Functional interpretations and applications

Bruno Dinis
CMAFcIO - University of Lisbon

Rencontres mensuelles "CHoCoLa"
January 20, 2022

Overview

Amuse-bouche
BFI

First course: functional interpretations for NSA
Nonstandard analysis in proof theory
Nonstandard Realizability
Nonstandard Intuitionistic functional interpretation
Second course: a parametrised interpretation
Parametrised interpretations of AL
Parametrised interpretations of IL
Instances
Dessert: realizability with stateful computations for NSA

Outline

Amuse-bouche

BFI

First course: functional interpretations for NSA
Nonstandard analysis in proof theory
Nonstandard Realizability
Nonstandard Intuitionistic functional interpretation
Second course: a parametrised interpretation
Parametrised interpretations of AL
Parametrised interpretations of IL
Instances
Dessert: realizability with stateful computations for NSA

Amuse-bouche

- A convergence statement is a Π_{3}-statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.

Amuse-bouche

- A convergence statement is a Π_{3}-statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- In fact, there exist explicit examples ("Specker sequences") of sequences of computable reals with no computable limit and thus with no computable rate of convergence.

Amuse-bouche

- A convergence statement is a Π_{3}-statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- The next best thing is then what Terence Tao called a rate of metastability, i.e., a bound on the N in the statement

Amuse-bouche

- A convergence statement is a Π_{3}-statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- The next best thing is then what Terence Tao called a rate of metastability, i.e., a bound on the N in the statement

Metastability

$$
\forall \varepsilon>0 \forall f: \mathbb{N} \rightarrow \mathbb{N} \exists N \forall i, j \in[N, N+f(N)]\left(\left\|x_{i}-x_{j}\right\| \leq \varepsilon\right)
$$

Amuse-bouche

- A convergence statement is a Π_{3}-statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- The next best thing is then what Terence Tao called a rate of metastability, i.e., a bound on the N in the statement

Metastability

$\forall k \in \mathbb{N} \forall f: \mathbb{N} \rightarrow \mathbb{N} \exists N \forall i, j \in[N, N+f(N)]\left(\left\|x_{i}-x_{j}\right\| \leq \frac{1}{k+1}\right)$

Amuse-bouche

- A convergence statement is a Π_{3}-statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- The next best thing is then what Terence Tao called a rate of metastability, i.e., a bound on the N in the statement

Metastability

$$
\forall k \in \mathbb{N} \forall f: \mathbb{N} \rightarrow \mathbb{N} \exists N \forall i, j \in[N, f(N)]\left(\left\|x_{i}-x_{j}\right\| \leq \frac{1}{k+1}\right)
$$

Amuse-bouche

- A convergence statement is a Π_{3}-statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- The next best thing is then what Terence Tao called a rate of metastability, i.e., a bound on the N in the statement

Metastability

$$
\forall k \in \mathbb{N} \forall f: \mathbb{N} \rightarrow \mathbb{N} \exists N \forall i, j \in[N, f(N)]\left(\left\|x_{i}-x_{j}\right\| \leq \frac{1}{k+1}\right)
$$

which is a Herbrandization of the Cauchy property of a sequence.

Proof mining

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

Proof mining

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

The underlying theoretical tools:

Proof mining

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

The underlying theoretical tools:

- Ensure that we are always able to extract information for the corresponding quantitative versions

Proof mining

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

The underlying theoretical tools:

- Ensure that we are always able to extract information for the corresponding quantitative versions
- Help navigate the original proof

Proof mining

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

The underlying theoretical tools:

- Ensure that we are always able to extract information for the corresponding quantitative versions
- Help navigate the original proof
- Allow to avoid certain non-essential principles

Proof mining

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

The underlying theoretical tools:

- Ensure that we are always able to extract information for the corresponding quantitative versions
- Help navigate the original proof
- Allow to avoid certain non-essential principles
- Allow to obtain explicit bounds

A very short (and biased) history of proof mining

- J. Herbrand (1930).

A very short (and biased) history of proof mining

- J. Herbrand (1930).
- G. Kreisel: Unwinding of proofs (1951).

A very short (and biased) history of proof mining

- J. Herbrand (1930).
- G. Kreisel: Unwinding of proofs (1951).
- K. Gödel: Dialectica (1958).

A very short (and biased) history of proof mining

- J. Herbrand (1930).
- G. Kreisel: Unwinding of proofs (1951).
- K. Gödel: Dialectica (1958).
- U. Kohlenbach:
- Monotone functional interpretation (1996);

A very short (and biased) history of proof mining

- J. Herbrand (1930).
- G. Kreisel: Unwinding of proofs (1951).
- K. Gödel: Dialectica (1958).
- U. Kohlenbach:
- Monotone functional interpretation (1996);
- Logical metatheorems (2003-05).

A very short (and biased) history of proof mining

- J. Herbrand (1930).
- G. Kreisel: Unwinding of proofs (1951).
- K. Gödel: Dialectica (1958).
- U. Kohlenbach:
- Monotone functional interpretation (1996);
- Logical metatheorems (2003-05).
- F. Ferreira P. Oliva: Bounded functional interpretation (2005).

A very short (and biased) history of proof mining

- J. Herbrand (1930).
- G. Kreisel: Unwinding of proofs (1951).
- K. Gödel: Dialectica (1958).
- U. Kohlenbach:
- Monotone functional interpretation (1996);
- Logical metatheorems (2003-05).
- F. Ferreira P. Oliva: Bounded functional interpretation (2005).
- P. Engrácia: Soundness of the BFI w/ new base types (2009).

A very short (and biased) history of proof mining

- J. Herbrand (1930).
- G. Kreisel: Unwinding of proofs (1951).
- K. Gödel: Dialectica (1958).
- U. Kohlenbach:
- Monotone functional interpretation (1996);
- Logical metatheorems (2003-05).
- F. Ferreira P. Oliva: Bounded functional interpretation (2005).
- P. Engrácia: Soundness of the BFI w/ new base types (2009).
- P. Pinto: First uses of the BFI in proof mining (2016-7).

A very short (and biased) history of proof mining

- J. Herbrand (1930).
- G. Kreisel: Unwinding of proofs (1951).
- K. Gödel: Dialectica (1958).
- U. Kohlenbach:
- Monotone functional interpretation (1996);
- Logical metatheorems (2003-05).
- F. Ferreira P. Oliva: Bounded functional interpretation (2005).
- P. Engrácia: Soundness of the BFI w/ new base types (2009).
- P. Pinto: First uses of the BFI in proof mining (2016-7).
- F. Ferreira, L. Leustean, P. Pinto: Used the BFI to explain the elimination of Weak Compactness (2019).

A very short (and biased) history of proof mining

- J. Herbrand (1930).
- G. Kreisel: Unwinding of proofs (1951).
- K. Gödel: Dialectica (1958).
- U. Kohlenbach:
- Monotone functional interpretation (1996);
- Logical metatheorems (2003-05).
- F. Ferreira P. Oliva: Bounded functional interpretation (2005).
- P. Engrácia: Soundness of the BFI w/ new base types (2009).
- P. Pinto: First uses of the BFI in proof mining (2016-7).
- F. Ferreira, L. Leustean, P. Pinto: Used the BFI to explain the elimination of Weak Compactness (2019).
- P. Pinto, D. : Fixed point theory (2019-...).

Functional interpretations

A functional interpretation is a mapping $f: S \rightarrow T$ such that a formula A (in classical logic) is mapped to a formula

$$
A^{f} \equiv \forall x \exists y A_{f}(x, y)
$$

such that theorems of S are mapped to theorems of T, i.e.

$$
S \vdash A \Rightarrow T \vdash A^{f} .
$$

Functional interpretations

A functional interpretation is a mapping $f: S \rightarrow T$ such that a formula A (in classical logic) is mapped to a formula

$$
A^{f} \equiv \forall x \exists y A_{f}(x, y)
$$

such that theorems of S are mapped to theorems of T, i.e.

$$
S \vdash A \Rightarrow T \vdash A^{f} .
$$

Moreover, f provides a witness for the existential quantifier (term).

$$
S \vdash A \Rightarrow \text { there is a term } t \text { such that } T \vdash A_{f}(t) \text {. }
$$

Functional interpretations

A functional interpretation is a mapping $f: S \rightarrow T$ such that a formula A (in classical logic) is mapped to a formula

$$
A^{f} \equiv \forall x \exists y A_{f}(x, y)
$$

such that theorems of S are mapped to theorems of T, i.e.

$$
S \vdash A \Rightarrow T \vdash A^{f} .
$$

Moreover, f provides a witness for the existential quantifier (term).

$$
S \vdash A \Rightarrow \text { there is a term } t \text { such that } T \vdash A_{f}(t) \text {. }
$$

Functional interpretations allow for the extraction of the (hidden) computational content (captured by t) in the proof of the theorem.

Interpretations with different flavours

- Kleene (numerical realizability) (1952)
- Gödel (Dialectica) (1958)
- Kreisel (modified realizability) (1959)
- Diller and Nahm (variant to avoid the contraction problem) (1974)
- Stein (family of interpretations) (1979)
- Kohlenbach (monotone functional interpretation) (1996)
- Ferreira and Oliva (bounded functional interpretation) (2005)
- Van den Berg, Briseid and Safarik (Herbrandized) (2012)

Outline

Amuse-bouche

BFI

First course: functional interpretations for NSA
Nonstandard analysis in proof theory
Nonstandard Realizability
Nonstandard Intuitionistic functional interpretation
Second course: a parametrised interpretation
Parametrised interpretations of AL
Parametrised interpretations of IL
Instances
Dessert: realizability with stateful computations for NSA

Proof mining with the BFI

We use the Bounded Functional Interpretation (BFI) and its characteristic principles, enriched with a new base type for elements of the space and the (universal) axioms for the Hilbert space.

Proof mining with the BFI

We use the Bounded Functional Interpretation (BFI) and its characteristic principles, enriched with a new base type for elements of the space and the (universal) axioms for the Hilbert space.

Proof mining with the BFI

We use the Bounded Functional Interpretation (BFI) and its characteristic principles, enriched with a new base type for elements of the space and the (universal) axioms for the Hilbert space.

- Usually proof mining disregards precise witnesses, caring only for bounds on them

Proof mining with the BFI

We use the Bounded Functional Interpretation (BFI) and its characteristic principles, enriched with a new base type for elements of the space and the (universal) axioms for the Hilbert space.

- Usually proof mining disregards precise witnesses, caring only for bounds on them
- Completely new translation of formulas

Proof mining with the BFI

We use the Bounded Functional Interpretation (BFI) and its characteristic principles, enriched with a new base type for elements of the space and the (universal) axioms for the Hilbert space.

- Usually proof mining disregards precise witnesses, caring only for bounds on them
- Completely new translation of formulas
- Independence on bounded parameters is made explicit (via the interpretation itself)

Majorizability

Let PA^{ω} be Peano Arithmetic in all finite types. Types are defined inductively as follows

Definition

0 is a type.
If σ, τ are types, then $\sigma \rightarrow \tau$ is also a type.

Majorizability

Let PA^{ω} be Peano Arithmetic in all finite types. Types are defined inductively as follows

Definition

0 is a type.
If σ, τ are types, then $\sigma \rightarrow \tau$ is also a type.

Definition

- The Howard-Bezem strong majorizability \leq_{σ}^{*} is defined by:
- $s \leq_{0}^{*} t: \equiv s \leq_{0} t$;

Majorizability

Let PA^{ω} be Peano Arithmetic in all finite types. Types are defined inductively as follows

Definition

0 is a type.
If σ, τ are types, then $\sigma \rightarrow \tau$ is also a type.

Definition

- The Howard-Bezem strong majorizability \leq_{σ}^{*} is defined by:
- $s \leq_{0}^{*} t: \equiv s \leq_{0} t$;
- $s \leq_{\rho \rightarrow \sigma}^{*} t: \equiv \forall v \forall u \leq_{\rho}^{*} v\left(s u \leq_{\sigma}^{*} t v \wedge t u \leq_{\sigma}^{*} t v\right)$.

Majorizability

Let PA^{ω} be Peano Arithmetic in all finite types. Types are defined inductively as follows

Definition

0 is a type.
If σ, τ are types, then $\sigma \rightarrow \tau$ is also a type.

Definition

- The Howard-Bezem strong majorizability \leq_{σ}^{*} is defined by:
- $s \leq_{0}^{*} t: \equiv s \leq_{0} t ;$
- $s \leq_{\rho \rightarrow \sigma}^{*} t: \equiv \forall v \forall u \leq_{\rho}^{*} v\left(s u \leq_{\sigma}^{*} t v \wedge t u \leq_{\sigma}^{*} t v\right)$.
- \leq_{σ}^{*} is not reflexive! We say that x^{σ} is monotone if and only if $x \leq{ }_{\sigma}^{*} x$.

Majorizability

Proposition

1. $\mathrm{PA}_{\leq * *}^{\omega} \vdash x \leq_{\sigma}^{*} y \rightarrow y \leq_{\sigma}^{*} y$;
2. $\mathrm{PA}_{\leq^{*}}^{\omega} \vdash x \leq_{\sigma}^{*} y \wedge y \leq_{\sigma}^{*} z \rightarrow x \leq_{\sigma}^{*} z$.

Theorem (Howard's majorizability theorem)

For all closed terms t^{σ} of $\mathrm{PA}_{\leq *}^{\omega}$, there is a closed term s^{σ} of $\mathrm{PA}_{\leq *}^{\omega}$ such that $\mathrm{PA}_{\leq_{*}^{*}}^{\omega} \vdash t \leq_{\sigma}^{*} s$.

Quantifiers

The usual (unbounded quantifiers) $\forall x A(x)$ and $\exists x A(x)$.

Quantifiers

The usual (unbounded quantifiers) $\forall x A(x)$ and $\exists x A(x)$.
The bounded quantifiers $\forall x \leq^{*} t A(x)$ and $\exists x \leq^{*} t A(x)$.

Quantifiers

The usual (unbounded quantifiers) $\forall x A(x)$ and $\exists x A(x)$.
The bounded quantifiers $\forall x \leq^{*} t A(x)$ and $\exists x \leq^{*} t A(x)$.
The monotone quantifiers $\tilde{\forall} x A(x)$ and $\tilde{\exists} x A(x)$.
(Abbrev. of $\forall x \leq^{*} x A(x)$ and $\exists x \leq^{*} x A(x)$ respect.).

Quantifiers

The usual (unbounded quantifiers) $\forall x A(x)$ and $\exists x A(x)$.
The bounded quantifiers $\forall x \leq^{*} t A(x)$ and $\exists x \leq^{*} t A(x)$.
The monotone quantifiers $\tilde{\forall} x A(x)$ and $\tilde{\exists} x A(x)$. (Abbrev. of $\forall x \leq^{*} x A(x)$ and $\exists x \leq^{*} x A(x)$ respect.).

Formulas that don't contain unbounded quantifiers are called bounded formulas.

Bounded functional interpretation (Ferreira and Oliva)

Assign to each formula A of $\mathrm{PA}_{\leq^{*}}^{\omega}$ the formulas A^{f} and $A_{f}(a ; b)$ of $\mathrm{PA}_{\leq_{*}}^{\omega}$ such that $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ according to the following clauses.

Bounded functional interpretation (Ferreira and Oliva)

Assign to each formula A of $\mathrm{PA}_{\leq^{*}}^{\omega}$ the formulas A^{f} and $A_{f}(a ; b)$ of $\mathrm{PA}_{\leq_{*}}^{\omega}$ such that $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ according to the following clauses.

1. A^{f} and A_{f} are A for atomic formulas A;

Bounded functional interpretation (Ferreira and Oliva)

Assign to each formula A of $\mathrm{PA}_{\leq^{*}}^{\omega}$ the formulas A^{f} and $A_{f}(a ; b)$ of $\mathrm{PA}_{\leq_{*}}^{\omega}$ such that $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ according to the following clauses.

1. A^{f} and A_{f} are A for atomic formulas A;

If $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ and $B^{f} \equiv \tilde{\forall} c \tilde{\exists} d B_{f}(c ; d)$ then:

Bounded functional interpretation (Ferreira and Oliva)

Assign to each formula A of $\mathrm{PA}_{\leq^{*}}^{\omega}$ the formulas A^{f} and $A_{f}(a ; b)$ of $\mathrm{PA}_{\leq *}^{\omega}$ such that $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ according to the following clauses.

1. A^{f} and A_{f} are A for atomic formulas A;

If $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ and $B^{f} \equiv \tilde{\forall} c \tilde{\exists} d B_{f}(c ; d)$ then:
2. $(A \vee B)^{f}: \equiv \tilde{\forall} a, c \tilde{\exists} b, d\left(A_{f}(a ; b) \vee B_{f}(c ; d)\right)$;

Bounded functional interpretation (Ferreira and Oliva)

Assign to each formula A of $\mathrm{PA}_{\leq^{*}}^{\omega}$ the formulas A^{f} and $A_{f}(a ; b)$ of $\mathrm{PA}_{\leq *}^{\omega}$ such that $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ according to the following clauses.

1. A^{f} and A_{f} are A for atomic formulas A;

If $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ and $B^{f} \equiv \tilde{\forall} c \tilde{\exists} d B_{f}(c ; d)$ then:
2. $(A \vee B)^{f}: \equiv \tilde{\forall} a, c \tilde{\exists} b, d\left(A_{f}(a ; b) \vee B_{f}(c ; d)\right)$;
3. $(\neg A)^{f}: \equiv \tilde{\forall} h \exists \tilde{\exists} a a^{\prime} \leq^{*} a \neg A_{f}\left(a^{\prime} ; h a^{\prime}\right)$;

Bounded functional interpretation (Ferreira and Oliva)

Assign to each formula A of $\mathrm{PA}_{\leq}^{\omega}$ the formulas A^{f} and $A_{f}(a ; b)$ of $\mathrm{PA}_{\leq *}^{\omega}$ such that $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ according to the following clauses.

1. A^{f} and A_{f} are A for atomic formulas A;

If $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ and $B^{f} \equiv \tilde{\forall} c \tilde{\exists} d B_{f}(c ; d)$ then:
2. $(A \vee B)^{f}: \equiv \tilde{\forall} a, c \tilde{\exists} b, d\left(A_{f}(a ; b) \vee B_{f}(c ; d)\right)$;
3. $(\neg A)^{f}: \equiv \tilde{\forall} h \exists \tilde{\exists} a a^{\prime} \leq^{*} a \neg A_{f}\left(a^{\prime} ; h a^{\prime}\right)$;
4. $(\forall x A(x))^{f}: \equiv \tilde{\forall} e \tilde{\forall} a \tilde{\exists} b \forall x \leq^{*} e A_{f}(x, a ; b)$;

Bounded functional interpretation (Ferreira and Oliva)

Assign to each formula A of $\mathrm{PA}_{\leq *}^{\omega}$ the formulas A^{f} and $A_{f}(a ; b)$ of $\mathrm{PA}_{\leq *}^{\omega}$ such that $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ according to the following clauses.

1. A^{f} and A_{f} are A for atomic formulas A;

If $A^{f} \equiv \tilde{\forall} a \tilde{\exists} b A_{f}(a ; b)$ and $B^{f} \equiv \tilde{\forall} c \tilde{\exists} d B_{f}(c ; d)$ then:
2. $(A \vee B)^{f}: \equiv \tilde{\forall} a, c \tilde{\exists} b, d\left(A_{f}(a ; b) \vee B_{f}(c ; d)\right)$;
3. $(\neg A)^{f}: \equiv \tilde{\forall} h \exists \tilde{\exists} a a^{\prime} \leq^{*} a \neg A_{f}\left(a^{\prime} ; h a^{\prime}\right)$;
4. $(\forall x A(x))^{f}: \equiv \tilde{\forall} e \tilde{\forall} a \tilde{\exists} b \forall x \leq^{*} e A_{f}(x, a ; b)$;
5. $\left(\forall x \leq^{*} t A(x)\right)^{f}: \equiv \tilde{\forall} a \tilde{\exists} b \forall x \leq^{*} t A_{f}(x, a ; b)$.

Caracteristic Principles

Definition

1. $\left(\mathrm{mAC}_{\mathrm{bd}}^{\omega}\right) \equiv \tilde{\forall} x \tilde{\exists} y A_{\mathrm{bd}}(x, y) \rightarrow \tilde{\exists} f \tilde{\forall} x \tilde{\exists} y \leq^{*} f x A_{\mathrm{bd}}(x, y)$;

Caracteristic Principles

Definition

1. $\left(\mathrm{mAC}_{\mathrm{bd}}^{\omega}\right) \equiv \tilde{\forall} x \tilde{\exists} y A_{\mathrm{bd}}(x, y) \rightarrow \tilde{\exists} f \tilde{\forall} x \tilde{\exists} y \leq{ }^{*} f x A_{\mathrm{bd}}(x, y)$;
2. $\left(\right.$ Coll $\left._{\text {bd }}^{\omega}\right) \equiv$

$$
\forall x \leq^{*} t \exists y A_{\mathrm{bd}}(x, y) \rightarrow \tilde{\exists} Y \forall x \leq^{*} t \exists y \leq^{*} Y A_{\mathrm{bd}}(x, y) ;
$$

Caracteristic Principles

Definition

1. $\left(\mathrm{mAC}_{\mathrm{bd}}^{\omega}\right) \equiv \tilde{\forall} x \tilde{\exists} y A_{\mathrm{bd}}(x, y) \rightarrow \tilde{\exists} f \tilde{\forall} x \tilde{\exists} y \leq^{*} f x A_{\mathrm{bd}}(x, y)$;
2. $\left(\right.$ Coll $\left._{\text {bd }}^{\omega}\right) \equiv$

$$
\forall x \leq^{*} t \exists y A_{\mathrm{bd}}(x, y) \rightarrow \tilde{\exists} Y \forall x \leq^{*} t \exists y \leq^{*} Y A_{\mathrm{bd}}(x, y)
$$

3. $\left(\mathrm{MAJ}^{\omega}\right) \equiv \forall x \exists y\left(x \leq^{*} y\right)$.

Soundness

Theorem (soundness theorem of f)

For all formulas A of $\mathrm{PA}_{\leq *}^{\omega}$, if

$$
\mathrm{PA}_{\leq^{*}}^{\omega}+\mathrm{P} \vdash \mathrm{~A},
$$

then there are closed monotone terms t of appropriate types such that

$$
\mathrm{PA}_{\leq^{*}}^{\omega} \vdash \tilde{\forall} a \tilde{\exists} b \leq^{*} \operatorname{ta} A_{f}(a ; b)
$$

Abbreviation

$$
P:=m A C_{b d}^{\omega}+\text { Coll }_{b d}^{\omega}+\text { MAJ }^{\omega} .
$$

Characterization

Theorem (characterization theorem of f)
For all formulas A of $\mathrm{PA}_{\leq * *}^{\omega}$, we have

$$
\mathrm{PA}_{\leq^{*}}^{\omega}+\mathrm{P} \vdash A \leftrightarrow A^{f} .
$$

Abbreviation

$P:=m A C_{b d}^{\omega}+C_{o l l}^{\omega}{ }_{b d}^{\omega}+M A J$.

From arithmetic to Hilbert spaces

We add:

- a new base type H for objects in an abstract Hilbert space and extend the notion of majorizability in an appropriate way.

From arithmetic to Hilbert spaces

We add:

- a new base type H for objects in an abstract Hilbert space and extend the notion of majorizability in an appropriate way.
- axioms characterizing the abstract space and all the required new constants.

From arithmetic to Hilbert spaces

We add:

- a new base type H for objects in an abstract Hilbert space and extend the notion of majorizability in an appropriate way.
- axioms characterizing the abstract space and all the required new constants.
- modulus (of convergence, of "Cauchyness", of asymptotic regularity, of metastability, etc.) witnessing problematic existential quantifiers.

From arithmetic to Hilbert spaces

We add:

- a new base type H for objects in an abstract Hilbert space and extend the notion of majorizability in an appropriate way.
- axioms characterizing the abstract space and all the required new constants.
- modulus (of convergence, of "Cauchyness", of asymptotic regularity, of metastability, etc.) witnessing problematic existential quantifiers.
As long as the new constants are majorizable and the new axioms are universal the proof of the Soundness theorem can be extended to this new theory.

An example: Browder's theorem

Theorem (Browder 1967)

Let H be an Hilbert space and $U: H \rightarrow H$ a non-expansive map. Suppose that C is a convex, closed and bounded subset of H, $0 \in C$ and that U maps C into C. For every $n \in \mathbb{N}$, let $U_{n}: H \rightarrow H$ the strict contraction $U_{n}(x)=\left(1-\frac{1}{n+1}\right) U(x)$ and let u_{n} the unique fixed point of U_{n}. Then the sequence $\left(u_{n}\right)$ strongly converges for a fixed point $u \in C$ of U

A quantitative version of Browder's theorem

Theorem (Kohlenbach 2011; Ferreira, Leustean, Pinto 2019)
For all $k \in \mathbb{N}$ and function $f: \mathbb{N} \rightarrow \mathbb{N}$,

$$
\exists n \leq \phi(k, f) \forall i, j \in[n, n+f n]\left(\left\|u_{i}-u_{j}\right\| \leq \frac{1}{2^{k}}\right) .
$$

A quantitative version of Browder's theorem

Theorem (Kohlenbach 2011; Ferreira, Leustean, Pinto 2019)

For all $k \in \mathbb{N}$ and function $f: \mathbb{N} \rightarrow \mathbb{N}$,

$$
\exists n \leq \phi(k, f) \forall i, j \in[n, n+f n]\left(\left\|u_{i}-u_{j}\right\| \leq \frac{1}{2^{k}}\right) .
$$

For f increasing one obtains the following rate of convergence

$$
\phi(k, f):=2^{2 g_{k}^{(r)}}(0)+4+2 d
$$

where

- d is an upper bound of the diameter of C.
- $\left.g_{k}(n):=2 k+d+5+\left\lceil\log _{2}\left(2^{2 n+4+2 d}\right)+f\left(2^{2 n+4+2 d}\right)+1\right)\right\rceil$.
- $r:=2^{2 k+4 d+9}$.

Outline

Amuse-bouche

BFI

First course: functional interpretations for NSA
Nonstandard analysis in proof theory
Nonstandard Realizability
Nonstandard Intuitionistic functional interpretation
Second course: a parametrised interpretation
Parametrised interpretations of AL
Parametrised interpretations of IL
Instances
Dessert: realizability with stateful computations for NSA

Some (arithmetical) intuitions

- Conservative extension

Some (arithmetical) intuitions

- Conservative extension
- Nonstandard naturals are "big"

Some (arithmetical) intuitions

- Conservative extension
- Nonstandard naturals are "big"
- The classes of standard and nonstandard numbers are "robust"

Some (arithmetical) intuitions

- Conservative extension
- Nonstandard naturals are "big"
- The classes of standard and nonstandard numbers are "robust"
- Overspill and Underspill

The simplest example: ENA

Extend the language of mathematics (e.g. ZFC) with a new (undefined) predicate st

The simplest example: ENA

Extend the language of mathematics (e.g. ZFC) with a new (undefined) predicate st

Internal formulas $=$ "Without st".
External formulas $=$ "With st".

The axioms of ENA

Axiom
 - st(0)

The axioms of ENA

```
Axiom
- \(\operatorname{st}(0)\)
- \(\forall n \in \mathbb{N}(\operatorname{st}(n) \Rightarrow \operatorname{st}(n+1))\)
```


The axioms of ENA

Axiom

- $\operatorname{st}(0)$
- $\forall n \in \mathbb{N}(\operatorname{st}(n) \Rightarrow \operatorname{st}(n+1))$
- $\exists \omega \in \mathbb{N}(\neg \operatorname{st}(\omega))$

The axioms of ENA

Axiom

- $\operatorname{st}(0)$
- $\forall n \in \mathbb{N}(\operatorname{st}(n) \Rightarrow \operatorname{st}(n+1))$
- $\exists \omega \in \mathbb{N}(\neg \operatorname{st}(\omega))$

For each external formula Φ

- $\left(\Phi(0) \wedge \forall^{\text {st }} n(\Phi(n) \Rightarrow \Phi(n+1))\right) \Rightarrow \forall^{\text {st }} n \Phi(n)$

The axioms of ENA

Axiom

- $\operatorname{st}(0)$
- $\forall n \in \mathbb{N}(\operatorname{st}(n) \Rightarrow \operatorname{st}(n+1))$
- $\exists \omega \in \mathbb{N}(\neg \operatorname{st}(\omega))$

For each external formula Φ

- $\left(\Phi(0) \wedge \forall^{\text {st }} n(\Phi(n) \Rightarrow \Phi(n+1))\right) \Rightarrow \forall^{\text {st }} n \Phi(n)$
$\rightsquigarrow \forall^{\text {st }} n \Phi(n)$ abbreviates $\forall n(\operatorname{st}(n) \Rightarrow \Phi(n))$.

How to be nonstandard?

- Model theory: Compactness theorem, ultrafilters, ultralimits, superstructures,... (Robinson, Luxemburg, Keisler, ...)
- Set theory: IST, HST,... Language $\{\in$, st $\}$ (Nelson, Hrbacek, Kanovei, Reeken, ...)
- Algebraic: (Benci, Di Nasso and Forti, D. and Van den Berg)

Functional interpretations using NSA

- Pioneer works by Moerdijk, Palmgren and Avigad

Functional interpretations using NSA

- Pioneer works by Moerdijk, Palmgren and Avigad
- "A functional interpretation of nonstandard arithmetic " (Van den Berg et al.)

Functional interpretations using NSA

- Pioneer works by Moerdijk, Palmgren and Avigad
- "A functional interpretation of nonstandard arithmetic " (Van den Berg et al.)
- "Nonstandardness and the bounded functional interpretation" (Ferreira, Gaspar)

Functional interpretations using NSA

- Pioneer works by Moerdijk, Palmgren and Avigad
- "A functional interpretation of nonstandard arithmetic " (Van den Berg et al.)
- "Nonstandardness and the bounded functional interpretation" (Ferreira, Gaspar)
- "Intuitionistic nonstandard bounded interpretations" (D., Gaspar)

Functional interpretations using NSA

- Pioneer works by Moerdijk, Palmgren and Avigad
- "A functional interpretation of nonstandard arithmetic " (Van den Berg et al.)
- "Nonstandardness and the bounded functional interpretation" (Ferreira, Gaspar)
- "Intuitionistic nonstandard bounded interpretations" (D., Gaspar)
- "Realizability with stateful computations for NSA" (D., Miquey)

Most works are inspired by Nelson's IST

Internal set theory

- Transfer: $A(x)$ internal

$$
\forall^{\mathrm{st}} x \cdot A(x) \Longrightarrow \forall x \cdot A(x)
$$

- Idealization: $R(x, y)$ internal relation

$$
\forall^{\text {stfin }} z \cdot \exists y \cdot \forall x \in z \cdot R(x, y) \Rightarrow \exists y \cdot \forall^{\text {st }} x \cdot R(x, y)
$$

- Standardization: For any $C(x)$

$$
\forall^{\text {st }} B \cdot \exists^{\text {st }} A \cdot \forall^{\text {st }} z \cdot(z \in A \Leftrightarrow z \in B \wedge C(z))
$$

$\mathrm{E}-\mathrm{H} \mathrm{A}_{\mathrm{st}}^{\omega}$

Enrich the language and the axioms of E-HA ${ }^{\omega}$ as follows.
$-\mathrm{st}^{\sigma}\left(t^{\sigma}\right)$ (for each finite type σ).

$\mathrm{E}-\mathrm{H} \mathrm{A}_{\mathrm{st}}^{\omega}$

Enrich the language and the axioms of E-HA ${ }^{\omega}$ as follows.

- $\mathrm{st}^{\sigma}\left(t^{\sigma}\right)$ (for each finite type σ).
- Standardness axioms:

$\mathrm{E}-\mathrm{H} \mathrm{A}_{\mathrm{st}}^{\omega}$

Enrich the language and the axioms of $\mathrm{E}-\mathrm{HA}^{\omega}$ as follows.
$-\mathrm{st}^{\sigma}\left(t^{\sigma}\right)$ (for each finite type σ).

- Standardness axioms:
- $x={ }_{\sigma} y \wedge \mathrm{st}^{\sigma}(x) \rightarrow \mathrm{st}^{\sigma}(y)$;

$\mathrm{E}-\mathrm{H} \mathrm{A}_{\mathrm{st}}^{\omega}$

Enrich the language and the axioms of E-HA ${ }^{\omega}$ as follows.
$-\mathrm{st}^{\sigma}\left(t^{\sigma}\right)$ (for each finite type σ).

- Standardness axioms:
- $x={ }_{\sigma} y \wedge \mathrm{st}^{\sigma}(x) \rightarrow \mathrm{st}^{\sigma}(y)$;
$-\mathrm{st}^{\sigma}(y) \wedge x \leq_{\sigma}^{*} y \rightarrow \mathrm{st}^{\sigma}(x)$;

$\mathrm{E}-\mathrm{H} \mathrm{A}_{\mathrm{st}}^{\omega}$

Enrich the language and the axioms of E-HA ${ }^{\omega}$ as follows.

- $\mathrm{st}^{\sigma}\left(t^{\sigma}\right)$ (for each finite type σ).
- Standardness axioms:
- $x={ }_{\sigma} y \wedge \mathrm{st}^{\sigma}(x) \rightarrow \mathrm{st}^{\sigma}(y)$;
$-\mathrm{st}^{\sigma}(y) \wedge x \leq_{\sigma}^{*} y \rightarrow \mathrm{st}^{\sigma}(x)$;
$-\mathrm{st}^{\sigma}(t)$ for each closed term t;

$\mathrm{E}-\mathrm{H} \mathrm{A}_{\mathrm{st}}^{\omega}$

Enrich the language and the axioms of E-HA ${ }^{\omega}$ as follows.

- $\mathrm{st}^{\sigma}\left(t^{\sigma}\right)$ (for each finite type σ).
- Standardness axioms:
- $x={ }_{\sigma} y \wedge \mathrm{st}^{\sigma}(x) \rightarrow \mathrm{st}^{\sigma}(y)$;
$-\mathrm{st}^{\sigma}(y) \wedge x \leq_{\sigma}^{*} y \rightarrow \mathrm{st}^{\sigma}(x)$;
- $\mathrm{st}^{\sigma}(t)$ for each closed term t;
$-\mathrm{st}^{\sigma \rightarrow \tau}(x) \wedge \mathrm{st}^{\sigma}(y) \rightarrow \mathrm{st}^{\tau}(x y)$;

$\mathrm{E}-\mathrm{H} \mathrm{A}_{\mathrm{st}}^{\omega}$

Enrich the language and the axioms of E-HA ${ }^{\omega}$ as follows.

- $\mathrm{st}^{\sigma}\left(t^{\sigma}\right)$ (for each finite type σ).
- Standardness axioms:
- $x={ }_{\sigma} y \wedge \mathrm{st}^{\sigma}(x) \rightarrow \mathrm{st}^{\sigma}(y)$;
$-\mathrm{st}^{\sigma}(y) \wedge x \leq_{\sigma}^{*} y \rightarrow \mathrm{st}^{\sigma}(x)$;
- $\mathrm{st}^{\sigma}(t)$ for each closed term t;
$-\mathrm{st}^{\sigma \rightarrow \tau}(x) \wedge \mathrm{st}^{\sigma}(y) \rightarrow \mathrm{st}^{\tau}(x y)$;
- External induction rule:

$$
\frac{\Phi(0) \quad \forall x^{0}\left(\mathrm{st}^{0}(x) \rightarrow(\Phi(x) \rightarrow \Phi(x+1))\right)}{\forall x^{0}\left(\mathrm{st}^{0}(x) \rightarrow \Phi(x)\right)}
$$

Some abbreviations

- $\tilde{\forall} x \varphi(x)$ abbreviates $\forall x\left(x \leq^{*} x \rightarrow \varphi(x)\right)$.
- $\exists x \varphi(x)$ abbreviates $\exists x\left(x \leq^{*} x \wedge \varphi(x)\right)$.
- $\forall^{\text {st }} x \varphi(x)$ abbreviates $\forall x(\operatorname{st}(x) \rightarrow \varphi(x))$.
- $\exists^{\text {st }} x \varphi(x)$ abbreviates $\exists x(\operatorname{st}(x) \wedge \varphi(x))$.

Nonstandard bounded modified realizability

(jww J. Gaspar)

Assign to each formula Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$ the formulas Φ^{b} and $\Phi_{\mathrm{b}}(\mathrm{a})$ of $\mathrm{E}-\mathrm{HA} \mathrm{st}_{\mathrm{st}}^{\omega}$ such that $\Phi^{\mathrm{b}} \equiv \tilde{\exists}^{\text {st }} a \Phi_{\mathrm{b}}($ a) according to the following clauses:

1. $\Phi^{\mathrm{b}}: \equiv[\Phi]$ for internal atomic formulas Φ;
2. $\operatorname{st}(t)^{\mathrm{b}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[t \leq^{*} \mathrm{a}\right]$;

Nonstandard bounded modified realizability

(jww J. Gaspar)

Assign to each formula Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$ the formulas Φ^{b} and $\Phi_{\mathrm{b}}(\mathrm{a})$ of $\mathrm{E}-\mathrm{HA} \mathrm{st}_{\mathrm{st}}^{\omega}$ such that $\Phi^{\mathrm{b}} \equiv \tilde{\exists}^{\text {st }} a \Phi_{\mathrm{b}}($ a) according to the following clauses:

1. $\Phi^{\mathrm{b}}: \equiv[\Phi]$ for internal atomic formulas Φ;
2. $\operatorname{st}(t)^{\mathrm{b}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[t \leq^{*} \mathrm{a}\right]$;

If $\Phi^{\mathrm{b}} \equiv \tilde{\exists}^{s t}{ }_{a} \Phi_{\mathrm{b}}(a)$ and $\Psi^{\mathrm{b}} \equiv \tilde{\exists}^{s t} b \psi_{\mathrm{b}}(b)$, then:

Nonstandard bounded modified realizability

(jww J. Gaspar)

Assign to each formula Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$ the formulas Φ^{b} and $\Phi_{\mathrm{b}}(\mathrm{a})$ of $\mathrm{E}-\mathrm{HA} \mathrm{st}_{\mathrm{st}}^{\omega}$ such that $\Phi^{\mathrm{b}} \equiv \tilde{\exists}^{\text {st }} a \Phi_{\mathrm{b}}($ a) according to the following clauses:

1. $\Phi^{\mathrm{b}}: \equiv[\Phi]$ for internal atomic formulas Φ;
2. $\operatorname{st}(t)^{\mathrm{b}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[t \leq^{*} a\right]$;

If $\phi^{\mathrm{b}} \equiv \tilde{\exists}^{\mathrm{st}}{ }_{a} \Phi_{\mathrm{b}}(a)$ and $\psi^{\mathrm{b}} \equiv \tilde{\exists}^{\text {st }} b \psi_{\mathrm{b}}(b)$, then:
3. $(\Phi \wedge \Psi)^{\mathrm{b}}: \equiv \tilde{\exists}^{\mathrm{st}} a, b\left[\Phi_{\mathrm{b}}(a) \wedge \Psi_{\mathrm{b}}(b)\right]$;
4. $(\Phi \vee \Psi)^{\mathrm{b}}: \equiv \tilde{\exists}^{\mathrm{st}} a, b\left[\Phi_{\mathrm{b}}(a) \vee \Psi_{\mathrm{b}}(b)\right]$;
5. $(\Phi \rightarrow \Psi)^{\mathrm{b}}: \equiv \tilde{\exists}^{\mathrm{st}} B\left[\tilde{\forall}^{\mathrm{st}} a\left(\Phi_{\mathrm{b}}(a) \rightarrow \Psi_{\mathrm{b}}(B a)\right)\right]$;
6. $(\forall x \Phi)^{\mathrm{b}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[\forall x \Phi_{\mathrm{b}}(\mathrm{a})\right]$;
7. $(\exists x \Phi)^{\mathrm{b}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[\exists x \Phi_{\mathrm{b}}(\mathrm{a})\right]$.

Monotonicity

Lemma (monotonicity of b)
For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, we have

$$
\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega} \vdash \Phi_{\mathrm{b}}(a) \wedge a \leq^{*} c \rightarrow \Phi_{\mathrm{b}}(c) .
$$

$\tilde{\exists}^{\text {st }}$ _free formulas

Definition

We say that a formula of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$ is $\tilde{\exists}^{\text {st }}$-free if and only if it is built:

1. from atomic internal formulas $s=0 t$;
2. by conjunctions \wedge;
3. by disjunctions \vee;
4. by implications \rightarrow;
5. by quantifications \forall and \exists (so also $\tilde{\forall}$ and $\tilde{\exists}$);
6. by monotone standard universal quantifications $\tilde{\forall}^{\text {st }}$ (but, of course, not $\tilde{\exists}^{s t}$).

$\tilde{\exists}^{\text {st }}$ _free formulas

Lemma

$\tilde{\exists}^{\text {st }}$ _free formulas

Lemma

- For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, the formula $\Phi_{\mathrm{b}}(a)$ is $\tilde{\Xi}^{\text {st }}$-free.

Caracteristic Principles

Definition

$-\mathrm{mAC}{ }^{\omega} \equiv \tilde{\forall}^{\mathrm{st}} x \tilde{\exists}^{\mathrm{st}} y \Phi \rightarrow \tilde{\exists}^{\mathrm{st}} Y \tilde{\forall}^{\mathrm{st}} x \tilde{\exists} y \leq{ }^{*} Y x \Phi$;

- $\mathrm{R}^{\omega} \equiv \forall x \exists^{\text {st }} y \Phi \rightarrow \tilde{\exists}^{\text {st }} z \forall x \exists y \leq^{*} z \Phi$;

- MAJ ${ }^{\omega} \equiv \forall^{\text {st }} x \exists^{\text {st }} y\left(x \leq^{*} y\right)$.

Caracteristic Principles

Definition

- $\mathrm{mAC}{ }^{\omega} \equiv \tilde{\forall}^{\mathrm{st}} x \tilde{\exists}^{\mathrm{st}} y \Phi \rightarrow \tilde{\exists}^{\mathrm{st}} Y \tilde{\forall}^{\mathrm{st}} x \tilde{\exists} y \leq{ }^{*} Y x \Phi$;
- $\mathrm{R}^{\omega} \equiv \forall x \exists^{\text {st }} y \Phi \rightarrow \tilde{\exists}^{\mathrm{st}} z \forall x \exists y \leq^{*} z \Phi$;

- MAJ ${ }^{\omega} \equiv \forall^{\text {st }} x \exists^{\text {st }} y\left(x \leq^{*} y\right)$.

Proposition

The principle R^{ω} implies the principle MAJ ${ }^{\omega}$, that is $E-H A_{s t}^{\omega}+R^{\omega}$ proves all instances of MAJ ${ }^{\omega}$

Soundness

Theorem (soundness theorem of b)

For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, if

$$
\mathrm{E}-\mathrm{HA} \mathrm{st}^{\omega}+\mathrm{P} \vdash \Phi,
$$

then there are closed monotone terms t of appropriate types such that

$$
\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega} \vdash \Phi_{\mathrm{b}}(t)
$$

Abbreviation

$$
P:=E-H A_{s t}^{\omega}+m A C^{\omega}+R^{\omega}+\mathrm{IP}_{\neq \mathrm{st}}^{\omega}+\mathrm{MAJ}^{\omega} .
$$

Characterization

Theorem (Characterization theorem of b)

For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, we have

$$
\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}+\mathrm{P} \vdash \Phi \leftrightarrow \Phi^{\mathrm{b}} .
$$

Abbreviation
$P:=E-H A_{s t}^{\omega}+m A C^{\omega}+R^{\omega}+I P_{\nexists s t}^{\omega}+M A J^{\omega}$.

Intuitionistic nonstandard bounded functional interpretation

Assign to each formula Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$ the formulas Φ^{B} and $\Phi_{\mathrm{B}}(a ; b)$ of $\mathrm{E}-\mathrm{HA} \mathrm{s}_{\mathrm{st}}^{\omega}$ such that $\Phi^{\mathrm{B}} \equiv \tilde{\exists}^{\mathrm{st}} a \tilde{\forall}^{\mathrm{st}} b \Phi_{\mathrm{B}}(a ; b)$ according to the following clauses.

1. $\Phi^{\mathrm{B}}: \equiv[\Phi]$ for internal atomic formulas Φ;
2. $\operatorname{st}(t)^{\mathrm{B}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[t \leq^{*} a\right]$.

Intuitionistic nonstandard bounded functional interpretation

Assign to each formula Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$ the formulas Φ^{B} and $\Phi_{\mathrm{B}}(a ; b)$ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$ such that $\Phi^{\mathrm{B}} \equiv \tilde{\exists}^{\text {st }} a \tilde{\forall}^{\text {st }} b \Phi_{\mathrm{B}}(a ; b)$ according to the following clauses.

1. $\Phi^{\mathrm{B}}: \equiv[\Phi]$ for internal atomic formulas Φ;
2. $\operatorname{st}(t)^{\mathrm{B}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[t \leq^{*} a\right]$.

If $\Phi^{\mathrm{B}} \equiv \tilde{\exists}^{\mathrm{st}} a \tilde{\forall}^{\text {st }} b \Phi_{\mathrm{B}}(a ; b)$ and $\Psi^{\mathrm{B}} \equiv \tilde{\exists}^{s t} c \tilde{\forall}^{\text {st }} d \Psi_{\mathrm{B}}(c ; d)$ then:

Intuitionistic nonstandard bounded functional interpretation

Assign to each formula Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$ the formulas Φ^{B} and $\Phi_{\mathrm{B}}(a ; b)$ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$ such that $\Phi^{\mathrm{B}} \equiv \tilde{\exists}^{\text {st }} a \tilde{\forall}^{\text {st }} b \Phi_{\mathrm{B}}(a ; b)$ according to the following clauses.

1. $\Phi^{B}: \equiv[\Phi]$ for internal atomic formulas Φ;
2. $\operatorname{st}(t)^{\mathrm{B}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[t \leq^{*} a\right]$.

If $\Phi^{\mathrm{B}} \equiv \tilde{\exists}^{\mathrm{st}} a \tilde{\forall}^{\mathrm{st}} b \Phi_{\mathrm{B}}(a ; b)$ and $\Psi^{\mathrm{B}} \equiv \tilde{\exists}^{s t} c \tilde{\forall}^{\text {st }} d \Psi_{\mathrm{B}}(c ; d)$ then:
3. $(\Phi \wedge \Psi)^{\mathrm{B}}: \equiv \tilde{\exists}^{\mathrm{st}} a, c \tilde{\forall}^{\mathrm{st}} b, d\left[\Phi_{\mathrm{B}}(a ; b) \wedge \Psi_{\mathrm{B}}(c ; d)\right]$;
4. $(\Phi \vee \Psi)^{\mathrm{B}}: \equiv \tilde{\exists}^{\text {st }} a, c \tilde{\forall}^{\mathrm{st}} e, f$

$$
\left[\tilde{\forall} b \leq^{*} e \Phi_{\mathrm{B}}(a ; b) \vee \tilde{\forall} d \leq^{*} f \Psi_{\mathrm{B}}(c ; d)\right] ;
$$

5. $(\Phi \rightarrow \Psi)^{\mathrm{B}}: \equiv \tilde{\tilde{\jmath}}^{\tilde{s t}} C, B \tilde{\forall}^{\text {st }} a, d$

$$
\left[\tilde{\forall} b \leq^{*} \operatorname{Bad} \Phi_{\mathrm{B}}(a ; b) \rightarrow \Psi_{\mathrm{B}}(C a ; d)\right] ;
$$

6. $(\forall x \Phi)^{\mathrm{B}}: \equiv \tilde{\exists}^{\mathrm{st}} a \tilde{\forall}^{\mathrm{st}} b\left[\forall x \Phi_{\mathrm{B}}(a ; b)\right]$;
7. $(\exists x \Phi)^{\mathrm{B}}: \equiv \tilde{\exists}^{\mathrm{st}} a \tilde{\forall}^{\mathrm{st}} c\left[\exists x \tilde{\forall} b \leq^{*} c \Phi_{\mathrm{B}}(a ; b)\right]$.

Monotonicity

Lemma (monotonicity of B)
For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, we have

$$
\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega} \vdash \Phi_{\mathrm{B}}(a ; b) \wedge a \leq^{*} c \rightarrow \Phi_{\mathrm{B}}(c ; b) .
$$

Characteristic principles

Definition

$-\mathrm{mAC}{ }^{\omega} \equiv \tilde{\forall}^{\mathrm{st}} x \tilde{\Xi}^{\mathrm{st}} y \Phi \rightarrow \tilde{\exists}^{\mathrm{st}} Y \tilde{\forall}^{\mathrm{st}} x \tilde{\exists} y \leq{ }^{*} Y x \Phi$;

- $\mathrm{R}^{\omega} \equiv \forall x \exists^{\text {st }} y \Phi \rightarrow \exists^{\text {st }} z \forall x \exists y \leq^{*} z \Phi$;
- $\mathrm{I}^{\omega} \equiv \tilde{\forall}^{\text {st }} z \exists x \forall y \leq^{*} z \phi \rightarrow \exists x \forall^{\text {st }} y \phi$;
- $\mathrm{IP}_{\tilde{\forall}^{\mathrm{st}}}^{\omega} \equiv\left(\tilde{\forall}^{\mathrm{st}} x \phi \rightarrow \tilde{\exists}^{s t} y \Psi\right) \rightarrow \tilde{\exists}^{s t} z\left(\tilde{\forall}^{\mathrm{st}} x \phi \rightarrow \tilde{\exists} y \leq^{*} z \Psi\right)$;
- $\mathrm{M}^{\omega} \equiv\left(\tilde{\forall}^{\text {st }} x \phi \rightarrow \psi\right) \rightarrow \tilde{\exists}^{\text {st }} y\left(\tilde{\forall} x \leq^{*} y \phi \rightarrow \psi\right)$;
- BUD ${ }^{\omega} \equiv \tilde{\forall}^{\text {st }} u, v\left(\forall x \leq^{*} u \phi \vee \forall y \leq^{*} v \psi\right) \rightarrow \forall^{\text {st }} x \phi \vee \forall^{\text {st }} y \psi$;
- MAJ ${ }^{\omega} \equiv \forall^{\text {st }} x \exists^{\text {st }} y\left(x \leq^{*} y\right)$.

Proposition

- $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}+\mathrm{I}^{\omega} \vdash \mathrm{BUD}^{\omega}$.
- $E-H A_{\mathrm{st}}^{\omega}+\mathrm{R}^{\omega} \vdash \mathrm{MAJ}{ }^{\omega}$.

Soundness

Theorem (soundness theorem of B)

For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, if

$$
\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}+\mathrm{P} \vdash \Phi,
$$

then there are closed monotone terms t of appropriate types such that

$$
\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega} \vdash \tilde{\forall}^{\mathrm{st}} b \Phi_{\mathrm{B}}(t ; b)
$$

Abbreviation

$$
P:=m A C^{\omega}+R^{\omega}+I^{\omega}+I P_{\hat{\forall} s t}^{\omega}+M^{\omega}+B U D^{\omega}+M A J^{\omega} .
$$

Characterization

Theorem (characterization theorem of B)
For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, we have

$$
\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}+\mathrm{P} \vdash \Phi \leftrightarrow \Phi^{\mathrm{B}} .
$$

Abbreviation
$P:=m A C^{\omega}+R^{\omega}+I^{\omega}+I P_{\underset{\forall}{s t}}^{\omega}+M^{\omega}+B U D^{\omega}+M A J^{\omega}$.

Transfer Principles

Definition

1. $\left(T_{\forall}\right) \equiv \forall^{\text {st }} f\left(\forall^{\text {st }} x \phi \rightarrow \forall x \phi\right)$;
2. $\left(\mathrm{T}_{\exists}\right) \equiv \forall^{\text {st }} f\left(\exists x \phi \rightarrow \exists^{\text {st }} x \phi\right)$;
where f are all the free variables in the internal formula ϕ.

Adding Transfer

Theorem

1. Adding T_{\forall} or T_{\exists} to $\mathrm{E}-\mathrm{H}_{\mathrm{st}}^{\omega *}+\mathrm{R}+\mathrm{HGMP}^{\text {st }}$ leads to nonconservativity over HA.
2. Adding T_{\forall} or T_{\exists} to $\mathrm{E}-\mathrm{H} \mathrm{s}_{\mathrm{st}}^{\omega}$ leads to inconsistency.

Krivine's negative translation

$A^{\mathrm{K}}: \equiv \neg A_{\mathrm{K}}$ (Φ_{at} is an atomic formula)

- $\left(\Phi_{\mathrm{at}}\right)_{\mathrm{K}}: \equiv \neg \Phi_{\mathrm{at}}$,
- $(\neg \Phi)_{\mathrm{K}}: \equiv \neg \Phi_{\mathrm{K}}$,
- $(\Phi \vee \psi)_{\mathrm{K}}: \equiv \Phi_{\mathrm{K}} \wedge \psi_{\mathrm{K}}$,
- $(\forall x \Phi)_{\mathrm{K}}: \equiv \exists x \Phi_{\mathrm{K}}$.

Theorem (Soundness and characterization of K)

For all formulas Φ of the language of $\mathrm{E}-\mathrm{PA}_{\mathrm{st}}^{\omega}$, we have:

1. $\mathrm{E}-\mathrm{PA}_{\mathrm{st}}^{\omega} \vdash \Phi \Rightarrow \mathrm{E}_{-\mathrm{HA}}^{\mathrm{st}}{ }^{\omega}+\mathrm{I}-\mathrm{LEM} \vdash \Phi^{\mathrm{K}}$;
2. $\mathrm{E}-\mathrm{PA}_{\mathrm{st}}^{\omega} \vdash \Phi \leftrightarrow \Phi^{\mathrm{K}}$.

Factorization

Theorem (factorisation $\mathrm{U}=\mathrm{K}$ B)

For all formulas Φ of the language of $\mathrm{E}-\mathrm{PA}_{\mathrm{st}}^{\omega}$, we have:

1. $\mathrm{E}_{\mathrm{H}} \mathrm{HA}_{\mathrm{st}}^{\omega}+\mathrm{I}-\mathrm{LEM} \vdash \tilde{\forall} a, b\left(\Phi_{\mathrm{U}}(a ; b) \leftrightarrow \neg \tilde{\forall} c \leq * b\left(\Phi_{\mathrm{K}}\right)_{\mathrm{B}}(a ; c)\right)$;
2. $\mathrm{E}_{-\mathrm{HA}}^{\mathrm{st}} \omega+\mathrm{I}-\mathrm{LEM} \vdash \tilde{\forall} a, B\left(\Phi_{\mathrm{U}}(a ; B a) \leftrightarrow\left(\Phi^{\mathrm{K}}\right)_{\mathrm{B}}(a ; B)\right)$;
3. $\mathrm{E}-\mathrm{H} \mathrm{stt}_{\mathrm{st}}^{\omega}+\mathrm{I}-\mathrm{LEM}+\mathrm{mAC} \mathrm{st}^{\omega} \vdash \Phi^{\mathrm{U}} \leftrightarrow\left(\Phi^{\mathrm{K}}\right)^{\mathrm{B}}$.

Application

- Using the factorization $\mathrm{U}=\mathrm{KB}$ and the soundness theorem of B one gets new proofs of the soundness and characterization theorems of U .

Realizability with q-truth

Assigns to each formula Φ of $\mathrm{E}-\mathrm{HA} \mathrm{st}^{\omega}$ the formula $\phi^{\mathrm{bq}}: \equiv \tilde{\exists} \mathrm{st} a \Phi_{\mathrm{bq}}(a)$ of $\mathrm{E}-\mathrm{H} \mathrm{A}_{\mathrm{st}}^{\omega}$ according to the following clauses, $\Phi^{\mathrm{bq}} \equiv \tilde{\exists}^{\mathrm{st}} a \Phi_{\mathrm{bq}}(a)$ and $\left.\Psi^{\mathrm{bq}} \equiv \tilde{\exists}^{\mathrm{st}} b \psi_{\mathrm{bq}}(b)\right)$:

$$
\begin{aligned}
& \phi^{\mathrm{bq}}: \equiv[\phi], \\
& \operatorname{st}(t)^{\mathrm{bq}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[t \leq^{*} a\right], \\
& (\Phi \wedge \Psi)^{\mathrm{bq}}: \equiv \tilde{\exists}^{\mathrm{st}} a, b\left[\Phi_{\mathrm{bq}}(a) \wedge \Psi_{\mathrm{bq}}(b)\right], \\
& (\Phi \vee \Psi)^{\mathrm{bq}}: \equiv \tilde{\exists}^{\mathrm{st}} a, b\left[\left(\Phi_{\mathrm{bq}}(a) \wedge \Phi\right) \vee\left(\Psi_{\mathrm{bq}}(b) \wedge \Psi\right)\right], \\
& (\Phi \rightarrow \Psi)^{\mathrm{bq}}: \equiv \tilde{\exists}^{\mathrm{st}} B \tilde{\forall}^{\mathrm{st}} a\left[\Phi_{\mathrm{bq}}(a) \wedge \Phi \rightarrow \Psi_{\mathrm{bq}}(B a)\right], \\
& (\forall x \Phi)^{\mathrm{bq}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[\forall x \Phi_{\mathrm{bq}}(a)\right], \\
& (\exists x \Phi)^{\mathrm{bq}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[\exists x\left(\Phi_{\mathrm{bq}}(a) \wedge \Phi\right)\right] .
\end{aligned}
$$

Realizability with t-truth

$$
\begin{aligned}
& \phi^{\mathrm{bt}}: \equiv[\phi], \\
& \operatorname{st}(t)^{\mathrm{bt}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[t \leq^{*} a\right], \\
& (\Phi \wedge \Psi)^{\mathrm{bt}}: \equiv \tilde{\exists}^{\mathrm{st}} a, b\left[\Phi_{\mathrm{bt}}(a) \wedge \Psi_{\mathrm{bt}}(b)\right], \\
& (\Phi \vee \Psi)^{\mathrm{bt}}: \equiv \tilde{\exists}^{\mathrm{st}} a, b\left[\Phi_{\mathrm{bt}}(a) \vee \Psi_{\mathrm{bt}}(b)\right], \\
& (\Phi \rightarrow \Psi)^{\mathrm{bt}}: \equiv \tilde{\exists}^{\mathrm{st}} B \tilde{\forall}^{\mathrm{st}} a\left[\left(\Phi_{b t}(a) \rightarrow \Psi_{b t}(B a)\right) \wedge(\Phi \rightarrow \Psi)\right], \\
& (\forall x \Phi)^{\mathrm{bt}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[\forall x \Phi_{\mathrm{bt}}(a)\right], \\
& (\exists x \Phi)^{\mathrm{bt}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[\exists x \Phi_{\mathrm{bt}}(a)\right] .
\end{aligned}
$$

Theorem

For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, we have

$$
\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega} \vdash \forall^{\mathrm{st}} a\left(\Phi_{\mathrm{bt}}(a) \leftrightarrow \Phi_{\mathrm{bq}}(a) \wedge \Phi\right) .
$$

Soundness of bq and bt

Theorem

For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, if

$$
\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega} \pm \mathrm{mAC}{ }^{\omega} \pm \mathrm{R}^{\omega} \pm \mathrm{IP}_{\nexists \mathrm{pt}}^{\omega} \pm \mathrm{MAJ}^{\omega} \vdash \Phi,
$$

then there are closed monotone terms t such that

$$
\begin{aligned}
& E-\mathrm{HA}_{\mathrm{st}}^{\omega} \pm \mathrm{mAC}{ }^{\omega} \pm \mathrm{R}^{\omega} \pm \mathrm{IP}_{\text {解 }}^{\omega} \pm \mathrm{MAJ}^{\omega} \vdash \Phi_{\mathrm{bq}}(t), \\
& E-H A_{\mathrm{st}}^{\omega} \pm \mathrm{mAC}{ }^{\omega} \pm \mathrm{R}^{\omega} \pm \mathrm{IP}_{\nexists \mathrm{st}}^{\omega} \pm \mathrm{MAJ}^{\omega} \vdash \Phi_{\mathrm{bt}}(t) \text {. }
\end{aligned}
$$

Characterization of bq and bt

Theorem

For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, we have

$$
\begin{aligned}
& \mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}+\mathrm{mAC}{ }^{\omega}+\mathrm{R}^{\omega}+\mathrm{IP}_{\nexists \mathrm{st}}^{\omega}+\mathrm{MAJ}^{\omega} \vdash \Phi^{\mathrm{bq}} \leftrightarrow \Phi, \\
& E-H A_{\mathrm{st}}^{\omega}+\mathrm{mAC}{ }^{\omega}+\mathrm{R}^{\omega}+\mathrm{IP}_{\text {解 }}^{\omega}+\mathrm{MAJ}{ }^{\omega} \vdash \Phi^{\mathrm{bt}} \leftrightarrow \Phi \text {. }
\end{aligned}
$$

Intuitionistic nonstandard bounded functional

 interpretation with q-truth$$
\begin{aligned}
& \Phi^{\mathrm{Bq}}: \equiv[\Phi], \\
& \operatorname{st}(t)^{\mathrm{Bq}}: \equiv \text { Э̃st }^{\mathrm{st}}\left[t \leq^{*} \mathrm{a}\right], \\
& (\Phi \wedge \Psi)^{\mathrm{Bq}}: \equiv \tilde{Э}^{s t} a, c \tilde{\forall}^{\mathrm{st}} b, d\left[\Phi_{\mathrm{Bq}}(a ; b) \wedge \psi_{\mathrm{Bq}}(c ; d)\right], \\
& (\Phi \vee \Psi)^{\mathrm{Bq}}: \equiv \tilde{Э}^{s t} a, c \tilde{\forall}^{s t} e, f \\
& {\left[\left(\tilde{\forall} b \leq^{*} e \Phi_{\mathrm{Bq}}(a ; b) \wedge \Phi\right) \vee\left(\tilde{\forall} d \leq^{*} f \Psi_{\mathrm{Bq}}(c ; d) \wedge \psi\right)\right],} \\
& (\Phi \rightarrow \Psi)^{\mathrm{Bq}}:=\tilde{y}^{s t} C, B \tilde{\forall}^{s t} a, d \\
& {\left[\tilde{\forall} b \leq^{*} \operatorname{Bad} \Phi_{\mathrm{Bq}}(a ; b) \wedge \phi \rightarrow \Psi_{\mathrm{Bq}}(C a ; d)\right],} \\
& (\forall x \Phi)^{\mathrm{Bq}}: \equiv \tilde{Э}^{s t} a^{-\mathrm{Bt}} b\left[\forall x \Phi_{\mathrm{Bq}}(a ; b)\right], \\
& (\exists x \Phi)^{\mathrm{Bq}}: \equiv \tilde{\Xi}^{\mathrm{st}} \tilde{\forall}^{\tilde{\forall}^{s t}} c\left[\exists x\left(\tilde{\forall} b \leq^{*} c \Phi_{\mathrm{Bq}}(a ; b) \wedge \Phi\right)\right] .
\end{aligned}
$$

Intuitionistic nonstandard bounded functional

 interpretation with t-truth$$
\begin{aligned}
& \Phi^{\mathrm{Bt}}: \equiv[\Phi], \\
& \mathrm{st}(t)^{\mathrm{Bt}}: \equiv \tilde{\exists}^{\mathrm{st}} a\left[t \leq^{*} a\right], \\
&(\Phi \wedge \Psi)^{\mathrm{Bt}}: \equiv \tilde{\exists}^{\mathrm{st}} a, c \tilde{\forall}^{\mathrm{st}} b, d\left[\Phi_{\mathrm{Bt}}(a ; b) \wedge \Psi_{\mathrm{Bt}}(c ; d)\right], \\
&(\Phi \vee \Psi)^{\mathrm{Bt}}: \equiv \tilde{\exists}^{\mathrm{st}} a, c \tilde{\forall}^{\mathrm{st}} e, f\left[\tilde{\forall} b \leq^{*} e \Phi_{\mathrm{Bt}}(a ; b) \vee \tilde{\forall} d \leq^{*} f \Psi_{\mathrm{Bt}}(c ; d)\right], \\
&(\Phi \rightarrow \Psi)^{\mathrm{Bt}}: \equiv \tilde{\exists}^{\mathrm{st}} c, B \tilde{\forall}^{\mathrm{st}} a, d \\
& {\left[\tilde{\forall} b \leq^{*} B a d \Phi_{\mathrm{Bt}}(a ; b) \rightarrow \Psi_{\mathrm{Bt}}(C a ; d) \wedge(\Phi \rightarrow \Psi)\right], } \\
&(\forall x \Phi)^{\mathrm{Bt}}: \equiv \tilde{\exists}^{\mathrm{st}} a \tilde{\forall}^{\mathrm{st}} b\left[\forall x \Phi_{\mathrm{Bt}}(a ; b)\right], \\
&(\exists x \Phi)^{\mathrm{Bt}}: \equiv \tilde{\exists}^{\mathrm{st}} a \tilde{\forall}^{\mathrm{st}} c\left[\exists x \tilde{\forall} b \leq^{*} c \Phi_{\mathrm{Bt}}(a ; b)\right] .
\end{aligned}
$$

Factorization

Theorem

For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, we have

$$
\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega} \vdash \tilde{\forall}^{\mathrm{st}} a, b\left(\Phi_{\mathrm{Bt}}(a ; b) \leftrightarrow \Phi_{\mathrm{Bq}}(a ; b) \wedge \Phi\right)
$$

Soundnesses of Bq and Bt

Theorem
For all formulas Φ of $\mathrm{E}-\mathrm{HA}_{\mathrm{st}}^{\omega}$, if

$$
\mathrm{P} \vdash \Phi,
$$

then there are closed monotone terms t such that

$$
\begin{aligned}
& \mathrm{P} \vdash \tilde{\forall}^{\mathrm{st}} b \Phi_{\mathrm{Bq}}(t ; b), \\
& \mathrm{P} \vdash \tilde{\forall}^{\mathrm{st}} b \Phi_{\mathrm{Bt}}(t ; b) .
\end{aligned}
$$

Abbreviation

$P:=E-H A_{s t}^{\omega} \pm m A C^{\omega} \pm R^{\omega} \pm I^{\omega} \pm I P_{\hat{\forall} s t}^{\omega} \pm M^{\omega} \pm B U D^{\omega} \pm M A J^{\omega}$.

- No optimal characterisation theorem of Bq and Bt .
- No optimal characterisation theorem of Bq and Bt. (optimal here means that it characterizes the least theory containing $\mathrm{E}-\mathrm{H} \mathrm{A}_{\mathrm{st}}^{\omega}$ and proving $\Phi^{\mathrm{Bq}} \leftrightarrow \Phi$ for all formulas Φ of $E-H A_{s t}^{\omega}$)
- No optimal characterisation theorem of Bq and Bt .

No surprise! It is well-known that there are difficulties in proving optimal characterisation theorems for functional interpretations with truth.

Outline

Amuse-bouche

BFI

First course: functional interpretations for NSA
Nonstandard analysis in proof theory
Nonstandard Realizability
Nonstandard Intuitionistic functional interpretation
Second course: a parametrised interpretation
Parametrised interpretations of AL
Parametrised interpretations of IL Instances

Dessert: realizability with stateful computations for NSA

Functional interpretations: applications

- Relative consistency of HA (Gödel)
- Independence of Markov's principle (Kreisel)
- Proof mining (Kohlenbach)
- Interpretation of Weak König's Lemma (Ferreira, Oliva)
- Interpretation of principles of Nonstandard analysis (Van den Berg, Briseid, Safarik)

Functional interpretations: applications

- Relative consistency of HA (Gödel)
- Independence of Markov's principle (Kreisel)
- Proof mining (Kohlenbach)
- Interpretation of Weak König's Lemma (Ferreira, Oliva)
- Interpretation of principles of Nonstandard analysis (Van den Berg, Briseid, Safarik)

Different interpretations for different purposes.

Functional interpretations: applications

- Relative consistency of HA (Gödel)
- Independence of Markov's principle (Kreisel)
- Proof mining (Kohlenbach)
- Interpretation of Weak König's Lemma (Ferreira, Oliva)
- Interpretation of principles of Nonstandard analysis (Van den Berg, Briseid, Safarik)

Different interpretations for different purposes.
We try to capture their common structure.

A pot-pourri of interpretations

- Kleene (numerical realizability) (1952)
- Gödel (Dialectica) (1958)
- Kreisel (modified realizability) (1959)
- Diller and Nahm (variant to avoid the contraction problem) (1974)
- Stein (family of interpretations) (1979)
- Kohlenbach (monotone functional interpretation) (1996)
- Ferreira and Oliva (bounded functional interpretation) (2005)
- Van den Berg, Briseid and Safarik (Herbrandized) (2012)

A pot-pourri of interpretations

- Kleene (numerical realizability) (1952)
- Gödel (Dialectica) (1958)
- Kreisel (modified realizability) (1959)
- Diller and Nahm (variant to avoid the contraction problem) (1974)
- Stein (family of interpretations) (1979)
- Kohlenbach (monotone functional interpretation) (1996)
- Ferreira and Oliva (bounded functional interpretation) (2005)
- Van den Berg, Briseid and Safarik (Herbrandized) (2012)

Goal

Give a parametrised functional interpretation to unify all the well known functional interpretations (including the approximate ones).

Goal

Give a parametrised functional interpretation to unify all the well known functional interpretations (including the approximate ones).

- Compare the various existing functional interpretations.

Goal

Give a parametrised functional interpretation to unify all the well known functional interpretations (including the approximate ones).

- Compare the various existing functional interpretations.
- Help explain subtle details of the more recent interpretations (BFI, Herbrandized,...)

Goal

Give a parametrised functional interpretation to unify all the well known functional interpretations (including the approximate ones).

- Compare the various existing functional interpretations.
- Help explain subtle details of the more recent interpretations (BFI, Herbrandized,...)
- Obtain new interpretations

Parametrised interpretations of \mathcal{I}_{s} into $\mathcal{I}_{\mathbf{t}}$ (jww P. Oliva)

\mathcal{I}_{s} : (intuitionistic) source theory
\mathcal{I}_{t} : (intuitionistic) target theory
$(\cdot)^{\bullet} ;(\cdot)^{\circ}$: Girard's translations

Parametrised interpretations of \mathcal{I}_{s} into \mathcal{I}_{t}

\mathcal{I}_{s} : (intuitionistic) source theory
\mathcal{I}_{t} : (intuitionistic) target theory
$(\cdot)^{\bullet} ;(\cdot)^{\circ}$: Girard's translations

Parametrised interpretations of \mathcal{I}_{s} into \mathcal{I}_{t}

\mathcal{I}_{s} : (intuitionistic) source theory
\mathcal{I}_{t} : (intuitionistic) target theory
$(\cdot)^{\bullet} ;(\cdot)^{\circ}$: Girard's translations

Parametrised interpretations of \mathcal{I}_{s} into \mathcal{I}_{t}

\mathcal{I}_{s} : (intuitionistic) source theory
\mathcal{I}_{t} : (intuitionistic) target theory
$(\cdot)^{\bullet} ;(\cdot)^{\circ}$: Girard's translations

Parametrised interpretations of \mathcal{I}_{s} into \mathcal{I}_{t}

\mathcal{I}_{s} : (intuitionistic) source theory
\mathcal{I}_{t} : (intuitionistic) target theory
$(\cdot)^{\bullet} ;(\cdot)^{\circ}$: Girard's translations

AL Rules

$\frac{\Gamma}{A \vdash A}(\mathrm{id})$	$\frac{\Gamma, \perp \vdash A}{}(\mathrm{efq})$
$\frac{\Gamma \vdash A \Delta, A \vdash B}{\Gamma, \Delta \vdash B}(\mathrm{cut})$	$\frac{\Gamma \vdash A}{\pi\{\Gamma\} \vdash A}(\mathrm{per})$
$\frac{\Gamma \vdash A \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B}(\otimes \mathrm{R})$	$\frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C}(\otimes \mathrm{~L})$
$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B}(\multimap \mathrm{R})$	$\frac{\Gamma \vdash A \Delta, B \vdash C}{\Gamma, \Delta, A \multimap B \vdash C}(\multimap \mathrm{~L})$

AL Rules

$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x A}(\forall \mathrm{R}, x \notin \mathrm{FV}(\Gamma))$	$\frac{\Gamma, A[t / x] \vdash B}{\Gamma, \forall x A \vdash B}(\forall \mathrm{~L})$
$\frac{\Gamma \vdash A[t / x]}{\Gamma \vdash \exists x A}(\exists \mathrm{R})$	$\frac{\Gamma, A \vdash B}{\Gamma, \exists x A \vdash B}(\exists \mathrm{~L}, x \notin \mathrm{FV}(\Gamma, B))$
$\frac{\Gamma,!A,!A \vdash B}{\Gamma,!A \vdash B}($ con $)$	$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}($ wkn $)$

AL Rules

$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x A}(\forall \mathrm{R}, x \notin \mathrm{FV}(\Gamma))$	$\frac{\Gamma, A[t / x] \vdash B}{\Gamma, \forall x A \vdash B}(\forall \mathrm{~L})$
$\frac{\Gamma \vdash A[t / x]}{\Gamma \vdash \exists x A}(\exists \mathrm{R})$	$\frac{\Gamma, A \vdash B}{\Gamma, \exists x A \vdash B}(\exists \mathrm{~L}, x \notin \mathrm{FV}(\Gamma, B))$
$\frac{\Gamma,!A,!A \vdash B}{\Gamma,!A \vdash B}($ con $)$	$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}($ wkn $)$

AL Rules

$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x A}(\forall \mathrm{R}, x \notin \mathrm{FV}(\Gamma))$	$\frac{\Gamma, A[t / x] \vdash B}{\Gamma, \forall x A \vdash B}(\forall \mathrm{~L})$
$\frac{\Gamma \vdash A[t / x]}{\Gamma \vdash \exists x A}(\exists \mathrm{R})$	$\frac{\Gamma, A \vdash B}{\Gamma, \exists x A \vdash B}(\exists \mathrm{~L}, x \notin \mathrm{FV}(\Gamma, B))$
$\frac{\Gamma,!A,!A \vdash B}{\Gamma,!A \vdash B}($ con $)$	$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}($ wkn $)$

From $\mathbf{I L}^{\mathbb{B}}$ into $\mathbf{A L}^{\mathbb{B}}$

We use Girard's translations of $I \mathbb{L}^{\mathbb{B}}$ into $A L^{\mathbb{B}}$:

$$
\begin{array}{ll}
(P(\boldsymbol{x}))^{\bullet} & : \equiv P(\boldsymbol{x}), \quad \text { if } P \not \equiv \perp \\
\perp & : \equiv \perp \\
(A \wedge B)^{\bullet} & : \equiv A^{\bullet} \otimes B^{\bullet} \\
(A \rightarrow B)^{\bullet} & : \equiv!A^{\bullet} \multimap B^{\bullet} \\
(\forall x A)^{\bullet} & : \equiv \forall x A^{\bullet} \\
(\exists x A)^{\bullet} & : \equiv \exists x!A^{\bullet}
\end{array}
$$

From $\mathbf{I L}^{\mathbb{B}}$ into $\mathbf{A L}^{\mathbb{B}}$

We use Girard's translations of $I \mathbb{L}^{\mathbb{B}}$ into $A L^{\mathbb{B}}$:

$$
\begin{array}{llll}
(P(\boldsymbol{x}))^{\bullet} & : \equiv P(\boldsymbol{x}) & (P(\boldsymbol{x}))^{\circ} & : \equiv!P(\boldsymbol{x}), \quad \text { if } P \not \equiv \perp \\
\perp & : \equiv \perp & \perp^{\circ} & : \equiv \perp \\
(A \wedge B)^{\bullet} & : \equiv A^{\bullet} \otimes B^{\bullet} & (A \wedge B)^{\circ} & : \equiv A^{\circ} \otimes B^{\circ} \\
(A \rightarrow B)^{\bullet} & : \equiv!A^{\bullet} \multimap B^{\bullet} & (A \rightarrow B)^{\circ} & : \equiv!\left(A^{\circ} \multimap B^{\circ}\right) \\
(\forall x A)^{\bullet} & : \equiv \forall x A^{\bullet} & (\forall x A)^{\circ} & : \equiv!\forall x A^{\circ} \\
(\exists x A)^{\bullet} & : \equiv \exists x!A^{\bullet} & (\exists x A)^{\circ} & : \equiv \exists x A^{\circ}
\end{array}
$$

From $\mathbf{I L}^{\mathbb{B}}$ into $\mathbf{A L}^{\mathbb{B}}$

Proposition

 If $\Gamma \vdash_{\mathcal{I}} A$ then $\Gamma^{\bullet} \vdash_{\mathcal{I}} A^{\bullet}$ and $\Gamma^{\circ} \vdash_{\mathcal{I}^{\circ}} A^{\circ}$.
From $\mathbf{I L}^{\mathbb{B}}$ into $\mathbf{A L}^{\mathbb{B}}$

Proposition

$$
\text { If } \Gamma \vdash_{\mathcal{I}} A \text { then } \Gamma^{\bullet} \vdash_{\mathcal{I}_{\bullet}} A^{\bullet} \text { and } \Gamma^{\circ} \vdash_{\mathcal{I}^{\circ}} A^{\circ} \text {. }
$$

Proposition (Gaspar, Oliva (2010))

A° is equivalent to $!A^{\bullet}$ in $\mathbf{A L}^{\mathbb{B}}$. More precisely,
(i) $!A^{\bullet} \vdash_{\mathbf{A L}^{\mathbb{B}}} A^{\circ}$
(ii) $A^{\circ} \vdash_{\mathbf{A L}^{\mathbb{B}}} A^{\bullet}$

Back into $\mathbf{I L}^{\mathbb{B}}$: the forgetful function

Define a translation of formulas of $A L^{\mathbb{B}}$ into formulas of $I L^{\mathbb{B}}$ inductively as follows:

$$
\begin{array}{ll}
(P(x))^{\mathcal{F}} & : \equiv P(x), \quad \text { for the predicate symbols } P \\
(A \otimes B)^{\mathcal{F}} & : \equiv A^{\mathcal{F}} \wedge B^{\mathcal{F}} \\
(A \multimap B)^{\mathcal{F}} & : \equiv A^{\mathcal{F}} \rightarrow B^{\mathcal{F}} \\
(!A)^{\mathcal{F}} & : \equiv A^{\mathcal{F}} \\
(\forall \times A)^{\mathcal{F}} & : \equiv \forall x A^{\mathcal{F}} \\
(\exists x A)^{\mathcal{F}} & : \equiv \exists x A^{\mathcal{F}}
\end{array}
$$

Towards the parametrised interpretation

Our parametrised interpretation of \mathcal{A}_{s} into \mathcal{A}_{t} will contain three groups of parameters:

1. Interpretation of computational predicate symbols: For computational $P(x)$, associate, $x \prec^{P} a$.

Towards the parametrised interpretation

Our parametrised interpretation of \mathcal{A}_{s} into \mathcal{A}_{t} will contain three groups of parameters:

1. Interpretation of computational predicate symbols: For computational $P(x)$, associate, $x \prec^{P} a$.
2. Domain of witnesses and counter-witnesses. For each finite type τ we associate in $\mathcal{A}_{\mathbf{t}}$ a formula $\mathrm{W}_{\tau}(x)$, which we will use to restrict the domain of the witnesses and counter-witnesses.
We assume combinatorial completeness for W

Towards the parametrised interpretation

Our parametrised interpretation of \mathcal{A}_{s} into \mathcal{A}_{t} will contain three groups of parameters:

1. Interpretation of computational predicate symbols: For computational $P(x)$, associate, $x \prec^{P}$ a.
2. Domain of witnesses and counter-witnesses. For each finite type τ we associate in $\mathcal{A}_{\mathbf{t}}$ a formula $\mathrm{W}_{\tau}(x)$, which we will use to restrict the domain of the witnesses and counter-witnesses.
We assume combinatorial completeness for W
3. Interpretation of $!A$: A form of bounded quantification $\forall x \sqsubset_{\tau} a A$ satisfying:

Towards the parametrised interpretation

Our parametrised interpretation of \mathcal{A}_{s} into \mathcal{A}_{t} will contain three groups of parameters:

1. Interpretation of computational predicate symbols: For computational $P(x)$, associate, $x \prec^{P}$ a.
2. Domain of witnesses and counter-witnesses. For each finite type τ we associate in $\mathcal{A}_{\mathbf{t}}$ a formula $\mathrm{W}_{\tau}(x)$, which we will use to restrict the domain of the witnesses and counter-witnesses.
We assume combinatorial completeness for W
3. Interpretation of ! A: A form of bounded quantification $\forall x \sqsubset_{\tau}$ a A satisfying:
$\left(\mathbf{Q}_{1}\right)$ If $A \vdash_{\mathcal{A}_{\mathrm{t}}} B$ then ! $\forall \boldsymbol{x} \sqsubset_{\tau} \boldsymbol{a} A \vdash_{\mathcal{A}_{\mathbf{t}}} \forall \boldsymbol{x} \sqsubset_{\tau} \boldsymbol{a} B$

Towards the parametrised interpretation

Our parametrised interpretation of \mathcal{A}_{s} into \mathcal{A}_{t} will contain three groups of parameters:

1. Interpretation of computational predicate symbols: For computational $P(x)$, associate, $x \prec^{P}$ a.
2. Domain of witnesses and counter-witnesses. For each finite type τ we associate in $\mathcal{A}_{\mathbf{t}}$ a formula $\mathrm{W}_{\tau}(x)$, which we will use to restrict the domain of the witnesses and counter-witnesses.
We assume combinatorial completeness for W
3. Interpretation of ! A: A form of bounded quantification $\forall x \sqsubset_{\tau}$ a A satisfying:
$\left(\mathbf{Q}_{1}\right)$ If $A \vdash_{\mathcal{A}_{\mathrm{t}}} B$ then $!\forall \boldsymbol{x} \sqsubset_{\tau} \boldsymbol{a} A \vdash_{\mathcal{A}_{\mathbf{t}}} \forall \boldsymbol{x} \sqsubset_{\tau} \boldsymbol{a} B$
$\left(\mathbf{Q}_{2}\right) \vdash_{\mathcal{A}_{\mathrm{t}}} \forall \boldsymbol{x} \sqsubset_{\tau} \boldsymbol{a} W(\boldsymbol{x})$

Towards the parametrised interpretation

Finally, for each formula, terms $\eta(\cdot),(\cdot) \sqcup(\cdot)$ and $(\cdot) \circ(\cdot)$ satisfying conditions

Towards the parametrised interpretation

Finally, for each formula, terms $\eta(\cdot),(\cdot) \sqcup(\cdot)$ and $(\cdot) \circ(\cdot)$ satisfying conditions
$\left(\mathbf{C}_{\eta}\right) \rightsquigarrow$ to deal with substitutions.
$\left(\mathrm{C}_{\sqcup}\right) \rightsquigarrow$ to have a sort of union/maximum of two terms.
$\left(\mathbf{C}_{\circ}\right) \rightsquigarrow$ to deal with application of terms.

Parametrised AL-interpretation

For each formula A of \mathcal{A}_{s}, let us associate a formula $|A|_{y}^{x}$ of \mathcal{A}_{t}, with two fresh lists of free-variables x and y, inductively as follows:

$$
\begin{aligned}
& |P(\boldsymbol{x})|^{a}: \equiv \boldsymbol{x} \prec^{P} a, \quad(P \text { computational) } \\
& |P(\boldsymbol{x})|: \equiv P(\boldsymbol{x}), \quad(P \text { non-computational) } \\
& |A \multimap B|_{\boldsymbol{x}, w}^{\boldsymbol{f}, \boldsymbol{g}}: \equiv|A|_{\boldsymbol{g} x \boldsymbol{w}}^{\boldsymbol{x}} \multimap|B|_{w}^{\boldsymbol{x}_{\boldsymbol{x}}} \\
& |A \otimes B|_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}} \quad: \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \otimes|B|_{w}^{\boldsymbol{w}} \\
& |\exists z A|_{\boldsymbol{y}}^{\boldsymbol{x}} \\
& |\forall z A|_{\boldsymbol{y}}^{\boldsymbol{x}} \\
& |!A|_{a}^{\boldsymbol{x}}
\end{aligned}
$$

Witnessable AL sequents

A sequent $\Gamma \vdash A$ of \mathcal{A}_{s} is said to be witnessable in \mathcal{A}_{t} if there are closed terms γ, a of \mathcal{A}_{t} such that
(i) $\vdash_{\mathcal{A}_{\mathrm{t}}} \mathrm{W}(\gamma)$ and $\vdash_{\mathcal{A}_{\mathrm{t}}} \mathrm{W}(\boldsymbol{a})$
(ii) ! $\mathrm{W}(\boldsymbol{x}, \boldsymbol{w}),|\Gamma|_{\gamma x \boldsymbol{w}}^{x} \vdash_{\mathcal{A}_{\mathrm{t}}}|A|_{\boldsymbol{w}}^{a x}$

Soundness

Theorem (Soundness)
If \mathcal{A}_{t} is adequate and the axioms of \mathcal{A}_{s} are witnessable in \mathcal{A}_{t}, then the parametrised AL-interpretation is sound.

IL-interpretations

Given an AL-interpretation $A \mapsto|A|_{y}^{x}$ based on the translated parameters we can derive two IL-interpretations, namely

$$
A \mapsto\left(\left|A^{\bullet}\right|_{y}^{x}\right)^{\mathcal{F}} \quad \text { and } \quad A \mapsto\left(\left|A^{\circ}\right|_{y}^{x}\right)^{\mathcal{F}}
$$

We will abbreviate these compound interpretations as

$$
\{\{A\}\}_{\boldsymbol{y}}^{x} \equiv\left(\left|A^{\bullet}\right|_{y}^{x}\right)^{\mathcal{F}} \quad \text { and } \quad((A))_{y}^{x} \equiv\left(\left|A^{\circ}\right|_{y}^{x}\right)^{\mathcal{F}}
$$

Parametrised interpretations of IL

Proposition

$$
\begin{array}{ll}
\{\{P(\boldsymbol{x})\}\}^{a} & \equiv \boldsymbol{x} \prec^{P} \text { a if } P \in \operatorname{Pred}_{\mathcal{A}_{s}}^{c} \\
\{\{P(\boldsymbol{x})\}\}^{c} & \equiv P(\boldsymbol{x}) \quad \text { if } P \in \operatorname{Pred}_{\mathcal{A}_{\mathbf{s}}}^{n c} \\
\{\{A \rightarrow B\}\}_{\boldsymbol{x}, \boldsymbol{w}}^{\boldsymbol{f}, \boldsymbol{g}} & \equiv \forall \boldsymbol{y} \sqsubset \boldsymbol{f} \boldsymbol{x} \boldsymbol{w}\{\{A\}\}_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow\{\{B\}\}_{\boldsymbol{w}}^{\boldsymbol{g} \boldsymbol{x}} \\
\{\{A \wedge B\}\}_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}, \boldsymbol{w}} & \equiv\{\{A\}\}_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge\{\{B\}\}_{\boldsymbol{w}}^{\boldsymbol{v}} \\
\{\{\exists z A\}\}_{\boldsymbol{y}}^{\boldsymbol{y}} & \equiv \exists z \forall \boldsymbol{y}^{\prime} \sqsubset \boldsymbol{y}\{\{A\}\}_{\boldsymbol{y}^{\prime}}^{\boldsymbol{x}} \\
\{\{\forall z A\}\}_{\boldsymbol{y}}^{\boldsymbol{x}} & \equiv \forall z\{\{A\}\}_{\boldsymbol{y}}^{\boldsymbol{x}}
\end{array}
$$

Parametrised interpretations of IL

Proposition

$$
\begin{array}{ll}
\{\{P(\boldsymbol{x})\}\}^{a} & \equiv \boldsymbol{x} \prec^{P} \text { a if } P \in \operatorname{Pred}_{\mathcal{A}_{\mathbf{s}}}^{c} \\
\{\{P(\boldsymbol{x})\}\}^{c} & \equiv P(\boldsymbol{x}) \quad \text { if } P \in \operatorname{Pred}_{\mathcal{A}_{\mathbf{s}}}^{n c} \\
\{\{A \rightarrow B\}\}_{\boldsymbol{x}, \boldsymbol{w}}^{\boldsymbol{f}, \boldsymbol{g}} & \equiv \forall \boldsymbol{y} \sqsubset \boldsymbol{f} \boldsymbol{x} \boldsymbol{w}\{\{A\}\}_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow\{\{B\}\}_{\boldsymbol{w}}^{\boldsymbol{g} \boldsymbol{x}} \\
\{\{A \wedge B\}\}_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}, \boldsymbol{w}} & \equiv\{\{A\}\}_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge\{\{B\}\}_{\boldsymbol{w}}^{\boldsymbol{v}} \\
\{\{\exists z A\}\}_{\boldsymbol{y}}^{\boldsymbol{y}} & \equiv \exists z \forall \boldsymbol{y}^{\prime} \sqsubset \boldsymbol{y}\{\{A\}\}_{\boldsymbol{y}^{\prime}}^{\boldsymbol{x}} \\
\{\{\forall z A\}\}_{\boldsymbol{y}}^{\boldsymbol{x}} & \equiv \forall z\{\{A\}\}_{\boldsymbol{y}}^{\boldsymbol{x}}
\end{array}
$$

In particular, we have that for computational predicate symbols P :

$$
\begin{aligned}
\left\{\left\{\exists z^{P} A\right\}\right\}_{\boldsymbol{y}}^{c, \boldsymbol{x}} & \equiv \exists z \prec^{P} c \forall \boldsymbol{y}^{\prime} \sqsubset \boldsymbol{y}\{\{A\}\}_{\boldsymbol{y}^{\prime}}^{\boldsymbol{x}} \\
\left\{\left\{\forall z^{P} A\right\}\right\}_{b, \boldsymbol{y}}^{\boldsymbol{f}} & \equiv \forall z \prec^{P} b\{\{A\}\}_{\boldsymbol{y}}^{\boldsymbol{f} b}
\end{aligned}
$$

Parametrised interpretations of IL

Proposition

$$
\begin{array}{ll}
((P(\boldsymbol{x})))^{a} & \Leftrightarrow \boldsymbol{x} \prec^{P} a \quad \text { if } P \in \operatorname{Pred}_{\mathcal{A}_{s}}^{c} \\
((P(\boldsymbol{x})))^{c} & \Leftrightarrow P(\boldsymbol{x}) \quad \text { if } P \in \operatorname{Pred}_{\mathcal{A}_{\mathbf{s}}}^{n c} \\
((A \rightarrow B))_{\boldsymbol{x}, \boldsymbol{w}}^{\boldsymbol{f}, \boldsymbol{g}} & \Leftrightarrow \forall \boldsymbol{x}^{\prime}, \boldsymbol{w}^{\prime} \sqsubset \boldsymbol{x}, \boldsymbol{w}\left(((A))_{\boldsymbol{f}^{\prime} \boldsymbol{w}^{\prime}}^{\boldsymbol{x}^{\prime}} \rightarrow((B))_{\boldsymbol{w}^{\prime}}^{\boldsymbol{g} \boldsymbol{x}^{\prime}}\right) \\
\left((A \wedge B) \boldsymbol{y}_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}}\right. & \Leftrightarrow \quad((A))_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge((B))_{\boldsymbol{w}}^{\boldsymbol{v}} \\
((\exists z A))_{\boldsymbol{y}}^{\boldsymbol{x}} & \Leftrightarrow \exists z((A))_{\boldsymbol{y}}^{\boldsymbol{x}} \\
((\forall z A))_{\boldsymbol{y}}^{\boldsymbol{x}} & \Leftrightarrow \forall \boldsymbol{y}^{\prime} \sqsubset \boldsymbol{y} \forall z((A))_{\boldsymbol{y}^{\prime}}^{\boldsymbol{x}}
\end{array}
$$

Parametrised interpretations of IL

Proposition

$$
\begin{aligned}
& ((P(x)))^{a} \quad \Leftrightarrow \quad x \prec^{P} a \quad \text { if } P \in \operatorname{Pred}_{\mathcal{A}_{\mathbf{s}}}^{c} \\
& ((P(\boldsymbol{x}))) \quad \Leftrightarrow P(\boldsymbol{x}) \quad \text { if } P \in \operatorname{Pred}_{\mathcal{A}_{s}}^{n c} \\
& ((A \rightarrow B))_{\boldsymbol{x}, \boldsymbol{w}}^{\boldsymbol{f}, \boldsymbol{g}} \Leftrightarrow \forall \boldsymbol{x}^{\prime}, \boldsymbol{w}^{\prime} \sqsubset \boldsymbol{x}, \boldsymbol{w}\left(((A))_{\boldsymbol{f}_{x^{\prime} w^{\prime}}}^{\boldsymbol{x}^{\prime}} \rightarrow((B))_{\boldsymbol{w}^{\prime}}^{\boldsymbol{g} \boldsymbol{x}^{\prime}}\right) \\
& ((A \wedge B))_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}, \boldsymbol{v}} \Leftrightarrow((A))_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge((B))_{w}^{\boldsymbol{v}} \\
& ((\exists z A))_{y}^{x} \quad \Leftrightarrow \exists z((A))_{y}^{x} \\
& ((\forall z A))_{\boldsymbol{y}}^{\boldsymbol{x}} \quad \Leftrightarrow \quad \forall \boldsymbol{y}^{\prime} \sqsubset \boldsymbol{y} \forall z((A))_{\boldsymbol{y}^{\prime}}^{\boldsymbol{x}}
\end{aligned}
$$

In particular, we have that for computational predicate symbols P

$$
\begin{aligned}
& \left(\left(\exists z^{P} A\right)\right)_{\boldsymbol{y}}^{\boldsymbol{x}, c} \Leftrightarrow \exists z \prec^{P} c((A))_{\boldsymbol{y}}^{\boldsymbol{x}} \\
& \left(\left(\forall z^{P} A\right)\right)_{c, \boldsymbol{y}}^{\boldsymbol{f}} \Leftrightarrow \forall c^{\prime}, \boldsymbol{y}^{\prime} \sqsubset c, \boldsymbol{y} \forall c^{\prime \prime}, \boldsymbol{y}^{\prime \prime} \sqsubset c^{\prime}, \boldsymbol{y}^{\prime} \forall z \prec^{P} c^{\prime \prime}((A))_{\boldsymbol{y}^{\prime \prime}}^{\boldsymbol{c} \boldsymbol{\prime \prime}^{\prime \prime}}
\end{aligned}
$$

Comparing the interpretations

Theorem

For each formula A there are tuples of closed terms $\boldsymbol{s}_{1}, \boldsymbol{t}_{1}$ and $\boldsymbol{s}_{2}, \boldsymbol{t}_{2}$ such that
(i) $\mathrm{W}(\boldsymbol{x}, \boldsymbol{y}), \forall \boldsymbol{y}^{\prime} \sqsubset \boldsymbol{s}_{1} \boldsymbol{x} \boldsymbol{y}\{\{A\}\}_{\boldsymbol{y}^{\prime}}^{\boldsymbol{x}} \vdash_{\mathbf{I L}^{\omega}}((A))_{\boldsymbol{y}^{\boldsymbol{t}} \boldsymbol{x}}$
(ii) $\mathrm{W}(\boldsymbol{x}, \boldsymbol{y}),((A))_{\boldsymbol{s}_{2} \boldsymbol{x} \boldsymbol{y}}^{\boldsymbol{x}} \vdash_{\mathbf{I L}^{\omega}} \forall \boldsymbol{y}^{\prime} \sqsubset \boldsymbol{y}\{\{A\}\}_{\boldsymbol{y}^{\prime}}^{\boldsymbol{t}_{2} \boldsymbol{x}}$
(iii) $\vdash_{\mathrm{IL}} \mathrm{\omega} \mathrm{~W}\left(\boldsymbol{s}_{1}\right) \wedge \mathrm{W}\left(\boldsymbol{s}_{2}\right) \wedge \mathrm{W}\left(\boldsymbol{t}_{1}\right) \wedge \mathrm{W}\left(\boldsymbol{t}_{2}\right)$

Instances

$\forall x \sqsubset_{\tau} a A$	$x \prec^{\tau} a$	$W_{\tau}(a)$	Interpretation
$A[a / x]$	$x=a$	true	Dialectica interpretation
$\forall x A$	$x=a$	true	Modified realizability
$\forall x \leq^{*} a A$	$x=a$	true	(combination not sound)
$\forall x \in a A$	$x=a$	true	Diller-Nahm interpretation
$A[a / x]$	$x \leq_{\tau}^{*} a$	$a \leq_{\tau}^{*} a$	(combination not sound)
$\forall x A$	$x \leq_{\tau}^{*} a$	$a \leq_{\tau}^{*} a$	Bounded modified realizability
$\forall x \leq^{*} a A$	$x \leq^{*} a$	$a \leq^{*} a$	Bounded functional interpretation
$\forall x \in a A$	$x \leq_{\tau}^{*} a$	$a \leq_{\tau}^{*} a$	Bounded Diller-Nahm interpretation
$A[a / x]$	$x \in a$	true	Herbrand Dialectica (\simeq Dialectica)
$\forall x A$	$x \in a$	$\tau^{*}(a)$	Herbrand realizability (for IL)
$\forall x \leq * a A$	$x \in a$	$a \leq_{\tau}^{*} a$	Herbrandized bfi
$\forall x \in a A$	$x \in a$	$\tau^{*}(a)$	Herbrand Diller-Nahm interpretation

Questions and future work

- Other ways to instantiate the parameters?

Questions and future work

- Other ways to instantiate the parameters?
- Characterization theorem?

Questions and future work

- Other ways to instantiate the parameters?
- Characterization theorem?
- Variants with truth?

Questions and future work

- Other ways to instantiate the parameters?
- Characterization theorem?
- Variants with truth?

$$
|!A|_{a}^{x}: \equiv!\forall \boldsymbol{y} \sqsubset_{\tau} \mathbf{a}|A|_{y}^{x} \otimes A .
$$

Questions and future work

- Other ways to instantiate the parameters?
- Characterization theorem?
- Variants with truth?

$$
|!A|_{a}^{x}: \equiv!\forall \boldsymbol{y} \sqsubset_{\tau} \mathbf{a}|A|_{y}^{x} \otimes A .
$$

- Interpretations for Nonstandard arithmetic: consider 2 types of atomic formulas.

Questions and future work

- Other ways to instantiate the parameters?
- Characterization theorem?
- Variants with truth?

$$
|!A|_{a}^{x}: \equiv!\forall \boldsymbol{y} \sqsubset_{\tau} \mathbf{a}|A|_{y}^{x} \otimes A .
$$

- Interpretations for Nonstandard arithmetic: consider 2 types of atomic formulas.
- Composing with Krivine's negative translation does one obtain classical interpretations? Factorization?

Outline

```
Amuse-bouche
BFI
First course: functional interpretations for NSA
    Nonstandard analysis in proof theory
    Nonstandard Realizability
    Nonstandard Intuitionistic functional interpretation
Second course: a parametrised interpretation
    Parametrised interpretations of AL
    Parametrised interpretations of IL
    Instances
```

Dessert: realizability with stateful computations for NSA

Realizability with stateful computations for NSA (jww É. Miquey)

- Goal: to deal with nonstandard analysis in the context of intuitionistic realizability, focusing on the Lightstone-Robinson construction of a model for nonstandard analysis through an ultrapower.

In particular, we consider an extension of the λ-calculus with a memory cell, that contains an integer (the state), in order to indicate in which slice of the ultrapower $\mathcal{M}^{\mathbb{N}}$ the computation is being done.

Nonstandard models

Nonstandard models

Nonstandard models

Nonstandard models

Nonstandard models

Nonstandard models

The first step in the Lightstone-Robinson construction aims at getting a product $\mathcal{M}^{\mathbb{N}}$ of the (initial) model \mathcal{M}.

- Add a memory cell to our calculus that contains an integer, which we call the state.
- The state keeps track of which "slice" of the product is the interpretation being done.
This product allows us to interpret first-order individuals as functions in $\mathbb{N}^{\mathbb{N}}$, so that the interpretation accounts for new elements - the so-called nonstandard elements - for instance the diagonal function.

Formulas $\quad A, B::=\operatorname{st}(e)\left|X\left(e_{1}, \ldots, e_{n}\right)\right| \operatorname{Nat}(e) \mapsto A$
$|A \rightarrow B| A \wedge B \mid A \vee B$
$|\forall x . A| \exists x . A|\forall X . A| \exists X . A$
Terms States

$$
\begin{aligned}
t, u & ::=\ldots \mid \text { get } \mid \text { set } \\
\mathfrak{S} & :=\mathbb{N}
\end{aligned}
$$

- get allows to read the current state
- set allows to increase the value of the current state
- With the exception of the get/set instructions, the syntax of terms does not account for states.

The interpretation of a formula A together with a valuation ρ is the set $|A|_{\rho}^{\mathfrak{S}}$ defined inductively according to the following clauses:

$$
\begin{aligned}
& |\operatorname{st}(e)|_{\rho}^{\mathscr{G}} \triangleq \begin{cases}\Lambda \times \mathfrak{S} & \text { if } \llbracket e \rrbracket_{\rho} \text { is standard } \\
\emptyset & \text { otherwise }\end{cases} \\
& \left|X\left(e_{1}, \ldots, e_{n}\right)\right|_{\rho}^{\mathfrak{S}} \triangleq \rho(X) @\left(\llbracket e_{1} \rrbracket_{\rho}, \ldots, \llbracket e_{n} \rrbracket_{\rho}\right) \\
& |\{\operatorname{Nat}(e)\} \mapsto A|_{\rho}^{\mathfrak{G}} \triangleq\left\{(t ; \mathfrak{s}) \in \Lambda \times \mathfrak{S}:(t \bar{n} ; \mathfrak{s}) \in|A|_{\rho}^{\mathfrak{G}} \text {, where } n=\llbracket e \rrbracket_{\rho}(\mathfrak{s})\right\} \\
& |A \rightarrow B|_{\rho}^{\mathfrak{G}} \triangleq\left\{(t ; \mathfrak{s}) \in \Lambda \times \mathfrak{S}: \forall u .\left((u ; \mathfrak{s}) \in|A|_{\rho}^{\mathfrak{G}} \Rightarrow(t u ; \mathfrak{s}) \in|B|_{\rho}^{\mathfrak{G}}\right)\right\} \\
& \left.\left|A_{1} \wedge A_{2}\right|_{\rho}^{\mathfrak{S}} \triangleq\left\{(t ; \mathfrak{s}) \in \Lambda \times \mathfrak{S}:\left(\pi_{1}(t) ; \mathfrak{s}\right) \in\left|A_{1}\right|_{\rho}^{\mathfrak{S}} \wedge\left(\pi_{2}(t) ; \mathfrak{s}\right) \in\left|A_{2}\right|_{\rho}^{\mathfrak{V}}\right)\right\} \\
& \left.\left|A_{1} \vee A_{2}\right|_{\rho}^{\mathfrak{G}} \triangleq\left\{(t ; \mathfrak{s}) \in \Lambda \times \mathfrak{S}: \exists i \in\{1,2\} \text {. (case } t\left\{\iota_{1}\left(x_{1}\right) \mapsto x_{1} \mid \iota_{2}\left(x_{2}\right) \mapsto x_{2}\right\} ; \mathfrak{s}\right) \in\left|A_{i}\right|_{\rho}^{\mathfrak{G}}\right\} \\
& |\forall x . A|_{\rho}^{\mathfrak{S}} \triangleq \bigcap_{f \in \mathbb{N}^{\mathfrak{E}}}|A|_{\rho, x \rightarrow f}^{\mathfrak{S}} \quad|\forall X . A|_{\rho}^{\mathfrak{G}} \triangleq \bigcap_{F: \mathbb{N}^{k} \rightarrow \mathbf{S A T}}|A|_{\rho, X \mapsto F}^{\mathfrak{G}} \\
& |\exists x . A|_{\rho}^{\mathfrak{S}} \triangleq \bigcup_{f \in \mathbb{N}^{\mathfrak{C}}}|A|_{\rho, x \rightarrow f}^{\mathfrak{S}} \quad|\exists X . A|_{\rho}^{\mathfrak{G}} \triangleq \bigcup_{F: \mathbb{N}^{k} \rightarrow \mathbf{S A T}}|A|_{\rho, X \mapsto F}^{\mathfrak{G}}
\end{aligned}
$$

This interpretation realizes (in a non-trivial way):

- Usual properties of nonstandard natural numbers (including external induction)
- The diagonal as a nonstandard element
- Idealization
- Transfer
- Overspill and Underspill

It does not validate Standardization: for that a quotient is necessary (work in progress).

Questions and future work

- What applications are there for the interpretations with truth? Can they give additional information about Transfer?

Questions and future work

- What applications are there for the interpretations with truth? Can they give additional information about Transfer?
- Is it possible to use any of these interpretations in Proof Mining?

Questions and future work

- What applications are there for the interpretations with truth? Can they give additional information about Transfer?
- Is it possible to use any of these interpretations in Proof Mining?
- Is it possible/interesting to extend nonstandard interpretations to the feasible context?

Questions and future work

- What applications are there for the interpretations with truth? Can they give additional information about Transfer?
- Is it possible to use any of these interpretations in Proof Mining?
- Is it possible/interesting to extend nonstandard interpretations to the feasible context?
- Adapt the interpretation with slices to Krivine's classical realizability (in progress)

References I

E
Benno van den Berg, Eyvind Briseid, and Pavol Safarik.
A functional interpretation for nonstandard arithmetic.
Annals of Pure and Applied Logic, 163(12):1962-1994, December 2012.
家
Bruno Dinis and Jaime Gaspar.
Intuitionistic nonstandard bounded modified realisability and functional interpretation.
Annals of Pure and Applied Logic, 169(5):392-412, May 2018.
Bruno Dinis and Jaime Gaspar.
Factorisation of the classical nonstandard bounded functional interpretation.
(Notes not intended for publication)
宣
Bruno Dinis and Jaime Gaspar.
Hardwiring interpretations with truth.
(Submitted)

References II

曷
Bruno Dinis and Étienne Miquey.
Realizability with Stateful Computations for Nonstandard Analysis
29th EACSL Annual Conference on Computer Science Logic (CSL 2021)
Leibniz International Proceedings in Informatics (LIPIcs)
https://drops.dagstuhl.de/opus/volltexte/2021/13453
Fernando Ferreira and Jaime Gaspar.
Nonstandardness and the bounded functional interpretation.
Annals of Pure and Applied Logic, 166(6):701-712, June 2015.
國
Fernando Ferreira and Ana Nunes.
Bounded modified realizability.
The Journal of Symbolic Logic, 71(1):329-346, March 2006.
Fernando Ferreira and Paulo Oliva.
Bounded functional interpretation.
Annals of Pure and Applied Logic, 135(1-3):73-112, September 2005.

Thank you!

