THE PROOF THEORY OF SUBSTRUCTURAL LOGICS WITH FIXPOINTS

ABHISHEK DE (IRIF, FRANCE)

based on joint work with Anupam Das, Farzad Jafarrahmani, & Alexis Saurin

31ST MARCH 2022, CHOCOLA

2 Linear logic with fixpoints

3 Complexity

4 Phase semantics

FIXPOINT LOGIC(S)

Different logic, different reasons

Extensions of propositional modal logics: LTL, *µ*-calculus, ...

to express richer specifications: "something happens infinitely often", "something happens after some time" and so on

Extensions of first-order logic: FO[LFP], FO[IFP], ...

to define richer classes of finite models and their descriptive complexity

Extensions of categorical grammar: Kleene Algebra, Action algebra, ...

to algebraically define various classes of formal languages

This talk: the proof theory of fixpoint logic(s)

We start by adding the μ and ν operators for lfp and gfp respectively such that $\mu \mathbf{x}.\varphi = \neg \nu \mathbf{x}.\neg \varphi$.

$$\frac{\varphi[\psi/\mathbf{x}] \vdash \psi}{\mu \mathbf{x}.\varphi \vdash \psi} (\mu_{\ell}) \qquad \frac{\Gamma \vdash \varphi[\mu \mathbf{x}.\varphi/\mathbf{x}], \Delta}{\Gamma \vdash \mu \mathbf{x}.\varphi, \Delta} (\mu_{r}) \\
\frac{\Gamma, \varphi[\nu \mathbf{x}.\varphi/\mathbf{x}] \vdash \Delta}{\Gamma, \nu \mathbf{x}.\varphi \vdash \Delta} (\nu_{\ell}) \qquad \frac{\psi \vdash \varphi[\psi/\mathbf{x}]}{\psi \vdash \nu \mathbf{x}.\varphi} (\nu_{r})$$

We start by adding the μ and ν operators for lfp and gfp respectively such that $\mu x.\varphi = \neg \nu x.\neg \varphi$.

$$\frac{\varphi[\psi/\mathbf{x}] \leq \psi}{\mu \mathbf{x}.\varphi \leq \psi}(\mu_{\ell}) \qquad \frac{\Gamma \leq \varphi[\mu \mathbf{x}.\varphi/\mathbf{x}]}{\Gamma \leq \mu \mathbf{x}.\varphi}(\mu_{r}) \\
\frac{\varphi[\nu \mathbf{x}.\varphi/\mathbf{x}] \leq \Delta}{\nu \mathbf{x}.\varphi \leq \Delta}(\nu_{\ell}) \qquad \frac{\psi \leq \varphi[\psi/\mathbf{x}]}{\psi \leq \nu \mathbf{x}.\varphi}(\nu_{r})$$

- μ_{ℓ} expresses that $\mu x.\varphi$ is smaller than any post fixpoint of φ . Dually ν_r expresses that $\nu x.\varphi$ is larger than any pre fixpoint of φ .
- μ_r expresses that μx.φ is indeed a post fixpoint of φ and dually ν_ℓ expresses that νx.φ is indeed a pre fixpoint of φ.

EXPLICIT (CO)INDUCTION WITHOUT WEAKENING

 Cut inadmissible in system with explicit (co)induction without weakening. The proof below has no cut-free version.

$$\frac{\overline{a \vdash a} (\mathsf{id}) \quad \overline{a \vdash a} (\mathsf{id})}{\underline{a \vdash a \otimes a} (\otimes_r) \quad \overline{a \otimes a \vdash a \otimes a} (\mathsf{id})} \frac{\overline{a \otimes a \vdash a \otimes a} (\mathsf{id})}{a \otimes a \vdash \nu x.x} (\nu_r) (\nu_r) (\mathsf{vt})$$

New rules:

$$\frac{\Gamma, \psi \vdash \Delta \quad \varphi[\psi/\mathbf{X}] \vdash \psi}{\Gamma, \mu \mathbf{X}. \varphi \vdash \Delta} (\mu_{\ell}^{ind}) \qquad \frac{\Gamma \vdash \Delta, \psi \quad \psi \vdash \varphi[\psi/\mathbf{X}]}{\Gamma \vdash \Delta, \nu \mathbf{X}. \varphi} (\nu_{r}^{ind})$$

- Choosing an appropriate ψ is akin choosing an appropriate (co)induction hypothesis.
- Cut admissibility does not guarantee subformulæproperty.

IMPLICIT (CO)INDUCTION

$$\frac{\Gamma, \varphi[\mu \mathbf{x}.\varphi/\mathbf{x}] \vdash \Delta}{\Gamma, \mu \mathbf{x}.\varphi \vdash \Delta} (\mu_l) \qquad \frac{\Gamma \vdash \varphi[\mu \mathbf{x}.\varphi/\mathbf{x}], \Delta}{\Gamma \vdash \mu \mathbf{x}.\varphi, \Delta} (\mu_r) \\
\frac{\Gamma, \varphi[\nu \mathbf{x}.\varphi/\mathbf{x}] \vdash \Delta}{\Gamma, \nu \mathbf{x}.\varphi \vdash \Delta} (\nu_l) \qquad \frac{\Gamma \vdash \varphi[\nu \mathbf{x}.\varphi/\mathbf{x}], \Delta}{\Gamma \vdash \nu \mathbf{x}.\varphi, \Delta} (\nu_r)$$

IMPLICIT (CO)INDUCTION

$$\frac{\Gamma, \varphi[\mu \mathbf{x}.\varphi/\mathbf{x}] \leq \Delta}{\Gamma, \mu \mathbf{x}.\varphi \leq \Delta} (\mu_l) \qquad \frac{\Gamma \leq \varphi[\mu \mathbf{x}.\varphi/\mathbf{x}], \Delta}{\Gamma \leq \mu \mathbf{x}.\varphi, \Delta} (\mu_r) \\
\frac{\Gamma, \varphi[\nu \mathbf{x}.\varphi/\mathbf{x}] \leq \Delta}{\Gamma, \nu \mathbf{x}.\varphi \leq \Delta} (\nu_l) \qquad \frac{\Gamma \leq \varphi[\nu \mathbf{x}.\varphi/\mathbf{x}], \Delta}{\Gamma \leq \nu \mathbf{x}.\varphi, \Delta} (\nu_r)$$

- μ_{ℓ} and μ_r expresses that $\mu x.\varphi$ is a pre fixpoint and post fixpoint of φ respectively.
- Similarly for ν_{ℓ} and ν_{r} .

Hang on!

- $\mu x.\varphi$ and $\nu x.\varphi$ are indeed fixpoints but not necessarily least and greatest.
- $\nu x.x$ cannot be proven.

NON-WELLFOUNDED PROOFS

- Let's allow proof trees of infinite height.
- Now $\nu x.x$ can be proved:

$$\frac{\vdots}{\frac{\vdash \nu \mathbf{x}. \mathbf{x}}{\vdash \nu \mathbf{x}. \mathbf{x}}}(\nu)$$

But inconsistent!

$$\frac{\frac{1}{\mu \mathbf{X} \cdot \mathbf{X}}}{\frac{\mu \mathbf{X} \cdot \mathbf{X}}{\nu \mathbf{X} \cdot \mathbf{X}}} (\mu) \quad \frac{\frac{1}{\nu \mathbf{X} \cdot \mathbf{X}, \Gamma}}{\frac{\nu \mathbf{X} \cdot \mathbf{X}, \Gamma}{\nu \mathbf{X}, \Gamma}} (\nu)$$

$$(cut)$$

Progress condition: Along every branch, the smallest formula occurring infinitely often is a ν -formula.

Circular proofs := Non-wellfounded proofs that have finitely distinct subtrees.

In terms of mathematical content, like a proof by infinite descent.

Brotherston-Simpson hypothesis

Induction is as powerful as infinite descent.

Regularisation hypothesis

Circular proofs are as powerful as non-wellfounded proofs.

Note that circular proofs arise in not just logics with fixed points. Notably, arithmetic, provability logics like Gödel-Lob logic, etc.

μ LK regularisation

Theorem

Non-wellfounded proofs and circular proofs prove exactly the same set of μ LK theorems.

Game \mathcal{G}_{Γ}

- Arena is the set of all possible sequents in a proof of Γ.
- Prover chooses an inference rule *r* with conclusion the current state △.
- **Denier chooses one of the premisses** Δ' .
- A play is winning iff it starts from Γ and satisfies the progress condition.

μLK regularisation

Lemma

 \mathcal{G}_{Γ} is a parity game.

Proof idea

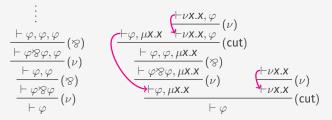
- Arena is finite (sequents are sets and made of subformulæ of Γ).
- The progress condition is a parity condition.

Proof of regularisation

There is a non-wellfounded proof of $\Gamma \Rightarrow$ Prover has a winning strategy in $\mathcal{G}_{\Gamma} \Rightarrow$ Prover has a memoryless winning strategy (Determinacy of parity games) \Rightarrow There is a circular proof of Γ . \Box

REGULARISATION IN SUBSTRUCTURALS

Let $\varphi = \nu \mathbf{X} . \mathbf{X} \otimes \mathbf{X}$



- The first proof is non-wellfounded since weakening is not allowed.
- In fact, there is no circular proof if cuts are not allowed!
- However, there is a circular proof with cuts.

Regularisation hypothesis

Circular proofs with cuts are as powerful as non-wellfounded proofs.

LINEAR LOGIC WITH FIXPOINTS

STRUCTURAL RULES

$$\frac{\vdash \Delta, \varphi, \varphi', \Delta'}{\vdash \Delta, \varphi', \varphi, \Delta'} (\mathsf{ex}) \quad \frac{\vdash \Delta, \varphi, \varphi}{\vdash \Delta, \varphi} (\mathsf{c}) \quad \frac{\vdash \Delta}{\vdash \Delta, \varphi} (\mathsf{w})$$

- **Exchange**: sequents as lists → sequents as multisets
- **Contraction**: sequent as multisets \rightarrow sequent as sets

Substructural logic(s) := Logics where one or more of the structural rules are absent or only allowed under controlled circumstances.

CURRY-HOWARD CORRESPONDENCE

- Establishes a direct connection between logic and type systems for models of computation.
- Can be seen at three levels:
 - 1. formulas \leftrightarrow types.
 - **2.** proof objects \leftrightarrow programs.
 - 3. normalisation \leftrightarrow computation/reduction.

Substructural type systems:= Type systems analogous to substructural logics

Exchange	Contraction	Weakening	Every variable is used
×	×	×	Exactly once in the order introduced
\checkmark	×	×	Exactly once
\checkmark	×	\checkmark	At most once
\checkmark	\checkmark	×	At least once

LINEAR LOGIC (MALL)

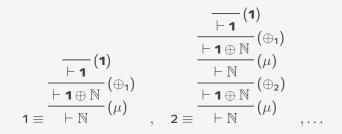
			conjunction	disjunction	"true"	"false"	
multiplicative		\otimes	8	1	\perp		
additive		&	\oplus	\top	0		
${\vdash \varphi, \varphi^{\perp}} (id) \frac{\vdash \Gamma_1, \varphi^{-} \vdash \Gamma_2, \varphi^{\perp}}{\vdash \Gamma_1, \Gamma_2} (cut)$							
$\frac{\vdash \Gamma, \varphi_1,}{\vdash \Gamma, \varphi_1 \varsigma}$	$\frac{\varphi_2}{\varphi_2}(\aleph)$	$\frac{\vdash \Gamma_1,}{\vdash \Gamma_1,}$	$\frac{\varphi_1 \vdash \Gamma_2, \varphi_2}{\Gamma_2, \varphi_1 \otimes \varphi_2} (\otimes$	$) \frac{\vdash \Gamma, \varphi}{\vdash \Gamma, \varphi_1 \oplus \varphi_1}$	$\frac{\vdash \Gamma, \varphi_i}{\vdash \Gamma, \varphi_1 \oplus \varphi_2} (\oplus_i)$		$\frac{\vdash \Gamma, \varphi_2}{\varphi_1 \& \varphi_2}(\&)$
⊢ 1	- (1)		$rac{\Gamma}{\Gamma, \perp}(\perp)$	⊢ Г , ¬	_ (⊤)	No	rule for o

μ MALL = MALL + fixpoints

 $\label{eq:Wellfounded} \begin{array}{ll} \mbox{Wellfounded system} := \mu \mbox{MALL}^{\rm ind} & \mbox{Circular system} := \mu \mbox{MALL}^{\odot} \\ & \mbox{Non-wellfounded system} := \mu \mbox{MALL}^{\infty} \end{array}$

Computation content of μ MALL^{ind}

- $\blacksquare \mathbb{N} := \mu \mathbf{X} . \mathbf{1} \oplus \mathbf{X}$
- $\blacksquare List_{\mathbb{A}} := \mu \mathbf{x} . \bot \oplus (\mathbb{A} \otimes \mathbf{x})$
- $\blacksquare Stream_{\mathbb{A}} := \nu \mathbf{x}.\mathbb{A} \otimes \mathbf{x}$



CONTRACTION'S BACK ON THE MENU, BOYS!

- In "full" linear logic there are *exponential* modalities that allow weakening and contractions.
- Exponentials can be encoded in μ MALL (with a few caveats).
- Also, natural numbers encoded using fixpoints can be contracted:

$$\frac{1}{\frac{\mathbb{N}\otimes\mathbb{N}\vdash\mathbb{N}\otimes\mathbb{N}}{(\mathsf{id})}}\frac{(\mathsf{id})}{\frac{1}{\mathbb{D}\otimes\mathbb{N}\vdash\mathbb{N}\otimes\mathbb{N}}}\frac{(\mathsf{id})}{\mathbb{D}\otimes\mathbb{N}\oplus\mathbb{N}\otimes\mathbb{N}}}(\mathbb{D}_{\ell}^{2})}$$

Remember $\mathbb{N} := \mu x.\mathbf{1} \oplus x$

Computation content of μ MALL $^{\infty}$ (& μ MALL $^{\circ}$)

$$\mathbb{N} := \mu \mathbf{X} \cdot \mathbf{1} \oplus \mathbf{X}$$

$$\mathbb{L}ist_{\mathbb{A}} := \mu \mathbf{X} \cdot \mathbf{1} \oplus (\mathbb{A} \otimes \mathbf{X})$$

$$\mathbb{S}tream_{\mathbb{A}} := \nu \mathbf{X} \cdot \mathbb{A} \otimes \mathbf{X}$$

$$\frac{\bigvee_{\mathbb{H}} \overset{\mathbb{H}}{\longrightarrow} \mathbb{H} \otimes \operatorname{Stream}_{\mathbb{N}}}{\overset{\mathbb{H}}{\longrightarrow} \mathbb{H} \otimes \operatorname{Stream}_{\mathbb{N}}} (\omega)$$

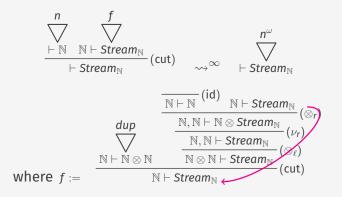
$$1 :: 2 :: 3 \cdots \equiv \overset{\mathbb{H}}{\longrightarrow} \operatorname{Stream}_{\mathbb{N}} (\nu)$$

$$1^{\omega} \equiv \overset{\mathbb{H}}{\longrightarrow} \operatorname{Stream}_{\mathbb{N}} (\nu)$$

■ The first stream cannot be represented by a circular proof.

CUT ELIMINATION

- \blacksquare Cut elimination \leftrightarrow computation/evaluation in CH
- Stronger than *cut admissibility* which requires only the *existence* of a cut-free proof.
- Need to prove productivity instead of termination.



The landscape of μ MALL

Abstract syntax

Ludics (BDS'15) Game semantics (Clairambault'09)

Understanding cut elimination

Proof-nets (DS'19, DPS'21) Bouncing threads (BDKS)

Denotational semantics

Coherence space semantics (EJ'21) Categorical semantics (FS'13)

Provability

Complexity (DDS) Truth Semantics (DJS) Annotated sequents (NST'18)

Curry-Howard correspondence

Session types (DP) Relation with System T (KPP'21)

(NON)-REGULARISABLE

Theorem

 $\mu \mathsf{MALL}^{\circlearrowright} \subsetneq \mu \mathsf{MALL}^{\curvearrowleft}$

Proof idea

- Show that μ MALL^{∞} is Π_1^{o} -hard (consequently undecidable).
- μMALL[°] is in Σ^o₁.
 (circular proofs are finitely representable, hence enumerable)
- If μ MALL^{∞} = μ MALL^{\circlearrowright}, then $\Pi_1^0 \subseteq \Sigma_1^0$. Contradiction!

Non-constructive!

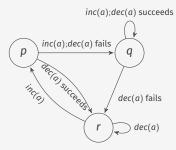
We do not exhibit an actual sequent

Fragment of linear logic	Complexity of Provability
MLL	NP-complete [Kanovich'91]
MALL	PSPACE-complete [LMSS'90]
MELL	?
LL	Undecidable [LMSS'90]

In comparison, LK is NP-complete and LJ is PSPACE-complete.
 Exponentials can be encoded in µMALL. So, we expect it to be at least as hard as LL.

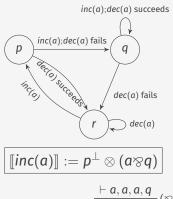
COUNTER MACHINES

• Counter $a \in \mathbb{N}_0$ and dec(a) fails if a = 0



- Halting of one counter automata decidable (Folklore)
- Halting of two counter automata Σ⁰₁-complete (Minsky)

REDUCTION TO MINSKY MACHINE



$$\frac{\vdash p, p^{\perp}}{\vdash a, a, a, p, p^{\perp} \otimes (a \otimes q)} (\otimes)$$

Encode dec and zero-check.

$$\varphi := \nu \mathbf{X} . \bot \& (\bigoplus_{I \in \mathcal{M}} \llbracket I \rrbracket \otimes \mathbf{X})$$

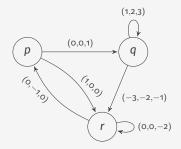
Theorem

 $\vdash p, \varphi$ provable iff \mathcal{M} is non-halting.

Proof idea

- (⇐) This relies on being able to use [I] for every $I \in \mathcal{M}$.
- (⇒) This relies on cut admissibility and focussing (the ability to apply certain rules context-freely).

VECTOR ADDITION SYSTEMS (& EXTENSIONS)

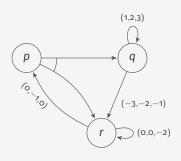


Starting from $\langle p, (0, 0, 0) \rangle$ is $\langle q, (10, 10, 10) \rangle$ reachable?

Theorem

Reachability of vector addition system with states is decidable and reduces from the provability of the Horn-fragment of MELL.

Vector addition systems (& extensions)



Branching VASS

Multiplicative splitting

 $\frac{\langle q, (3,2,0) \rangle \quad \langle r, (1,0,0) \rangle}{\langle p, (4,2,0) \rangle}$

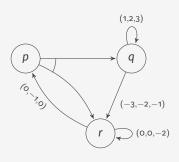
 Set of accepting configurations called axioms

Starting from $\langle q, (10, 10, 10) \rangle$ is there a run tree ending in axioms?

Theorem

BVASS reachability is open and equivalent to the provability of MELL.

Vector addition systems (& extensions)



Alternating VASS

Additive splitting

 $\frac{\langle q, (4,2,0) \rangle \quad \langle r, (4,2,0) \rangle}{\langle p, (4,2,0) \rangle}$

 Set of accepting configurations called axioms

Starting from $\langle q, (10, 10, 10) \rangle$ is there a run tree ending in axioms?

Theorem

AVASS reachability is undecidable and reduces to $\mu {\rm MALL}$ provability with only $\mu.$

WHAT ABOUT BROTHERSTON-SIMPSON?

Towards μ MALL^{ind} = μ MALL^{\odot}

NTS'18¹ gives an annotated circular system that can be finitised.

Towards μ MALL^{ind} $\neq \mu$ MALL^{\odot}

- Both µMALL^{ind} and µMALL[©] have the same complexity! Cannot use the complexity argument of non-regularisation.
- Suppose an oracle gives us a sequent that has a μMALL[°] proof but not a μMALL^{ind} proof. How do we verify this?
- Since provability is undecidable, there is no general algorithm!

¹Rémi Nollet, Alexis Saurin, and Christine Tasson. "Local Validity for Circular Proofs in Linear Logic with Fixed Points". In: *27th EACSL Annual Conference on Computer Science Logic, CSL 2018, Birmingham, UK.* ed. by Dan R. Ghica and Achim Jung. Vol. 119. LIPIcs.

PHASE SEMANTICS

TRUTH SEMANTICS

- Establishes a semantic meaning of truth.
- Gives a mapping [•] : Formulas → Mathematical Object such that a formula is provable iff its interpretation satisfies some property.
- Via CH, corresponds to type inhabitation.

Example

- Truth semantics of LK : Boolean algebras
- Truth semantics of LJ : Heyting algebras
- Truth semantics of S4 : Boolean algebras with an interior operator

Truth semantics is basically the *Lindenbaum algebra* i.e. the quotient of logical formulas under provability equivalence.

Context matters!

 $T \vdash \varphi \multimap \psi$ and $T \vdash \psi \multimap \chi$ does not imply $T \vdash \varphi \multimap \chi$ rather $T, T \vdash \varphi \multimap \chi$.

Define $Pr(\varphi) := \{ \Gamma \mid \vdash \Gamma, \varphi \text{ is provable} \}$

• $Pr(\bot) = Set of all provable sequents.$

 $\blacksquare \ \Pr(\varphi \otimes \psi) = \{ \Gamma_1 \uplus \Gamma_2 \mid \Gamma_1 \in \Pr(\varphi), \Gamma_2 \in \Pr(\psi) \} = \Pr(\varphi).\Pr(\psi)$

$$\blacksquare \mathsf{Pr}(\varphi \otimes \psi) = \mathsf{Pr}(\varphi) \cap \mathsf{Pr}(\psi) \dots$$

The algebraic object we are after must be a monoid and a lattice (a.k.a *residuated semilattice*).

Phase space

A phase space is a commutative monoid M along with a $\bot \subseteq M$. Let X, Y $\subseteq M$. Define

$$XY := \{xy \mid x \in X, y \in Y\} \qquad X^{\perp} := \{z \mid \forall x \in X. xz \in \mathbb{L}\}$$

X is called a fact if $X^{\perp\perp} = X$.

We interpret formulas (and sequents) on facts. $\begin{bmatrix} \varphi \otimes \psi \end{bmatrix} = \left(\llbracket \varphi \rrbracket . \llbracket \psi \rrbracket \right)^{\perp \perp} \quad \llbracket \varphi \otimes \psi \rrbracket = \left(\llbracket \varphi \rrbracket^{\perp} \llbracket \psi \rrbracket^{\perp} \right)^{\perp}$ $\begin{bmatrix} \varphi \otimes \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \quad \llbracket \varphi \oplus \psi \rrbracket = \left(\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \right)^{\perp \perp}$

Theorem (Girard'87)

 Γ is provable in MALL iff $1\in [\![\Gamma]\!]$

Syntactic monoid

- Let *M* = Set of all sequents.
- Let $\Gamma, \Delta \in M$. Then, $\Gamma \cdot \Delta = \Gamma, \Delta$.
- Therefore, (M, \cdot, \emptyset) is a monoid.
- Let $\bot = Pr(\bot)$ and we have a phase space.

Lemma (Adequation lemma)

 $[\![\Gamma]\!]\subseteq \textit{Pr}(\Gamma)$

Completeness proof

 $\emptyset \in \llbracket \Gamma \rrbracket \Rightarrow \emptyset \in Pr(\Gamma) \Rightarrow \vdash \Gamma, \emptyset \text{ is provable. } \Box$

Phase semantics of μ MALL

Fact

The set of facts is a complete lattice.

... We can interpret fixpoint formulas as:

 $\llbracket \mu \mathbf{X}.\varphi \rrbracket = lfp(\lambda \mathbf{X}.\varphi(\mathbf{X})) \quad \llbracket \nu \mathbf{X}.\varphi \rrbracket = gfp(\lambda \mathbf{X}.\varphi(\mathbf{X}))$

The interpretations are facts by Knaster-Tarski theorem.

Too liberal!

Not every fact is an image of $\llbracket \bullet \rrbracket$. So, $\llbracket \varphi(X) \rrbracket$ doesn't necessarily correspond to the interpretation of any formula.

Sound but not complete!

Restrict to a subset of fact closed under μ MALL operations.

SOUNDNESS AND COMPLETENESS

Theorem

 Γ is provable in μ MALL^{ind} iff $1 \in \llbracket \Gamma \rrbracket$

Proof idea

- $(\Rightarrow)~$ Soundness is easy induction on the proof.
- (⇐) For completeness, we start from the syntactic monoid but induction on formulas does not work (due to absence of subformula property)! We use Girard's *candidates of reducibility*.

$$\mathsf{Define} \ \left| \left< \varphi \right> := \left\{ \mathsf{F} \in \mathsf{Facts} \mid \mathsf{F} \subseteq \mathsf{Pr}(\varphi) \right\}$$

Lemma (Adequation Lemma)

For all facts $F \in \langle \psi \rangle$, $\llbracket \varphi(F) \rrbracket \subseteq Pr(\varphi(\psi))$.

CLOSURE ORDINALS

Let f be a monotonic function on a complete lattice $(\mathcal{L}, \leq, \top, \bot, \wedge, \vee)$. By Knaster-Tarski's theorem, it has a fixed point. But can we compute it?

$$egin{aligned} \Theta_{\mathsf{o}} &= f(ot); \ \Theta_{lpha+\mathsf{1}} &= f(\Theta_{lpha}); \ \Theta_{\lambda} &= \bigwedge_{lpha \in \lambda} \Theta_{lpha}. \end{aligned}$$

The sequence $\Theta_0, \Theta_1, \ldots$ is ultimately stationary and the lfp of f. The smallest ordinal α such that $\Theta_{\alpha} = \Theta_{\alpha+1}$ is the **closure ordinal** of f.

But, computing closure ordinals in phase spaces is hard!

What if we say we approximate lfp and gfp by their ω -th approximation?

$$\llbracket \mu \mathbf{X}.\varphi \rrbracket = \left(\bigcup_{n \ge \mathbf{o}} \llbracket \varphi^n(\mathbf{O}) \rrbracket\right)^{\perp \perp} \qquad \llbracket \nu \mathbf{X}.\varphi \rrbracket = \bigcap_{n \ge \mathbf{o}} \llbracket \varphi^n(\top) \rrbracket$$

This gives us an idea for new inference rules for fixpoints:

$$\frac{\stackrel{n}{\vdash \Gamma, \varphi(\varphi(\cdots(\varphi(\mathsf{O}))\cdots)}}{\stackrel{\vdash \Gamma, \mu \mathbf{X}.\varphi}{\vdash \Gamma, \mu \mathbf{X}.\varphi}}(\mu_{\omega}) \qquad \frac{\vdash \Gamma, \top \vdash \Gamma, \varphi(\top) \vdash \Gamma, \varphi(\varphi(\top)) \quad \dots}{\vdash \Gamma, \nu \mathbf{X}.\varphi}(\nu_{\omega})$$

We call this system μ MALL $_{\omega}$.

Theorem

The new intepretation is sound and complete wrt μ MALL $_{\omega}$.

Theorem

 μ MALL $_{\omega}$ admits cuts.

Advantage Completeness is easy since there is a (sort-of) subformula property. Cut admissibility can be proved using standard techniques from arithmetic.

Disadvantage Does not prove the same theorems as μ MALL^{ind}

■ Is μ MALL^{∞} Π_1^{o} -complete?

Either give a Π^o_1 algorithm or improve the lower bound.

• How does one extend the truth semantics to μ MALL^{∞}?

Soundness proofs for non-wellfounded calculi usually goes through finding a chain of countermodels that imply non-progression of an infinite branch. We do find the chain, but the non-progression is not clear.

- Compute closure ordinals of (classes of) µMALL formulas Computing closure ordinal of formulas as simple a⊗x is difficult.
- Is μ MALL $_{\omega} \subsetneq \mu$ MALL^{ind} ?

Thank you!