Contributing to Higher Order
Complexity: Outcomes and Likely
Applications

Hugo Férée
September 26th, 2019
| 1 F cerecuencn | Université

EN INFORMATIQUE

FONDAMENTALE de Paris

2/38

Motivation, or How Did | Get
Into Higher-order Complexity?

Type-two Theory of Effectivity

To compute over a space X we equip it with a surjection
0 : R — X, where R is a space over which we already know

how to compute.

x L x
ts T

R -5 R

3/38

Type-two Theory of Effectivity

To compute over a space X we equip it with a surjection

0 : R— X, where R is a space over which we already know
how to compute.

For example:

R = > allows to represent discrete domains (integers,
lists, graphs, etc.) but not uncountable ones

R = is enough to represent R, C[0, 1], efc.
"correctly".

3/38

Second-order Computations

In order to compute over X* — ¥*, we use

Definition
F:(X* — X*) — X" is computed by an

M if for any oracle f : ¥* — ¥*, M/ computes
F(f).

4/38

Second-Order Complexity

Definition (Time complexity)
The of a machine is an upper on its

w.r.t the of its input.

v size of a finite word

size of an order 1 function

5/38

Second-Order Complexity

Definition (Time complexity)
The of a machine is an upper on its

w.r.t the of its input.

v size of a finite word
size of an order 1 function

Definition (Size of a function)
The of f:X* > ¥ is|f| :N— N:

f1(n) = max|f(x)].

Ix|<n

5/38

Second-Order Polynomial Time

Definition (Second order polynomials)
P=c|X|Y(P)|P+P|PXP
Example
P(X,Y) = (Y{X x Y{X+ 1))

Definition (FPTIME;)

computable by an OTM in second order polynomial time.

Actually, we can define many complexity classes: NP,, #P,, . ..

and the corresponding classes in analysis:

NPR, #PR, NPcJ0,1], #PC[0,1] - - - 6/38

Application: Complexity for Functions over Streams

can be seen as

(watch out for details).
Theorem (F., Hainry, Hoyrup, Péchoux 2010)
The Implicit Computation Complexity technique called
can be applied to
to characterise (a relevant

notion of)

7/38

Limits of First-order Representations

Once again, R = ~* — X" may not always be the right
representation space:
Theorem (F.-Hoyrup 2013)

If X is a non-o-compact polish space with an admissible
representation, then
J: (X = X*) = CIX,R]

Ap : C[X,R] x X = R

Example

TTE cannot express a meaningful notion of complexity for

8/38

Towards a "Higher-order Theory of Effectivity"?

9/38

Towards a "Higher-order Theory of Effectivity"?

X J, X
Ts T
(TF 5 T & (ZF = o)

9/38

Towards a "Higher-order Theory of Effectivity"?

X S X'
Ta T
(Tr 5 T) o & (o) o3

9/38

Towards a "Higher-order Theory of Effectivity"?

Definition (Higher-order types)

T,0 . =N|oc—=71|oxT

9/38

Higher-order Computability?

A-calculus over N + fixpoint combinator.
X No simple underlying complexity notion.

A-calculus + FPTIME + R (2"-order bounded recursion)
X Defines only one complexity class (no EXPTIME, etc.)

X Misses some intuitively feasible functionals.

10/38

Basic Feasible Functionals

Definition (Cook & Urquhart (93), Mehlhorn (76))
BFF = A + FPTIME + R, with:

X if x=0
R(x, F, B, x). ¢ tif || < B(x)

B(x) otherwise.

where t = F(x, R(x, F, B, LEJ))

Theorem (Kapron & Cook 1996)
BFF, is the class of functions computed by an

in second-order polynomial time.

11/38

Feasible == BFF

Example (Irwin, Kapron, Royer)

Ly)=1 = y=2"
oV:(N-N)—-N)xN—=N

O(F,x) = 0 iFFR) = FAY0) ® € BFF
9 - 3
1 otherwise.

WF 10 TRR=FOvO

otherwise.

but W is "as feasible as" .

12/38

Computation as a Dialogue and

How It Helps with Complexity

Computation as a Dialogue (First-order functions)

, what is your value?

13/38

Computation as a Dialogue (First-order functions)

, what is your value?

13/38

Computation as a Dialogue (First-order functions)

, what is your value?

On which input?

13/38

Computation as a Dialogue (First-order functions)

, what is your value?

On which input?

13/38

Computation as a Dialogue (First-order functions)

, what is your value?

On which input?

On input 10!

13/38

Computation as a Dialogue (First-order functions)

, what is your value?

On which input?

On input 10!

13/38

Computation as a Dialogue (First-order functions)

, what is your value?
On which input?
On input 10!

I’m worth 47 on that input!

13/38

Computation as a Dialogue (Second-order functions)

, what is your value?

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

Qﬂ'

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

What is f(1)?

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

What is f(1)?

ﬂi}

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

It’s 2. Anything else?

What is f(1)?

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

What is f(1)?

It’s 2. Anything else?

Machine is computing...

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

What is f(1)?
It’s 2. Anything else?
What is f(4)?

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

What is f(1)?
It’s 2. Anything else?
What is f(4)?

& Input is computing...

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

What is f(1)?
It’s 2. Anything else?
What is f(4)?

It’s 7. Anything else?

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

What is f(1)?
It’s 2. Anything else?
What is f(4)?

It’s 7. Anything else?

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

What is f(1)?
It’s 2. Anything else?
What is f(4)?

It’s 7. Anything else?

Machine is computing...

14/38

Computation as a Dialogue (Second-order functions)

, what is your value?

On which first-order input (let’s call it "f")?

What do you want to know about f?

What is f(1)?
It’s 2. Anything else?
What is f(4)?

It’s 7. Anything else?

| know enough about f, I’'m worth 74 on it!
14/38

Computation as a Dialogue (Third-order functions)

, what is your value?

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

Qﬁ

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

What is the value of F?

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

What is the value of F?

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

What is the value of F?

F is equal to 74 on the input you just described!

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

What is the value of F?

F is equal to 74 on the input you just described!

& Machine is computing...

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

What is the value of F?

F is equal to 74 on the input you just described!

What is the value of F?

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

What is the value of F?

F is equal to 74 on the input you just described!

What is the value of F?

L : :
¥ Input is computing...

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

What is the value of F?

F is equal to 74 on the input you just described!

What is the value of F?

F is equal to 63 on the input you just described!

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

What is the value of F?

F is equal to 74 on the input you just described!

What is the value of F?

F is equal to 63 on the input you just described!

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

What is the value of F?

F is equal to 74 on the input you just described!

What is the value of F?

F is equal to 63 on the input you just described!

& Machine is computing...

15/38

Computation as a Dialogue (Third-order functions)

, what is your value?

On which second-order input (let’s call it F)?

What do you want to know about it?

What is the value of F?

F is equal to 74 on the input you just described!

What is the value of F?

F is equal to 63 on the input you just described!

OK, I know enough about F, I’'m worth 53 on it!
15/38

Game Semantics

It has (initially) , but with

programming language semantics.
provide a fully abstract semantics for pcF

(Hyland & Ong, Nickau, Abramsky):

functions <> strategies

function application <+ confrontation of strategies

16/38

Arena

An is defined by as set of

own by either P and
which are either questions or
some are

they are connected by an

17/38

Arenas for finite types

Arena for the base type N

18/38

Arenas for finite types

Arena A, - built from A, and A,

18/38

Arenas for finite types

Arena A,_,; built from A, and A,

18/38

Arenas for finite types

Arena for type N — N

18/38

Arenas for finite types

Arena for type (N — N) — N

18/38

Plays & Rules

Definition (Play)
A is a list of ,i.e.mla] (me A, a € N).

A play p is said to be:

every non initial move is justified by a previous

move in p;

: there is only one initial move, at the
beginning of p ;

two consecutive moves belong to different
protagonists ;
strictly scoped: answering a question prevents further
moves to be justified by this question ;

strictly nested: Q/A pairs form a valid bracketing.
19/38

Innocent Strategies

Definition (Strategy)

A is a partial function from plays to moves.

Definition (Innocent strategy)
A strategy is if its output only depends on its
current of the play.

20/38

Confrontation

The of s (in A,_,n) against s’ (in A,) is:

p starts with the of A,
we stop if s plays a
the play is successively extended this way:

p is extended with s(p) (if defined)
p "contains" a sub-play p’ in A;;
p is extended with s'(p’) (+renaming)

if reached, the final answer defines

We also call the whole play the of the confrontation

(noted).

21/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Confrontation

Confrontation of s (top) against s” (bottom) 22/38

Games for pcF

Given a finite type 7, the corresponding game U is defined by

playing
plays in the arena A..

Definition
If s(q) = a, then s represents k € N.

A strategy s in F:mix---x—=N
if whenever sy, ..., s, represent fi : 7y, ..., f,: T, then

s[s1, ..., sn] represents F(fi, ..., f,)

23/38

Our presentation of game semantics allows to define an
of moves and names: for every game on a
finite type 7,
questions can be encoded by words of bounded size ;

an answer representing n € N (e.g. a,) can be encoded by

a binary word of size O(log,(n)) ;
names are integers — simple binary encoding ;
this encoding can be extended to plays ;

a strategy s can be represented by a partial function

24/38

Computability and complexity

Definition

A strategy is s is if 5 is computable.

25/38

Computability and complexity

Definition

A strategy is s is if 5 is computable.
Definition attempt

A function is , if it is represented by a

strategy s such that's is computable in time t.

25/38

Computability and complexity

Definition

A strategy is s is if 5 is computable.

Definition attempt
A function is , if it is represented by a

strategy s such that's is computable in time t.

Theorem

Every computable function has a polynomial strategy.

Proof.

s can gain time by asking many useless questions.

s(q, g, ax, (g, a)") = ag(x) if s can compute f(k) in time n
s(q', q, ar, (g, ax)") = q otherwise.

25/38

Computability and-eemplexity

Definition

A strategy is s is if 5 is computable.

Theorem

Every computable functio a polynomial strategy.

Proof.
s can gain ti y asking many uselessquestions.
s(q, q, a(q, ax)") = as() if s can compute in time n

> q, Ak, (q, ak)") = g otherwise.
25/38

Size of a strategy

Definition (Size of a play)

= size of its binary encoding.

Definition (Size of a strategy)
The Ss of sin 7 — N is a bound on the size of the play
produced by the confrontation of s versus

Ss(b) = sup{|H(s,s')| : s € G, N Sy <, b}
Additionally, forall F,B: 7 — N, F <, Bif:

Vs'b, (Sy < b) = F(Sy) < B(b)

26/38

Example
« k € N has a strategy of size about
(plays are of the form: g, ay)
« g: N — N has a strategy of size about

(plays are of the form: q, ¢', @, ag(x))

« F: (N — N) — N has a strategy s whose size depends on

: S(b) > Max(s . |f|<b} |F(f)|
and on its : Ss(b) > n
whenever there are f, g < b such that

(Vlyl < n,f(y) = &(y)) and F(f) # F(g).

27/38

Game machines

Definition (Game machine)

oT™ which

initial state <> initial question
oracle call <+ (encoded) player move
oracle answer <+ (encoded) opponent move

final state + tape’s content <> final answer

Proposition

s is simulated by a game machine <= s is computable.

28/38

Complexity

We can define the , and in particular:

Theorem

Vs, IM, O, M® computes s.

Definition

f € PcFis if there is a game machine
simulating an innocent strategy for f in time T.

Remark

If s represents a pcF function f : 7, then the size and
complexity functions for s have type

29/38

Higher order polynomial time complexity

Definition (Higher type polynomials)
HTP = simply-typed A-calculus, with 4+ and x.
Remark

Order 1 HTP = usual polynomials.

Order 2 HTP = second order polynomials.

Definition (PoLY)

f € PcFis (f € povy), if it has a
strategy computed by a (higher order) polynomial time
machine.

30/38

Proposition
For every finite type T, the complexity of the function
of type T — T is about \b.2 - b.

Similarly, , and also have
polynomial time complexity.

Proposition

Closure by composition If b : o and B : 0 — 7 bound the
complexity (resp. size) of f : o and F : 0 — T, then B(b)
bounds the complexity (resp. size) of F(f).

31/38

Proposition

Bounded recursion on notation is polynomial-time computable.

Proof.
It can be computed by |x| iteration of F applied to x an input
bounded by the size of B on x. Its complexity is bounded by:

AmAGABAn. n- G(n, B(n) + ny) + ny.

32/38

Size and Complexity

As it was already the case for first-order functions,

Proposition
For any T of order 1 or more, no polynomial-time computable

function F : 7 — T satisfies:

Vf, If] < F(f)

33/38

Results

Theorem

FPTIME = BFF; = POLY;
FPTIME, = BFF, = POLY,
BFF C pPoOLY

BFF; C POLY;

poLy is stable by composition

— this complexity class is a good candidate for a

generalisation of FPTIME at all finite types.

34/38

And now what?

Apply the Theory

We have a general notion of complexity for pcF, as well as a

polynomial time complexity class for it.

« Define and study new complexity classes/hierarchies.

- Obtain new insight on first-order complexity classes

« Apply to other relevant sequential games
The current framework does not require rules likes
innocence or well bracketing
() Complexity bounds for the same program in different

settings need not be comparable!

35/38

Broaden the Theory

We cannot currently deal with
Mainly, can we extend this to handle

(hard!)
(I’'ve heard that Alexis Ghyselen already took care of it!)
Deal with
There are several ways to implement , which might
affect this

36/38

Higher-Order Implicit Complexity

+ Most existing Implicity complexity techniques only apply
to first-order computations ;

- if not, they reduce down to first-order techniques ;

- and they can only express the complexity of first-order

terms

We can now directly express the complexity of a higher-order
function and so of any term/program that computes it.

So can we:

- Develop/adapt first-order ICC techniques to languages
with higher-order features and characterise poLY?
(rewriting systems, linear types, function algebras)

- Derive and implement actual complexity analysis tools

for higher-order languages 37138

Higher-order Representations

As initially motivated, we can use higher-order functions as

names:

x Lox

Ts To

o 5 7

T T

Q;o- ,\,f§\,> Q;T

Remark

What is the to represent a given set X?

If o and T are minimal representation spaces for X and Y,
o — 7 might not be the minimal one for C[X, Y].

38/38

	Motivation, or How Did I Get Into Higher-order Complexity?
	Computation as a Dialogue and How It Helps with Complexity
	And now what?

