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FIXPOINT LOGIC(S)




WHY FIXPOINTS IN LOGIC?

Different logic, different reasons

m Extensions of propositional modal logics: LTL, p-calculus, . ..

to express richer specifications: "something happens infinitely
often", "something happens after some time" and so on

m Extensions of first-order logic: FO[LFP], FO[IFP], ...

to define richer classes of finite models and their descriptive
complexity

m Extensions of categorical grammar: Kleene Algebra, Action
algebra, ...

to algebraically define various classes of formal languages

This talk: the proof theory of fixpoint logic(s)




EXPLICIT (CO)INDUCTION

We start by adding the 1 and v operators for lfp and gfp
respectively such that ux.p = —vx.—.
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EXPLICIT (CO)INDUCTION

We start by adding the 1 and v operators for lfp and gfp
respectively such that ux.p = —vx.—.

@lp/x] <P I < olux.o/X] ()
pX.o <P . < ux.p o
plvx.p/x] < A Y < o[ih/X]
17 —(»)
vX.p < A P < vX.p

B /i expresses that ux.p is smaller than any post fixpoint of ¢.
Dually v, expresses that vx.p is larger than any pre fixpoint
of .

m ., expresses that ux.p is indeed a post fixpoint of © and
dually v, expresses that vx.p is indeed a pre fixpoint of .



EXPLICIT (CO)INDUCTION WITHOUT WEAKENING

m Cut inadmissible in system with explicit (co)induction
without weakening. The proof below has no cut-free version.

(id) (id) (id)

atka atka apatFa®a
(®r) (vr)

aakFa®a a®at vx.x
(cut)

a,ak vx.x
m New rules:
MyvEA o/X|Fy . e A, F o[y /x )
VEA POAEY ACASELIE e
[ oux.pkF A ! M= A vx.p

m Choosing an appropriate ¢ is akin choosing an appropriate
(co)induction hypothesis.

m Cut admissibility does not guarantee subformulaeproperty.




IMPLICIT (CO)INDUCTION

[ olux.o/X] F A
I ux.o A

M elvx.p/X] A
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M Eplux.o/x], A
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IMPLICIT (CO)INDUCTION

[, olux.p/x] < A p M < plux.p/x], A ()
[ ux.p <A l < px.p, A '
M olvx.p/x] < A I < olvx.p/X], A
() (vr)
Mux.p <A N <wx.p, A

m ., and u expresses that ux.p is a pre fixpoint and post
fixpoint of ¢ respectively.
m Similarly for v, and vy.

m uX.o and vx.p are indeed fixpoints but not necessarily least
and greatest.

m vXx.X cannot be proven.




NON-WELLFOUNDED PROOFS

m Let's allow proof trees of infinite height.
m Now vx.x can be proved:

Fux.x

Fuvx.x

m But inconsistent!

XX (1) vX.X, [ V;

(
XX Q vX.X, [ (v
= (cut)

Progress condition: Along every branch, the smallest for-
mula occurring infinitely often is a v-formula.




CIRCULAR PROOFS

Circular proofs := Non-wellfounded proofs that have finitely
distinct subtrees.

In terms of mathematical content, like a proof by infinite descent.

Brotherston-Simpson hypothesis

Induction is as powerful as infinite descent.

Regularisation hypothesis

Circular proofs are as powerful as non-wellfounded proofs.

Note that circular proofs arise in not just logics with fixed points.
Notably, arithmetic, provability logics like Godel-Lob logic, etc.
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LK REGULARISATION

Theorem
Non-wellfounded proofs and circular proofs prove exactly the

same set of uLK theorems.

Game Gr

m Arena is the set of all possible sequents in a
proof of T.

m Prover chooses an inference rule r with
conclusion the current state A.

m Denier chooses one of the premisses A’.

m A play is winning iff it starts from I and satisfies
the progress condition.




LK REGULARISATION

Lemma
Gr is a parity game.

Proof idea

m Arena is finite (segeunts are sets and made of subformulae
of IN).
m The progress condition is a parity condition.

Proof of regularisation

There is a non-wellfounded proof of I' = Prover has a winning
strategy in Gr = Prover has a memoryless winning strategy
(Determinacy of parity games) = There is a circular proof of I'. [J
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REGULARISATION IN SUBSTRUCTURALS

’ Let p = ux.x@x‘

Fux.x, ¢
% (v)
Fo, 0,0 o, ux.Xx VXX, p

(®) (cut)
Fe®p, e ) F o, 0, pxXx
F o, F oo, uX.x FrXx.x
—22 () S0 W
F e o, XX VXX
—(v) (cut)
Fo Fo

m The first proof is non-wellfounded since weakening is not
allowed.

m In fact, there is no circular proof if cuts are not allowed!
m However, there is a circular proof with cuts.

Regularisation hypothesis

Circular proofs with cuts are as powerful as non-wellfounded proofs.




LINEAR LOGIC WITH FIXPOINTS




STRUCTURAL RULES

A ¢ A A 00,

A
—(eX C (
FA,@D’,%A’( ) FAp (©)

FA, o

w)

m Exchange: sequents as lists — sequents as multisets
m Contraction: sequent as multisets — sequent as sets

Substructural logic(s) := Logics where one or more of the
structural rules are absent or only allowed under controlled
circumstances.




CURRY-HOWARD CORRESPONDENCE

m Establishes a direct connection between logic and type
systems for models of computation.
m Can be seen at three levels:

1. formulas <> types.
2. proof objects « programs.
3. normalisation <> computation/reduction.

Substructural type systems:= Type systems analogous to
substructural logics

Exchange Contraction Weakening Every variable is used
X X X Exactly once in the order introduced
v X X Exactly once
v X v At most once
v v X At least once




LINEAR LOGIC (MALL)

\ conjunction disjunction "true" "false"
& I 1 1
& (S5} T o

multiplicative
additive

(id) cut
o, ot AR
T, 01,00 FT, o0 Fa e ® FTL (@) Fl o1 BT
F T, 090, FT, T2, 00 ® @ FT,01 @2 ! T, o1&pa
() =W (1)
1 T, L FT,T No rule for o




MALL AND ITS PROOF SYSTEMS

uMALL = MALL + fixpoints

Wellfounded system := MMALLind Circular system := uMALL®
Non-wellfounded system := uMALL>




COMPUTATION CONTENT OF gMALL™

BN =ux16X
m Listy := ux.L & (A ®X)
m Stream, := vX.A ® X

-1 )(@)

F1ON

—H(1) e (1)
|—169N(@1) H@N(@z)
1= N (1) . 2= FN (1) :




CONTRACTION’S BACK ON THE MENU, BOYS!

m In "full" linear logic there are exponential modalities that
allow weakening and contractions.

m Exponentials can be encoded in uMALL (with a few caveats).
m Also, natural numbers encoded using fixpoints can be

contracted:
—————(id)
. N®NFN®N
(id) (87)
NoNFN®N 1@(N®N)FN®N( )
L,
NFN®N a

’ Remember N := ux.1® x‘




COMPUTATION CONTENT OF ptMALL™ (& pMALL®

B N:=ux16x
m Listy = ux.L & (A ®x)
m Stream, = vX.A ® X

2

v

1 FN F Streamy - 1
F N ® Streamy
FN F Streamy g FN  Streamy
F N ® Streamy FN® Streamy )
1522 5 3--= F Streamy @) 1% = F Streamy V)

m The first stream cannot be represented by a circular proof.



CUT ELIMINATION

m Cut elimination <+ computation/evaluation in CH

m Stronger than cut admissibility which requires only the
existence of a cut-free proof.

m Need to prove productivity instead of termination.

g
VvV VvV n

FN N Stream
Sy .V
F Streamy ~y = Streamy
(id)
NFN N F Streamy
dup N,N F N ® Streamy

N, N F Streamy
NFN®N N ® N I Stream

where f = N |- Streamy /




THE LANDSCAPE OF uMALL

Understanding cut elimination

Abstract syntax

Ludics (BDS'15) Proof-nets (DS’19, DPS'21)
Game semantics (Clairambault'o9) Bouncing threads (BDKS)

Denotational semantics

Coherence space semantics (E)'21)
Categorical semantics (FS™13)

Provability Curry-Howard correspon-

dence

Complexity (DDS)
Truth Semantics (D)S) Session types (DP)
Annotated sequents (NST"18) Relation with System T (KPP'21)




COMPLEXITY




(NON)-REGULARISABLE

Theorem
UMALL® C guMALL®®

Proof idea

m Show that yuMALL* is MM%-hard (consequently undecidable).
m ;MALL® isin X9.

(circular proofs are finitely representable, hence enumerable)
m If uMALL*® = uMALL®, then N9 C 9. Contradiction!

Non-constructive!
We do not exhibit an actual sequent



PROVABILITY OF LINEAR LOGIC

Fragment of linear logic Complexity of Provability
MLL NP-complete [Kanovich'91]
MALL PSPACE-complete [LMSS'90]
MELL ?

LL Undecidable [LMSS'90]

m In comparison, LK is NP-complete and L) is PSPACE-complete.

m Exponentials can be encoded in uMALL. So, we expect it to
be at least as hard as LL.



COUNTER MACHINES

m Counter a € Ny and dec(a) fails ifa =0

inc(a);dec(a) succeeds

inc(a);dec(a) fails

dec(a) fails

dec(a)

m Halting of one counter automata decidable (Folklore)
m Halting of two counter automata ¥2-complete (Minsky)




REDUCTION TO MINSKY MACHINE

@ = UX. L&(@M?X

leM

F p,p provable iff M is
non-halting.

(<) This relies on being able to
use [I] for every I € M.

N (=) This relies on cut

a,a,p,pt @ (aq) admissibility and focussing

(the ability to apply certain

rules context-freely).

inc(a);dec(a) succeeds

inc(a);dec(a) fails

Encode dec and zero-check.



VECTOR ADDITION SYSTEMS (& EXTENSIONS)

(1,2,3)

Starting from (p, (0,0, 0)) is (g, (10,10,10)) reachable?

Reachability of vector addition system with states is decidable
and reduces from the provability of the Horn-fragment of MELL.




VECTOR ADDITION SYSTEMS (& EXTENSIONS)
_ Branching VASS

m Multiplicative splitting

<q7(3’27o)> <r’ (17o’o)>
(P, (4,2,0))

(-3,-2,-1)
m Set of accepting
(0,0,-2) configurations called
axioms

Starting from (q, (10,10, 10)) is there a run tree ending in axioms?

BVASS reachability is open and equivalent to the provability of
MELL.




VECTOR ADDITION SYSTEMS (& EXTENSIONS)

- Alternating VASS

m Additive splitting

(9,(4,2,0)) (r,(42,0))
(P, (4,2,0))

(-3,-2,-1)
m Set of accepting

(0,0,-2) configurations called
axioms

Starting from (q, (10,10, 10)) is there a run tree ending in axioms?

Theorem
AVASS reachability is undecidable and reduces to uMALL
provability with only p.

P

!
w
H



WHAT ABOUT BROTHERSTON-SIMPSON?

Towards uMALL™ = ;MALL®

NTS'18" gives an annotated circular system that can be finitised.

owards u ' m o
Towards pMALL™ £ ;MALL

m Both xMALL™ and yMALL® have the same complexity!
Cannot use the complexity argument of non-regularisation.

m Suppose an oracle gives us a sequent that has a UMALL®
proof but not a xMALL™ proof. How do we verify this?

m Since provability is undecidable, there is no general
algorithm!

TRémi Nollet, Alexis Saurin, and Christine Tasson. “Local Validity for Circular Proofs in
Linear Logic with Fixed Points”. In: 27th EACSL Annual Conference on Computer Science
Logic, CSL 2018, Birmingham, UK. ed. by Dan R. Ghica and Achim Jung. Vol. 119. LIPIcs.




PHASE SEMANTICS




TRUTH SEMANTICS

m Establishes a semantic meaning of truth.
m Gives a mapping [e] : Formulas — Mathematical Object such
that a formula is provable iff its interpretation satisfies some

property.
m Via CH, corresponds to type inhabitation.

m Truth semantics of LK : Boolean algebras

m Truth semantics of L) : Heyting algebras
m Truth semantics of S4 : Boolean algebras with an interior
operator




TRUTH SEMANTICS OF LL

Truth semantics is basically the Lindenbaum algebra i.e. the
quotient of logical formulas under provability equivalence.

Context matters!

Tk@—o1and Tk —o x does notimply T+ ¢ —o y rather
T,TF ¢ —o x.

Define |Pr(y) := {I | - T, ¢ is provable}
m Pr(L) = Set of all provable sequents.
B Pr(p®¢)={T1Wl, |1 € Pr(p),l> € Pr(y)} = Pr(y).Pr(y)

m Pr(p&wy) = Pr(o) NPr(y)...

The algebraic object we are after must be a monoid and a lattice
(a.k.a residuated semilattice).




PHASE SEMANTICS OF MALL

A phase space is a commutative monoid M along with a ILC M.
Let X,Y C M. Define

XY :={xy|xeXyeY} Xt ={z|vxeXxzel}

X is called a fact if X-+ = X.

We interpret formulas (and sequents) on facts.

le @] = (e[ [ewe] = (el 1)
[e&y] = ] N [¥] Lo ® 4] = ([e] U [¥])

Theorem (Girard’87)

[ is provable in MALL iff 1 € [I]




SYNTACTIC MONOID

m Let M = Set of all sequents.

mletl,A e M Then, I-A =T A.

m Therefore, (M, -, @) is a monoid.

m Let 1= Pr(L)and we have a phase space.

Lemma Adequatlon lemma)

[r] € Pr(r

Completeness proof

ge[ll=w@epPr(l)=+T,ois provable.




PHASE SEMANTICS OF ;sMALL

The set of facts is a complete lattice.

.. We can interpret fixpoint formulas as:

[ux.¢] = fp(MX.p(X))  [vx-¢] = gfp(AX.(X))

The interpretations are facts by Knaster-Tarski theorem.

Not every fact is an image of [e]. So, [ (X)] doesn’t necessarily
correspond to the interpretation of any formula.

Sound but not complete!
Restrict to a subset of fact closed under uMALL operations.



SOUNDNESS AND COMPLETENESS

Theorem

[ is provable in uMALL™ iff 1 € [I]

Proof idea

(=) Soundness is easy induction on the proof.

(<) For completeness, we start from the syntactic monoid but
induction on formulas does not work (due to absence of

subformula property)! We use Girard’s candidates of
reducibility.

Define ’ (p) :={F € Facts | F C Pf(@)}‘

Lemma (Adequation Lemma)
For all facts F € (), [¢(F)] € Pr(e(+)).




CLOSURE ORDINALS

Let f be a monotonic function on a complete lattice
(L,<, T, L, A, V). By Knaster-Tarski’s theorem, it has a fixed
point. But can we compute it?

o = f(L);
Qi1 = F(Ou);
Or=/\ O
aEX
The seqeuence G, ©,, ... is ultimately stationary and the

[fp of f. The smallest ordinal « such that ©, = ©,., is the
closure ordinal of f.

But, computing closure ordinals in phase spaces is hard!



AN INFINITARY CALCULUS

What if we say we approximate Ifp and gfp by their w-th
approximation?

n>o n>o

11
[1x.] = (U[W(O)]]) [vx.e] = () 1"(T)]

This gives us an idea for new inference rules for fixpoints:

n

—
FT,o(e(-- (2(9)) - -) (1) FI,T FTLo(T) FTLe(e(T)) ... )
FT,ux.o e FTvxp v

We call this system pMALL,,..




AN INFINITARY CALCULUS

The new intepretation is sound and complete wrt ;MALL,,..

uMALL,, admits cuts.

Advantage Completeness is easy since there is a (sort-of)
subformula property. Cut admissibility can be
proved using standard techniques from
arithmetic.

Disadvantage Does not prove the same theorems as pMALL™ .



FUTURE WORK

m Is uMALL®™ M9-complete?
Either give a M2 algorithm or improve the lower bound.

m How does one extend the truth semantics to xMALL>?
Soundness proofs for non-wellfounded calculi usually goes
through finding a chain of countermodels that imply

non-progression of an infinite branch. We do find the chain, but
the non-progression is not clear.

m Compute closure ordinals of (classes of) uMALL formulas

Computing closure ordinal of formulas as simple aex is difficult.
m Is uMALL, C uMALL™ ?
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Thank you!
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