definition

An (abstract) simplicial complex is a pair (V,S) where V is a set
of vertices and S is a downward-closed family of subsets of V'
called simplices (i.e., X € S and Y C X implies Y € 5).

5/28

Simplicial complexes

Definition

An (abstract) simplicial complex is a pair (V,S) where V is a set
of vertices and S is a downward-closed family of subsets of V'
called simplices (i.e., X € S and Y C X implies Y € 5).

4
T

5/28

Example: binary input complex for 3 processes

» Every process has input value either 0 or 1.

» Every process knows its value, but not the other values.

6/28

Example: binary input complex for 3 processes

» Every process has input value either 0 or 1.

» Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

6/28

Example: binary input complex for 3 processes

» Every process has input value either 0 or 1.

» Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

6/28

Example: binary input complex for 3 processes

» Every process has input value either 0 or 1.

» Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

6/28

Example: binary input complex for 3 processes

» Every process has input value either 0 or 1.

» Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

6/28

Example: binary input complex for 3 processes

» Every process has input value either 0 or 1.

» Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

6/28

Example: binary input complex for 3 processes

» Every process has input value either 0 or 1.

» Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

6/28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process P; can write in A[i], but everyone can read it.
When P; calls immediate_snapshot (x):
» It writes its input value z in its own cell Ai].

» Then atomically takes a snapshot of the whole array.

7/28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process P; can write in A[i], but everyone can read it.

When P; calls immediate_snapshot (x):
» It writes its input value z in its own cell Ai].

» Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,), R with inputs 1,2, 3.

A= 1]

7/28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process P; can write in A[i], but everyone can read it.

When P; calls immediate_snapshot (x):
» It writes its input value z in its own cell Ai].

» Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,), R with inputs 1,2, 3.

A=[2] |

7/28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process P; can write in A[i], but everyone can read it.

When P; calls immediate_snapshot (x):
» It writes its input value z in its own cell Ai].

» Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,), R with inputs 1,2, 3.

A=[[2]3]

7/28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process P; can write in A[i], but everyone can read it.
When P; calls immediate_snapshot (x):
» It writes its input value z in its own cell Ai].

» Then atomically takes a snapshot of the whole array.
Example: for 3 processes P,), R with inputs 1,2, 3.
A=[T2]3]
R's view: -

7/28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process P; can write in A[i], but everyone can read it.
When P; calls immediate_snapshot (x):
» It writes its input value z in its own cell Ai].

» Then atomically takes a snapshot of the whole array.
Example: for 3 processes P,), R with inputs 1,2, 3.

A= - Q's view: -
R's view: -

7/28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process P; can write in A[i], but everyone can read it.
When P; calls immediate_snapshot (x):
» It writes its input value z in its own cell Ai].

» Then atomically takes a snapshot of the whole array.
Example: for 3 processes P,), R with inputs 1,2, 3.

A= Q's view: -
R's view: -

7/28

The immediate snapshot object

immediate_snapshot : ’a -> ’a array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process P; can write in A[i], but everyone can read it.
When P; calls immediate_snapshot (x):
» It writes its input value z in its own cell Ai].

» Then atomically takes a snapshot of the whole array.

Example: for 3 processes P,), R with inputs 1,2, 3.

DN DN
Wi w

P's view: | 1 ‘ ‘
|

A=[TTZ]5 @' view |
R’s view: --

w

7/28

Protocol complex for immediate snapshot

Immediate Snapshot

NN

Input Complex

Protocol Complex

8/28

Protocol complex for immediate snapshot

Immediate Snapshot

Input Complex

Protocol Complex

8/28

The (binary) consensus task

There is a fixed number n of processes.
Each process P; has a binary input in; € {0,1}.
After communicating, it decides an output d; € {0,1}.

9/28

The (binary) consensus task

There is a fixed number n of processes.
Each process P; has a binary input in; € {0,1}.
After communicating, it decides an output d; € {0,1}.
Specification:
» Agreement: d; = d; for all , j.
» Validity: d; € {in; | 1 < i < n} for all 7.

9/28

The (binary) consensus task

There is a fixed number n of processes.
Each process P; has a binary input in; € {0,1}.
After communicating, it decides an output d; € {0,1}.
Specification:
» Agreement: d; = d; for all , j.
» Validity: d; € {in; | 1 < i < n} for all 7.

Examples: for 3 processes
» if the inputs are (0,0,0), the outputs must be (0,0,0).

» if the inputs are (1,0, 1), the outputs can be either (0,0,0) or
(1,1,1).

9/28

Topological definition of task solvability

Input complex

10/28

Topological definition of task solvability

Output complex

Task
specification

Input complex

10/28

Topological definition of task solvability

Output complex
Protocol complex P P

Task

Computation .
specification

Input complex

10/28

Topological definition of task solvability

Output complex
Protocol complex P P

Task

Computation .
specification

Input complex

10/28

Asynchronous computability theorem

Theorem (Herlihy and Shavit, 1999)

A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from a subdivision
of the input complex into the output complex such that [...].

11/28

Asynchronous computability theorem

Theorem (Herlihy and Shavit, 1999)

A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from a subdivision
of the input complex into the output complex such that [...].

What if:
» we replace "wait-free” by “t-resilient”?
» we use other objects instead of read/write registers?

» we use a message-passing architecture?

11/28

Asynchronous computability theorem

Theorem (Herlihy and Shavit, 1999)

A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from a subdivision
of the input complex into the output complex such that [...].

What if:
» we replace "wait-free” by “t-resilient”?
» we use other objects instead of read/write registers?

» we use a message-passing architecture?

Goal: an asynchronous computability theorem for any objects.

11/28

Specifying concurrent objects

11/28

Objects vs Tasks

“Can we solve the task T" using the objects Aq,..., A;?"

12/28

Objects vs Tasks

“Can we solve the task T" using the objects Aq,..., A;?"
Objects: Tasks:
» Long-lived » Used only once

12/28

Objects vs Tasks

“Can we solve the task T" using the objects Aq,..., A;?"
Objects: Tasks:

» Long-lived » Used only once

» Have a sequential flavor » Intrinsically concurrent

12/28

Objects vs Tasks

“Can we solve the task T" using the objects Aq,..., A;?"
Objects: Tasks:

» Long-lived » Used only once

» Have a sequential flavor » Intrinsically concurrent

But in practice:

“I can solve consensus using X, and | can solve Y using consensus
objects, so | can solve Y using X"

12/28

Objects vs Tasks

“Can we solve the task T" using the objects Aq,..., A;?"
Objects: Tasks:

» Long-lived » Used only once

» Have a sequential flavor » Intrinsically concurrent

But in practice:

“I can solve consensus using X, and | can solve Y using consensus
objects, so | can solve Y using X"

— We would like a composable notion of “solving”.

12/28

Objects

From now on, everything is an object:

13/28

Objects

From now on, everything is an object:
» Hardware: Read/Write registers, test&set, CAS, ...

13/28

Objects

From now on, everything is an object:
» Hardware: Read/Write registers, test&set, CAS, ...

» Data structures: lists, queues, hashmaps, ...

13/28

Objects

From now on, everything is an object:
» Hardware: Read/Write registers, test&set, CAS, ...
» Data structures: lists, queues, hashmaps, ...

» Message-passing interfaces

13/28

Objects

From now on, everything is an object:
» Hardware: Read/Write registers, test&set, CAS, ...
» Data structures: lists, queues, hashmaps, ...
» Message-passing interfaces

» Immediate-snapshot, consensus, set-agreement, ...

13/28

Objects

From now on, everything is an object:
» Hardware: Read/Write registers, test&set, CAS, ...
» Data structures: lists, queues, hashmaps, ...
» Message-passing interfaces

» Immediate-snapshot, consensus, set-agreement, ...

“Can we implement the object B using the objects Aq,..., Ax?"

13/28

Objects

From now on, everything is an object:
» Hardware: Read/Write registers, test&set, CAS, ...
» Data structures: lists, queues, hashmaps, ...
» Message-passing interfaces

» Immediate-snapshot, consensus, set-agreement, ...

“Can we implement the object B using the objects Aq,..., Ax?"

— How do we specify a concurrent object?

13/28

Objects

From now on, everything is an object:
» Hardware: Read/Write registers, test&set, CAS, ...
» Data structures: lists, queues, hashmaps, ...
» Message-passing interfaces

» Immediate-snapshot, consensus, set-agreement, ...

“Can we implement the object B using the objects Aq,..., Ax?"

— How do we specify a concurrent object?
— What does it mean to implement an object?

13/28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

14 /28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok pop() 2
Py E 7 E 3
pop() 0
Py E 3
push(2) OK
Py E 3

14 /28

Concurrent specifications

Idea: the specification of an object is the set of all the correct

execution traces (Lamport, 1986).

push(0) ok pop() 2
Po E 3 E 3
popO 0
P E]
push(2) OK
Py E 3
T _ i}O)ush,O . rSK ipush,2 i i;1>op I’% Ipop F(Q)K I’O

Trace formalism:
» Time is abstracted away.

» Alternation of invocations and responses on each process.

14 /28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok pop() 2
Py E 7 E 3
pop() 0
Py E 3
push(2) OK
Py E 3

14 /28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok pop() 2
Py E 7 E 3
pop() 0
Py E 3
push(2) OK
Py E 3

Write T for the set of all execution traces.

» A concurrent specification is a subset o C T .

14 /28

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok pop() 2
Py E 7 E 3
pop() 0
Py E 3
push(2) OK
Py E 3

Write T for the set of all execution traces.
» A concurrent specification is a subset o C T .

» A program implements a specification o if all the traces that
it can produce belong to o.

14 /28

Linearizability (Herlihy & Wing, 1990)

Lin
SeqSpec ConcSpec

» Input: a sequential specification o (e.g. list, queue, ...).

» Output: a concurrent specification Lin(o).

15/28

Linearizability (Herlihy & Wing, 1990)
Lin
SeqSpec ConcSpec

» Input: a sequential specification o (e.g. list, queue, ...).

» Output: a concurrent specification Lin(o).

E h | E h |
Py C 1 C 1
E h | E h |
Py C 1 C 1
E h | E h |
Py C 1 C e

15/28

Linearizability (Herlihy & Wing, 1990)

SeqSpec

Lin

ConcSpec

» Input: a sequential specification o (e.g. list, queue, ...).

» Output: a concurrent specification Lin(o).

Py
Py
Py

[Py
@

r
|

1
1

[H

C
C

o
an
m

[J
AN

15/28

Linearizability (Herlihy & Wing, 1990)
Lin
SeqSpec ConcSpec

» Input: a sequential specification o (e.g. list, queue, ...).

» Output: a concurrent specification Lin(o).

Py —+e] E o—1]
Py el fe]
Py F—e—] E °]

Lin(o) = {T concurrent trace | T is linearizable w.r.t. o}

15/28

Linearizability (Herlihy & Wing, 1990)
Lin
SeqSpec ConcSpec

» Input: a sequential specification o (e.g. list, queue, ...).

» Output: a concurrent specification Lin(o).

Py —+e] E o—1]
Py el fe]
Py F—e—] E °]

Lin(o) = {T concurrent trace | T is linearizable w.r.t. o}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(o), for any o.

15/28

Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

E h | E h |
Py C 1 C 1
E h | E h |
Py E A C 1
E h | E h |
Py C 1 C 1

» Can specify: exchanger, immediate snapshot, set agreement.

16/28

Py
Py
Py

Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

r
|

1
1

m

[u

r
C

|
|

m

(RN}

m

[H

m

[H

» Can specify: exchanger, immediate snapshot, set agreement.

» Cannot specify: validity, write-snapshot.

16/28

Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

E h | E h |
Py C 1 C 1
E h | E h |
Py E A C 1
E h | E h |
Py C 1 C 1

» Can specify: exchanger, immediate snapshot, set agreement.

» Cannot specify: validity, write-snapshot.

Interval-linearizability (Castafieda, Rajsbaum, Raynal, 2015)

E | E |
Py C E| C E|
E | E h |
Pl C El C e
E | E |
P, C 1 C 1

16/28

Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

E h | E h |
Py C 1 C 1
E h | E h |
Py E A C 1
E h | E h |
Py C 1 C 1

» Can specify: exchanger, immediate snapshot, set agreement.

» Cannot specify: validity, write-snapshot.

Interval-linearizability (Castafieda, Rajsbaum, Raynal, 2015)

E | E |
Py C E| C E|
E | E h |
Pl C El C e
E | E |
P, C 1 C 1

» Can specify every task!

16/28

Overview

Concurrent specifications

17 /28

Overview

Concurrent specifications

Linearizability

17/28

Overview

Concurrent specifications

Linearizability

immediate snapshot

exchanger

set-agreement

17/28

Overview

Concurrent specifications

Set-linearizability

Linearizability
immediate snapshot

exchanger

set-agreement

17/28

Overview

Concurrent specifications

Set-linearizability

write-snapshot

Linearizability

. . validit;
immediate snapshot Y

exchanger

set-agreement

17/28

Overview

Concurrent specifications

Interval-linearizability

Set-linearizability

write-snapshot

validity

17/28

Overview

Concurrent specifications

Interval-linearizability

Set-linearizability

write-snapshot

validity

17/28

Overview

Concurrent specifications

Prefix-closed concurrent specifications

Interval-linearizability

Set-linearizability

write-snapshot

validity

17/28

Overview

Concurrent specifications

Prefix-closed concurrent specifications

This talk: add a few more "desirable" properties

Interval-linearizability

17/28

Overview

Concurrent specifications

Prefix-closed concurrent specifications

Interval-linearizability

17/28

Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications ¢ C T
satisfying the following properties.

(1) prefix-closure: if t -t' € o then t € o,

(2) non-emptiness: ¢ € o,

(3) receptivity: if t € o and ¢ has no pending invocation of
process %, then t - if € o for every input value z,

18/28

Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications ¢ C T
satisfying the following properties.

(1) prefix-closure: if t -t' € o then t € o,

(2) non-emptiness: ¢ € o,

(3) receptivity: if t € o and ¢ has no pending invocation of
process %, then t - if € o for every input value z,

(4) totality: if t € o and t has a pending invocation of process 1,
then there exists an output = such that t-r} € o,

18/28

Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications ¢ C T
satisfying the following properties.

(1) prefix-closure: if t -t' € o then t € o,

(2) non-emptiness: ¢ € o,

(3) receptivity: if t € o and ¢ has no pending invocation of
process %, then t - if € o for every input value z,

(4) totality: if t € o and t has a pending invocation of process 1,
then there exists an output = such that t-r} € o,

(5) o has the expansion property.

18/28

Expansion of intervals

A concurrent specification satisfies the expansion property if:

19/28

Expansion of intervals

A concurrent specification satisfies the expansion property if:

For any correct execution trace,

a b J4
P — e 7 A E A 3
Py ¢ d A— g £ ;]
Py 3 E 3

19/28

Expansion of intervals

A concurrent specification satisfies the expansion property if:

For any correct execution trace,

PO 2 S|

0 | — | e f h C k 1
Py o d — g E ; .|
P, 3 E 3

if we expand the intervals,
@ b 7 !

P

0T p| f C 3 A 1
P E | L |

1 c d | g,J C J 74
Py E 3 E .|

then the resulting trace is still correct.
19/28

Example: the Exchanger object

Similar to the one available in Javal: “A synchronization point at
which threads can pair and swap elements within pairs’.

Here, we consider a wait-free variant.

1j ava.util.concurrent.Exchanger<V>
20/28

Example: the Exchanger object

Similar to the one available in Javal: “A synchronization point at
which threads can pair and swap elements within pairs’.
Here, we consider a wait-free variant.

A typical execution of the exchanger looks like this:

exchange (0) 2 exchange(’a’) FarL
Po E 3 E]
exchange(42) Fay, exchange(’b’) c
P E 3 E]
exchange (2) 0 exchange(’c’) b
Py E 7 E 3

1java.util.concurrent.Exchanger<V>
20/28

Example: the Exchanger object (2)
The following execution is correct:

exchange (0) FAIL
P E 3

1
exchange (1) FAIL
Py E]

d
exchange (2) FAIL
Py E]

21/28

Example: the Exchanger object (2)
The following execution is correct:

exchange (0) FAIL
P E 3

1
exchange (1) FAIL
Py E]

d
exchange (2) FAIL
Py E]

Hence, according to the expansion property,

exchange (0) FAIL
Po E]
exchange (1) FAIL
Py E]
exchange (2) FAIL
Py E]

should be considered correct too!

21/28

Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification o, Lin(c) € ConcSpec. }

22/28

Linearizability gives expansion for free

Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification o, Lin(c) € ConcSpec. }
Proof.
If some execution trace is linearizable,
Py —+t 3 E 3
P — —
Py E]

22/28

Linearizability gives expansion for free

Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification o, Lin(c) € ConcSpec. }
Proof.
If some execution trace is linearizable,
Py —Fe 3 E —]
P i e
Py e fo]

22/28

Linearizability gives expansion for free

Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification o, Lin(c) € ConcSpec. J
Proof.
If some execution trace is linearizable,
Py fe—] z o]
Py — fe)

Then any trace obtained by expanding it is still linearizable.

E | E h |
Py —F E| C 1
E h | E |
Pl C 1 C e
E h | E h |
P C 1 C 1 D

22/28

Linearizability gives expansion for free

Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification o, Lin(c) € ConcSpec. J
Proof.
If some execution trace is linearizable,
Po—+Fe 3 E —]
Py — o
) e fe]

Then any trace obtained by expanding it is still linearizable.

d 1 d 1
Py —F—e 1 E ® 1
d 1 d 1
Pl C] C ® e
r 1 r 1
P —eo—1 C ® 1 O

22/28

A Galois connection

SeqSpec ConcSpec

_/
Lin

23/28

A Galois connection

SeqSpec ConcSpec

_/
Lin

23/28

A Galois connection

U

SeqSpec T ConcSpec

_/
Lin

Theorem

The maps Lin and U form a Galois connection: for every
o € SeqSpec and T € ConcSpec,

Lin(o) C 7 = o CU(r)

23/28

Applications

» By the properties of Galois connections,
Lin(U(Lin(¢))) = Lin(o)

This yields a simple criterion to check whether a given
specification 7 is linearizable: check whether Lin(U(7)) = 7.

24 /28

Applications

» By the properties of Galois connections,
Lin(U(Lin(¢))) = Lin(o)

This yields a simple criterion to check whether a given
specification 7 is linearizable: check whether Lin(U(7)) = 7.

» The Galois connection for interval linearizability has the
following corollary:

ConcSpec is the set of interval-linearizable specifications.

Theorem J

24 /28

A computational model

We fix a set {A1,..., Ay} of shared objects, along with their
concurrent specifications.

25 /28

A computational model

We fix a set {41, .
concurrent specifications.

A program P using these
objects can:

» call the objects,
» do local computations,

» use branching, loops.

A protocol P consists of one
program for each process.

.., Ay} of shared objects, along with their

consensus(v) {
b.write(v);

x = t.test&set (),

if (x =0)
return v;
else
v' = a.read();

return v';

25 /28

Py

Py

A computational model (2)

26 /28

A computational model (2)

Py

consensus (1)
Py E

26 /28

A computational model (2)

Py

consensus (1)
P F

L
b.write(1)

26 /28

A computational model (2)

consensus (0)
C

Py C

consensus (1)
Py E

L
b.write(1)

26 /28

A computational model (2)

consensus (0)
C

Py

L
a.write(0)

consensus (1)
Py E

L
b.write(1) done

26 /28

A computational model (2)

consensus (0)
C

Py

L
a.write(0) done

consensus (1)
Py E

L
b.write(1) done

26 /28

A computational model (2)

consensus (0) t.test&set ()
Py E
a.write(0) done
consensus (1)
P E

L
b.write(1) done

26 /28

A computational model (2)

consensus (0) t.test&set() 0
Py E
a.write(0) done
consensus (1) t.test&set ()
P E

L
b.write(1) done

26 /28

A computational model (2)

consensus (0) t.test&set() 0
Py E
a.write(0) done
consensus (1) t.test&set() 1
P E

L
b.write(1) done

26 /28

A computational model (2)

consensus (0) t.test&set() 0 0
Py E 3
a.write(0) done
consensus (1) t.test&set() 1
P E

L
b.write(1) done

26 /28

A computational model (2)

consensus (0) t.test&set() 0 0
Py E 3
a.write(0) done
consensus (1) t.test&set() 1
P E

L
b.write(1) done a.read()

26 /28

A computational model (2)

consensus (0) t.test&set() 0 0
Py E 3
a.write(0) done
consensus (1) t.test&set() 1
Py E 3

L
b.write(1) done a.read() O

26 /28

A computational model (2)

consensus (0)
Po E

(R

consensus (1)
P, E

[EEPSY

26 /28

A computational model (2)

consensus (0)
Po E

(R

consensus (1)
P, E

[EEPSY

The semantics [P] of a protocol is the set of execution traces that
it can produce.
It implements an object specification S € ConcSpec if [P] C S.

26 /28

A computational model (2)

consensus (0)
Po E

o

consensus (1)
Py E

o

The semantics [P] of a protocol is the set of execution traces that
it can produce.

It implements an object specification S € ConcSpec if [P] C S.

Theorem
For any wait-free protocol P, [P] € ConcSpec. J

26 /28

Asynchronous computability theorem

» Tasks are now a particular kind of concurrent object:

Tasks —— ConcSpec

27/ 28

Asynchronous computability theorem

» Tasks are now a particular kind of concurrent object:

Tasks —— ConcSpec

» Define the protocol complex for a given protocol P:

Views of process P, =~ States of the CFG of its program

27/28

Asynchronous computability theorem

» Tasks are now a particular kind of concurrent object:

Tasks —— ConcSpec

» Define the protocol complex for a given protocol P:

Views of process P, =~ States of the CFG of its program

Theorem

A wait-free protocol implements a task if and only if there exists a
decision map from the protocol complex to the output complex
that makes the diagram commute.

27/28

Future work

» Get rid of the wait-free requirement:

e t-resilient protocols
e allows to model objects such as semaphores, barriers, . ..

28 /28

Future work

» Get rid of the wait-free requirement:

e t-resilient protocols
e allows to model objects such as semaphores, barriers, . ..

» All tasks are objects, but not all objects are tasks: find a
topological characterization for the other objects.
— Rajsbaum et al. proposed a notion of refined tasks.

28 /28

Future work

» Get rid of the wait-free requirement:

e t-resilient protocols
e allows to model objects such as semaphores, barriers, . ..

» All tasks are objects, but not all objects are tasks: find a
topological characterization for the other objects.
— Rajsbaum et al. proposed a notion of refined tasks.

» Game semantics perspective
e our notion of implementation looks like the composition of
strategies
e can we characterize the immediate-snapshot strategies, and
deduce impossibility results from it?

28 /28

Thanks!

28 /28

