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Motivation, or How Did I Get

Into Higher-order Complexity?



Type-two Theory of E�ectivity

To compute over a space X we equip it with a surjection

δ : R ↪→ X , where R is a space over which we already know

how to compute.

X

f−→ X
′

↑δ ↑δ′
R

g−→ R

For example:

• R = Σ∗ allows to represent discrete domains (integers,

lists, graphs, etc.) but not uncountable ones

• R = Σ→Σ∗ is enough to represent R, C[0, 1], etc.

"correctly".
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Second-order Computations

In order to compute over Σ∗ → Σ∗, we use Oracle Turing

Machines:

M

f

w f(w)

Definition

F : (Σ∗ → Σ∗)→ Σ∗ is computed by an oracle Turing

machineM if for any oracle f : Σ∗ → Σ∗,Mf
computes

F (f ).
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Second-Order Complexity

Definition (Time complexity)

The complexity of a machine is an upper bound on its

computation time w.r.t the size of its input.

3 size of a finite word

? size of an order 1 function

Definition (Size of a function)

The size of f : Σ∗ → Σ∗ is |f | : N→ N :

|f |(n) = max
|x|≤n
|f (x)|.
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Second-Order Polynomial Time

Definition (Second order polynomials)

P := c | X | Y〈P〉 | P + P | P × P

Example

P(X ,Y) = (Y〈X × Y〈X + 1〉〉)2

Definition (fptime2 )

Second order polynomial time computable function =

computable by an OTM in second order polynomial time.

Actually, we can define many complexity classes: np2, #p2, . . .

and the corresponding classes in analysis:

npR, #pR, npC[0,1], #pC[0,1], . . . 6/38



Application: Complexity for Functions over Streams

Simple coinductive datatypes can be seen as first-order

functions (watch out for details).

Theorem (F., Hainry, Hoyrup, Péchoux 2010)

The Implicit Computation Complexity technique called

polynomial interpretations can be applied to lazy first-order

rewriting systems with streams to characterise (a relevant

notion of) polynomial time complexity.
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Limits of First-order Representations

Once again, R = Σ∗ → Σ∗ may not always be the right

representation space:

Theorem (F.-Hoyrup 2013)

If X is a non-σ-compact polish space with an admissible

representation, then no representation

δ : (Σ∗ → Σ∗) ↪→ C[X ,R] makes the complexity of the

application function Ap : C[X ,R]× X → R well-defined.

Example

TTE cannot express a meaningful notion of complexity for

C[C[0, 1],R].
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Towards a "Higher-order Theory of E�ectivity"?

X

f−→ X
′

↑δ ↑δ′
Σ∗

g−→ Σ∗

Definition (Higher-order types)

τ, σ := N | σ ↪→ τ | σ × τ
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Higher-order Computability?

• Kleene schemata

• Kleene associates

• Berry-Curien sequential algorithms

• . . .

• pcf (Sco�, Plotkin)

λ-calculus over N + fixpoint combinator.

7 No simple underlying complexity notion.

• bff (Cook, Urquhart)

λ-calculus + fptime +R (2
nd

-order bounded recursion)

7 Defines only one complexity class (no exptime, etc.)

7 Misses some intuitively feasible functionals.
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Basic Feasible Functionals

Definition (Cook & Urquhart (93), Mehlhorn (76))

bff = λ + fptime +R, with:

R(x0, F ,B, x).


x0 if x = 0

t if |t| ≤ B(x)

B(x) otherwise.

where t = F (x,R(x0, F ,B, b
x

2

c)).

Theorem (Kapron & Cook 1996)

bff2 is the class of functions computed by an oracle Turing

machine in second-order polynomial time.
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Feasible 6=⇒ bff

Example (Irwin, Kapron, Royer)

fx(y) = 1 ⇐⇒ y = 2
x

Φ,Ψ : ((N→ N)→ N)× N→ N

Φ(F , x) =

0 if F (fx) = F (λy.0)

1 otherwise.

Φ ∈ bff3

Ψ(F , x) =

0 if F (fx) = F (λy.0)

2
x

otherwise.

Ψ 6∈ bff3

but Ψ is "as feasible as" Φ.
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Computation as a Dialogue and

How It Helps with Complexity



Computation as a Dialogue (First-order functions)

@machine, what is your value?

Machine is computing. . .

On which input?

Input is computing. . .

On input 10!

Machine is computing. . .

I’m worth 47 on that input!
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Computation as a Dialogue (Second-order functions)

@machine, what is your value?

Machine is computing. . .

On which first-order input (let’s call it "f")?

Input is computing. . .

What do you want to know about f?

Machine is computing. . .

What is f (1)?

Input is computing. . .

It’s 2. Anything else?

Machine is computing. . .

What is f (4)?

Input is computing. . .

It’s 7. Anything else?

.

.

.

Machine is computing. . .

I know enough about f , I’m worth 74 on it!
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Computation as a Dialogue (Third-order functions)

@machine, what is your value?

Machine is computing. . .

On which second-order input (let’s call it F )?

Input is computing. . .

What do you want to know about it?

Machine is computing. . .

What is the value of F ?

.

.

.

Input is computing. . .

F is equal to 74 on the input you just described!

Machine is computing. . .

What is the value of F ?

.

.

.

Input is computing. . .

F is equal to 63 on the input you just described!

.

.

.

Machine is computing. . .

OK, I know enough about F , I’m worth 53 on it!
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Game Semantics

It has (initially) nothing to do with complexity, but with

programming language semantics.

Origin: provide a fully abstract semantics for pcf

Solution: (Hyland & Ong, Nickau, Abramsky):

• functions↔ strategies

• function application↔ confrontation of strategies
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Arena

An arena is defined by as set of moves:

• own by either P and O

• which are either questions questions or answers

• some are initial questions

• they are connected by an enabling relation.
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Arenas for finite types

aP0 aP1

qO

. . . . . .aPn

Figure 1: Arena for the base type N
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Arenas for finite types

Aσ Aτ

. . .. . .
i1 in i′1 i′k

Figure 1: Arena Aσ×τ built from Aτ and Aσ
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Arenas for finite types
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σ

Aτ
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Figure 1: Arena Aσ→τ built from Aτ and Aσ
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Arenas for finite types

aO0 aO1

qP

. . . . . .
aOn

a′P0 a′P1

q′O

. . . . . .
a′Pn

Figure 1: Arena for type N→ N
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a′′P0 a′′P1

q′′O

. . . . . .
a′′Pn

Figure 1: Arena for type (N→ N)→ N
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Plays & Rules

Definition (Play)

A play is a list of named moves, i.e. m[α] (m ∈ A, α ∈ N).

A play p is said to be:

• justified: every non initial move is justified by a previous

move in p ;

• well-opened: there is only one initial move, at the

beginning of p ;

• alternating: two consecutive moves belong to di�erent

protagonists ;

• strictly scoped: answering a question prevents further

moves to be justified by this question ;

• strictly nested: Q/A pairs form a valid bracketing.
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Innocent Strategies

Definition (Strategy)

A strategy is a partial function from plays to moves.

s(m1, . . . ,mk) = mk+1

Definition (Innocent strategy)

A strategy is innocent if its output only depends on its

current view of the play.
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Confrontation

The confrontation of s (in Aτ→N) against s
′
(in Aτ ) is:

• p starts with the initial question of Aτ→N

• we stop if s plays a final answer

• the play is successively extended this way:

• p is extended with s(p) (if defined)

• p "contains" a sub-play p
′

in Aτ ;
p is extended with s

′(p′) (+renaming)

• if reached, the final answer defines s[s′].

We also call the whole play the history of the confrontation

(noted H(s, s′)).
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Games for pcf

Given a finite type τ , the corresponding game Gτ is defined by

innocent strategies playing justified, alternating, well-opened,

strictly-nested, . . . plays in the arena Aτ .

Definition

Base case: If s(q) = ak , then s represents k ∈ N.

Recursive case: A strategy s in represents F : τ1 × · · ·× → N
if whenever s1, . . . , sn represent f1 : τ1, . . . , fn : τn, then

s[s1, . . . , sn] represents F (f1, . . . , fn)
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E�ectivity

Our presentation of game semantics allows to define an

explicit encoding of moves and names: for every game on a

finite type τ ,

• questions can be encoded by words of bounded size ;

• an answer representing n ∈ N (e.g. an) can be encoded by

a binary word of size O(log
2
(n)) ;

• names are integers→ simple binary encoding ;

• this encoding can be extended to plays ;

• a strategy s can be represented by a partial function

s̄ : Σ∗ → Σ∗
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Computability and complexity

Definition

A strategy is s is computable if s̄ is computable.

Definition a�empt

A function is computable in time t, if it is represented by a

strategy s such that s̄ is computable in time t.

Theorem

Every computable function has a polynomial strategy.

Proof.

s can gain time by asking many useless questions.

s(q′, q, ak , (q, ak)n) = a
f (k) if s can compute f (k) in time n

s(q′, q, ak , (q, ak)n) = q otherwise.
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Size of a strategy

Definition (Size of a play)

= size of its binary encoding.

Definition (Size of a strategy)

The size Ss of s in τ → N is a bound on the size of the play H

produced by the confrontation of s versus argument

strategies:

Ss(b) = sup{|H(s, s′)| : s′ ∈ Gτ ∧ Ss′ 4τ b}

Additionally, for all F ,B : τ → N, F 4τ B if:

∀s′b, (Ss′ 4τ b) =⇒ F (Ss′) ≤ B(b)
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Examples

Example

• k ∈ N has a strategy of size about log
2
(k)

(plays are of the form: q, ak)

• g : N→ N has a strategy of size about

|g|(n) = max|x|≤n |g(x)|+ n

(plays are of the form: q, q′, a′
x
, a

g(x))

• F : (N→ N)→ N has a strategy s whose size depends on

its values: Ss(b) ≥ max{f : |f |4b} |F (f )|
and on its modulus of continuity: Ss(b) ≥ n

whenever there are f , g 4 b such that

(∀|y| ≤ n, f (y) = g(y)) and F (f ) 6= F (g).
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Game machines

Definition (Game machine)

otm which simulates a strategy:

• initial state↔ initial question

• oracle call↔ (encoded) player move

• oracle answer↔ (encoded) opponent move

• final state + tape’s content↔ final answer

Proposition

s is simulated by a game machine ⇐⇒ s is computable.
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Complexity

We can define the complexity of a strategy, and in particular:

size 4 complexity

Theorem

size ' smallest relativised complexity

∀s,∃M,O,MO
computes s.

Definition

f ∈ pcf is computable in time T if there is a game machine

simulating an innocent strategy for f in time T .

Remark

If s represents a pcf function f : τ , then the size and

complexity functions for s have type τ .
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Higher order polynomial time complexity

Definition (Higher type polynomials)

htp = simply-typed λ-calculus, with + and ×.

Remark

• Order 1 htp = usual polynomials.

• Order 2 htp = second order polynomials.

Definition (poly)

f ∈ pcf is polynomial time computable (f ∈ poly), if it has a

strategy computed by a (higher order) polynomial time

machine.
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Results

Proposition

For every finite type τ , the complexity of the identity function

of type τ → τ is about λb.2 · b.

Similarly, composition, projections and expansion also have

polynomial time complexity.

Proposition

Closure by composition If b : σ and B : σ → τ bound the

complexity (resp. size) of f : σ and F : σ → τ , then B(b)

bounds the complexity (resp. size) of F (f ).
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Results

Proposition

Bounded recursion on notation is polynomial-time computable.

Proof.

It can be computed by |x| iteration of F applied to x an input

bounded by the size of B on x . Its complexity is bounded by:

λn0λGλBλn. n · G(n,B(n) + n0) + n0.
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Size and Complexity

As it was already the case for first-order functions, the size

functional is not computable in polynomial time.

Proposition

For any τ of order 1 or more, no polynomial-time computable

function F : τ → τ satisfies:

∀f , |f | 4 F (f )
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Results

Theorem

• fptime = bff1 = poly1

• fptime2 = bff2 = poly2

• bff ⊆ poly

• bff3 ( poly3

• poly is stable by composition

=⇒ this complexity class is a good candidate for a

generalisation of fptime at all finite types.
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And now what?



Apply the Theory

We have a general notion of complexity for pcf, as well as a

polynomial time complexity class for it.

• Define and study new complexity classes/hierarchies.

• Obtain new insight on first-order complexity classes

• Apply to other relevant sequential games

The current framework does not require rules likes

innocence or well bracketing

(!) Complexity bounds for the same program in di�erent

se�ings need not be comparable!
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Broaden the Theory

• We cannot currently deal with non-sequential games.

Mainly, can we extend this to handle complexity for

parallel computations (hard!)

(I’ve heard that Alexis Ghyselen already took care of it!)

• Deal with sub-linear complexity classes

There are several ways to implement names, which might

a�ect this
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Higher-Order Implicit Complexity

• Most existing Implicity complexity techniques only apply

to first-order computations ;

• if not, they reduce down to first-order techniques ;

• and they can only express the complexity of first-order

terms

We can now directly express the complexity of a higher-order

function and so of any term/program that computes it.

So can we:

• Develop/adapt first-order ICC techniques to languages

with higher-order features and characterise poly?

(rewriting systems, linear types, function algebras)

• Derive and implement actual complexity analysis tools

for higher-order languages
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Higher-order Representations

As initially motivated, we can use higher-order functions as

names:

X

f−→ X
′

↑δ ↑δ′
σ

g−→ τ

↑ ↑
Gσ

sg
// Gτ

Remark

• What is the minimal order to represent a given set X?

• If σ and τ are minimal representation spaces for X and Y,

σ → τ might not be the minimal one for C[X ,Y ].
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