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I. BACKGROUND : GAME SEMANTICS
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The strategy interpreting a term is the set of plays realized by that term.




Types as Games as Event Structures
Definition
An event structure is a tuple E = (|E|, <g, #g) where:
@ |E| is a set of events,
o <g is a partial order called causality,
@ ##p is an irreflexive symmetric binary relation called conflict.

satisfying some axioms. A game is an event structure A with
poly : [Al = {—,+}

indicating for each event its polarity.

Games as Event Structures

W - U) - B




Configurations

Definition

A (finite) configuration of an event structure E is a finite set x C |E| which is:
o Down-closed: for all e € x, for all e’ <f e, we have €’ € x;
o Consistent: for all e, e’ € x, we have —(e #¢ €').

The set of (finite) configurations of E is written C(E).

Configurations




Plays

Definition
An (alternating) play on game A is a finite sequence of events a; ... a, such
that pol,(a1) = —, for all 1 < i < n, pol,(a;i) # pol,(ai+1) and

{a1,...,ai} € C(A).

We write AltPlays(A) the set of (alternating) plays on A.
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Question:
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Theorem

This play is non-innocent and cannot be realized without references.
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Full abstraction results

Stratinn~—— Strat
cPCF +state clA nn ~+innocence S
+callcc +callec +well-bracketing ~+well-bracketing
+state ~+innocence
PCF 1A Stratinn,wb Stratwb

all correspondences being fully abstract or intensionally fully abstract.!

IFollows from work in the late 90s from Abramsky, Hyland, Laird, McCusker, Ong.
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Orthogonality of control and state

cPCF etate clA
Stratinn +innocence Strat
+callec || +well-bracketing +well-bracketing || +callcc
Stratinnwh =———roe__ Stratup
PCF ' +state

Theorem

Suppose a program M in clA is observationally equivalent to
o A program M that does not use callcc;
o A program M, that does not use references.

Then, M is observationally equivalent to M’ in pure PCF.




The “semantic cube”
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The “semantic cube”

PCF + probabilities
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II. CONCURRENT GAMES AND PARALLEL INNOCENCE
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IPA and its components

Types.
AB = U|B|N|A—B PCF
| ref +state
Terms.
M,N == x|MN|Xx.M|Y AY-calculus

|t | fF | if M N, N
| n| succ M | pred M | iszero M
| skip | M; N PCF

| newref v := binM | M:= N |!M +state

| let (X
y

< PCF + state + parallel = IPA

I
==X

) inT +parallel

Standard typing rules and call-by-name operational semantics.



Roadmap
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Non-alternating game semantics for IPA 2

Theorem

The model GM of games and well-bracketed non-alternating strategies is fully
abstract for IPA.

Definition
An (non-alternating) play on game A is a finite sequence of events a; ... a,
such that forall 1 </ <n,

{a1,...,ai} € C(A).

We write Plays(A) the set of (non-alternating) plays on A.

Definition

A non-alternating strategy o : A is a subset

o C Plays(A)

satisfying some conditions.

2D. Ghica, A. Murawski. Angelic Semantics of Fine-Grained Concurrency, FoSSaCS 2004.
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Question: can a program without state realize these two plays?
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Question: can a program without state realize these two plays?

q q
D
AU et (; i ;: ) inx;y:B—-U)—U

< concurrent games3

3Family of models initiated by Abramsky and Mellies (1999), then Mellies, Mimram, Faggian,
Piccolo (2000s), then Rideau, Winskel, Castellan, C., Paquet, Alcolei, de Visme etc. .. (2010s).
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Partially ordered plays: augmented configurations

Definition
An augmentation on A is a conflict-free event structure q = (|q|, <q) where

C(a) CC(A).

An augmentation

(— is the immediate causality relation).




Partially ordered plays: augmented configurations
Definition
An augmentation on A is a conflict-free event structure q = (|q|, <q) where

C(a) CC(A).

An augmentation

S

_ca \
rar |

q 0" '
( /
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(— is the immediate causality relation).




Question:

is this augmentation realizable?
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Question:

25

is this augmentation realizable?
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Question: is this augmentation realizable?

B - U) - U

//q_
/q+£/

—

Definition

An augmentation q on A is courteous iff for all a; —4 a» such that
—(a1 —q a2), we have pol,(a1) = — and pol,(a2) = +.

We write Aug(A) for the set of courteous augmentations on A.
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Question:
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is this augmentation realizable?
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Question: is this augmentation realizable?

Definition
A (concurrent) strategy o : A is a non-empty, prefix-closed subset
o C Aug(A)

closed under extensions by Opponent events.




Causal intensional full abstraction for IPA 4

Theorem

=

The model CG of games and (well-bracketed) concurrent strategies is

intensionally fully abstract for IPA.

Proof.
If o : Ais a strategy, then

Plays(c) = U{Plays(q) | q € o}

is a strategy in the Ghica-Murawski sense.

This forms a functor
Plays(—) : CG — GM

preserving the interpretation.

4S. Castellan, P.C. Causality vs. interleavings in concurrent game semantics, CONCUR 2016.
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Question: which of these two is realizable only with state?

U - U - U U - U -U) - U
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Question: which of these two is realizable only with state?

U - U -U) - U

q+M o
\4

q"

Definition
An augmentation q € Aug(A) is innocent if it has no pattern of the form
m —>...——>m

mt

L ~
\Am_ —P... ——b>m /

A strategy o : A is innocent if any q € o is.







The causal shape of parallel innocence
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The causal shape of parallel innocence
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The causal shape of parallel innocence
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Question: is the following augmentation realizable without state?
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Question: is the following augmentation realizable without state?

W - U) - (U - U - U

A

A grounded causal chain (gcc) of augmentation q € Aug(A) is

Definition

P = PL—>qpP2Pq---">qPn

where p; is minimal in g.

31



Question: is the following augmentation realizable without state?

W - U) - (U - U - U

/ /
\
0"

Definition

A grounded causal chain (gcc) of augmentation q € Aug(A) is
P = PL—>qpP2Pq---">qPn

where p; is minimal in g.

Definition
A strategy o : A is visible iff for all p € gee(o), p € C(A).

31



Full abstraction for PCF 5

Theorem

The model CG;,, of games and deterministic, (visible) parallel innocent
strategies is intensionally fully abstract for PCF.

Proof.

Via finite definability up to observational equivalence. O

5S. Castellan, P. C., G. Winskel. The parallel intensionally fully abstract games model of PCF,
LICS 2015.
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Sequentiality and full abstraction for 1A®

Theorem

The model CGgeq of games and deterministic sequential strategies is
intensionally fully abstract for IA.

Proof.

If o : A is well-bracketed sequential deterministic, then
AltPlays(c) = U{AltPlays(q) | q € o}
is a strategy in the sense of Abramsky-McCusker. This forms a functor
AltPlays(—) : CGseq — AM

preserving the interpretation.

5. Abramsky, G. McCusker. Linearity, sharing and state: a fully abstract game semantics for
Idealized Algol with active expressions. 1997
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III. THE SEQUENTIAL FACE
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Probabilistic 1A

Types.
A7 B = U | B ‘ A—= B

Terms.

M;N == x|MN|Xx.M]|Y A

|t | F | if M Ny N,
| skip | M; N PCF

| newref v := binM | M := N | !M +state

| rand() +probabilities
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Full abstraction for PIA 7
Definition
A probabilistic strategy o : A is a function

o : Aug(A) — [0, 1]

satisfying some conditions.

Conjecture

The category PCG of games and (well-bracketed) sequential probabilistic
strategies is intensionally fully abstract for PIA.

Proof.

If o : Ais a probabilistic concurrent strategy, then setting

AltPlays(c) : AltPlays(A) — [0,1]
s = Z qEo 0'(q)
sEAltPlays(q)
[s|=lal

yields a probabilistic strategy in the sense of Danos-Harmer. This induces

AltPlays(—) : PCG — DH .

V. Danos, R. Harmer. Probabilistic game semantics. LICS 2000.
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Refresher on the relational model

Theorem

The category Rel has sets as objects and relations
RCAXB

as morphisms from A to B.
It is a compact closed category with biproducts.
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Theorem

The category Rel has sets as objects and relations
RCAXB

as morphisms from A to B.
It is a compact closed category with biproducts.

B) = {&f) (B~ 1)~
w = {0 W Fa) = (e (),
(A—B) = ((A)+1)x(B)

(0

(x,z) E RRo Ry & Jy, (x,y) € R & (v,2z) € R

U

0)
0)
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Types as gam

Definition

€s

] =

If B has exactly one minimal event;

|A — B

poly_.p

<A-B

ccl

|Al + |B]
[-pol,, polg]
{(a1,2) | a1 <a a2}

{(b1, £2) | b1 <g b2}
{(min(B),a) | a € |Al}

[[B]]: // \\

Example

[(U — U) — B] =
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Definition

If B has exactly one minimal event;

|A — B

poly_.p

<A-B

AA,B

ccl

|Al + [B|

[—poly, polg]

{(a1,a2) | a1 <a @2}
{(b1, b2) | b1 <p b2}
{(min(B), a) | a € |Al}
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[U] =

Definition

If B has exactly one minimal event;

|A— B| =

poly_.p

<A-B

cCl

AA,B

|Al + |B|

[_p01A7 pOIB]

{(a1,a2) | a1 <a @2}
{(b1, b2) | b1 < b2}
{(min(B),a) | a € |A[}

[Aa, Ag]

Bl= .

Example

[(U—-U) —-B] =

q ,Q
v ‘ AN
- N
q+,Q lt+’A - ﬂ-+,A
o
% I
—Q ()aA

42



Types as games

q ° q°
U] = !
[[ ]] 4‘»,«4 HBH = v 4 h N
() ﬂ:JﬁA ﬂ‘+,A
Definition Example
If B has exactly one minimal event; [(U —o U) — B] =
A8l = |A|+|8] 4
1 [—pol,, polg] 2
o = [—pol,, po - N
POla_p DOy, POlp q+’Q g A A
<aes = {(a,2) | a1 <a a2} e
U  {(b1, b2) | b1 <p b2} q 2 ()aA
U {(min(B),a) | a € |A|} |
|
+,4
Mg = [Aa,AB] 0
Definition

A configuration x € C(A) is complete iff every question has an answer.
Write | A the set of non-empty complete configurations of A.




Games and the web

Theorem
For any type A,

JTAT = (A)
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Games and the web

Theorem

For any type A,
JTAL = (A)

g2 ghA N: A (U-U)—-B
e (0, 0), w)

()+,A



Games and the web

Theorem
For any type A,

JTAT = (A)

(U—~U)—B
(0, 0), t)

(U—U)—B
(= (), )
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Collapse of strategies

If o: Alis a strategy, write C(0) = U{C(q) | q € o }.

Definition
Jo=C(o)N(JA)
Example
ceres e (U U) B
R R
[l A7 =7 ~jw o e
A VN T (€0, 0), )




Composition of strategies

Definition
q € Aug(A — B) and p € Aug(B — C) are causally compatible iff

(1) gl =xa+xs & |p| = x&8 + xc
(2) <qU <, is acyclic.

Then, their interaction is
P®q=(xa+xs+xc,(<qU<p)7)

Their composition is
POqG=p®Qq[A—C

Definition

If o: A— B and 7 : B —o C are strategies, then their composition is

TOo={p®q |q€E€ocandp € 7 are causally compatible}

45



Example of composition

Overall composition

U - U -

B

U - U) - B U - U

-4 =Z9,

/q*z/ ! q*’:‘/ \\
2//(\17 | © N4

B 0~ [ 0" |

w,/ \/ /
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Example of composition

Overall composition

W - U - B

U - U - B U - U
_-q _-q _=q
Ve z Ve \
//q*/ \\ //q+A/ \\ 5 q*"‘/ O
1% | o | '(Sv_ I
qa- ) I q 0~ I /
(¥ / (% / /
1 Nn* ()+/ \m \A()+
U - U - B U - U
-qa- -~ -9
é// \ 4 \
/(c:; | ® ‘q: \\ =
q- 0 I 0 !




Example of composition

Overall composition

W - U - B

U - U
= _ - AN
/q+£/ \\ /q+£/ \ q*/:‘/ [ [
Sy L s © 8’ | =
a0 | 0 4 - '
(¥ / (% / /
0" Ty e gl Tyl
U - U) - B U - U U - U - B
o - - >q7
_-q -~ -9 o
7 e \ _—q"
. q"/ \\ @ q*"" | _ 7£/q .
e A A
q" - I s
( o ~a L |
p \\M/ 5o 0
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Example of composition

Overall composition

W - U - B

U - U) - B U U
_-a _-a = =9
/q+£‘/ \\ /q*/ q+£/ \\ _
Sy L s © '(v | =
a- ) I N 0~ ) !
(¥ / (% / /
1 \gw ()+/ \m n
U - U) - B U - U B
_ - _-a T
Ve \ e \
P /q*/ o qt” [ - |
N ! ¥

23
T

46



Example of composition

Overall composition

W -~ U) - B

U - U) - B U - U
-q- -a ==
7z 7z \ 4 \
= q+‘/ \\ - q*‘/ \ q*/“/ \ —
Z\//"" | o | 'dv_ )
q ) I - 0~ I
( / (0 / /
(‘)‘1 \gf ()+A/ \F ot
U - U) - B U - U B
- o b
. \ ;
_ (q’/ \ ® rq+ ! \w
(¥ ¥ ! |
q {\/()’ I 0 /! !
(4 \\\\\\ / !
0 t 0 B
U - U) - B U - U U - U) - B
oA oo N
,q*i/ \\ ® q' \ 2//q\ \‘
2’/(@, | 1y I % . I
q 0 I 0" | ()*v\ ) !
(v / S
0 / \A"+ 0 0 h
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Example of composition

Overall composition

W -~ U) - B

-q

Y

_—a' !
2/‘\‘7 )

q- ) I

e /
AW
@ - v

—% =

&
T




Example of composition

Overall composition

U - U) - B
_ =T
0
_—a' !
1

Y 7
)~ I

q

i /

N \\gf
© -~ v

—9 =

&
T




Example of composition

Overall composition

U - U) - B
=20

~ \

_—a !
Z‘/‘V |

U - U) - B
,q*é// \

2y |

qa- 0~ I
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Example of composition

Overall composition

U - U) - B

U - U B
///qi\ ///'I\ é///qi\ CI’\
/,q+/ | /,q+/ e | 9 [ [ |
e ¢ |
q = | q = | |
S N S
U - U - B v :I
+£// '
© 0w e[l |-
0 I
(0. 0), ) Sy
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Example of composition

Overall composition

U - U) - B U - U) - B U - U B
AR _-a =0 a
_ = q*/ \\ _ q*M \\ q" \\ \\
CE R i
q 0 I q 0 I
!
W P 0* Bt
U - 0 B U—-U
(0 ) ) (O 0))
(0 ): ff)
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Example of composition

Overall composition

U - U) - B U - U) - B U - U B
_-q _-q PL N i
_ = q*/ \\ = q*M \\ q . \\ \\
N T
q 0 I q 0 |
!
A N S o)\
U - U B U—-U B
(0, ))s tt) O, 0
ff
(0, ), ff)
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The deadlock-free lemma & 9 10

Lemma

Foro : A— B, 7: B — C visible strategies, q € o and p € T such that
(1) lal =xa+xs & |p| = x8 + xc,

then, p and q satisfy:

(2) <qU <, is acyclic

Proof.

By descent on the justification pointers. O

8p. Baillot, V. Danos, T. Ehrhard, L. Regnier, Timeless games, CSL 1997

9P.-A. Mellies, Asynchronous games 4: A fully complete model of propositional linear logic,
LICS 2005.

10p Boudes, Thick subtrees, games and experiments, TLCA 2009.

47



The deadlock-free lemma & 9 10

Lemma

Foro: A— B, 7: B — C visible strategies, q € o0 and p € T such that
(1) lal =xa+xs & |p| = x8 + xc,

then, p and q satisfy:

(2) <qU <, is acyclic

Proof.

By descent on the justification pointers.

Theorem

J(=) : CGyis — Rel

8p. Baillot, V. Danos, T. Ehrhard, L. Regnier, Timeless games, CSL 1997

9P.-A. Mellies, Asynchronous games 4: A fully complete model of propositional linear logic,
LICS 2005.

10p_ Boudes, Thick subtrees, games and experiments, TLCA 2009.

47



The deadlock-free lemma & 9 10

Lemma

Foro: A— B, 7: B — C visible strategies, q € o0 and p € T such that
(1) lal =xa+xs & |p| = x8 + xc,

then, p and q satisfy:

(2) <qU <, is acyclic

Proof.
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Theorem

/(=) : CGinn — Rel
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Adding probabilities

PPCF
I:)CGseq,inn

PRel
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The probabilistic relational mode

|11

Definition
PRel has sets as objects, and as morphisms from A to B, matrices

——AxB
(@ab)(ap)caxe € Ry x

with coefficients in R the completed positive reals.

Definition

(ﬁ o a)a,c = Z Qg p * ﬁb,c

beB

Theorem (Ehrhard, Tasson, Pagani)
PRel is fully abstract for PPCF.

1T, Ehrhard, C. Tasson, M. Pagani. Probabilistic coherence spaces are fully abstract for
probabilistic PCF. POPL 2014.
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Probabilistic collapse 12

Theorem
PCGinn is intensionally fully abstract for PPCF.

Proof.
If c:A— B and xa € [A, xg € [ B, we define
([ O)xaxe = Z o(a)
qEo

la|=xa+xp

This yields a functor
J(=) : PCGinn — PRel

preserving the interpretation.

125 Castellan, P. C., H. Paquet, G. Winskel. The concurrent game semantics of Probabilistic
PCF, LICS 2018.
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Perspectives 13

PPCF, PIPA
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13M. de Visme, Event structures for Mixed Choice. CONCUR 2019.
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13M. de Visme, Event structures for Mixed Choice. CONCUR 2019.
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