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Fixpoint logic(s)



Why fixpoints in logic?

Different logic, different reasons

Extensions of propositional modal logics: LTL, µ-calculus, . . .

to express richer specifications: "something happens infinitely
often", "something happens after some time" and so on
Extensions of first-order logic: FO[LFP], FO[IFP], . . .

to define richer classes of finite models and their descriptive
complexity
Extensions of categorical grammar: Kleene Algebra, Action
algebra, . . .

to algebraically define various classes of formal languages

This talk: the proof theory of fixpoint logic(s)
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Explicit (co)induction

We start by adding the µ and ν operators for lfp and gfp
respectively such that µx.φ = ¬νx.¬φ.

φ[ψ/x] ⊢ ψ
(µℓ)

µx.φ ⊢ ψ
Γ ⊢ φ[µx.φ/x],∆

(µr)
Γ ⊢ µx.φ,∆

Γ, φ[νx.φ/x] ⊢ ∆
(νℓ)

Γ, νx.φ ⊢ ∆

ψ ⊢ φ[ψ/x]
(νr)

ψ ⊢ νx.φ

µℓ expresses that µx.φ is smaller than any post fixpoint of φ.
Dually νr expresses that νx.φ is larger than any pre fixpoint
of φ.
µr expresses that µx.φ is indeed a post fixpoint of φ and
dually νℓ expresses that νx.φ is indeed a pre fixpoint of φ.
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Explicit (co)induction without weakening

Cut inadmissible in system with explicit (co)induction
without weakening. The proof below has no cut-free version.

(id)
a ⊢ a

(id)
a ⊢ a

(⊗r)a,a ⊢ a ⊗ a

(id)
a ⊗ a ⊢ a ⊗ a

(νr)a ⊗ a ⊢ νx.x
(cut)

a,a ⊢ νx.x

New rules:
Γ, ψ ⊢ ∆ φ[ψ/x] ⊢ ψ

(µind
ℓ )

Γ, µx.φ ⊢ ∆

Γ ⊢ ∆, ψ ψ ⊢ φ[ψ/x]
(ν ind

r )
Γ ⊢ ∆, νx.φ

Choosing an appropriate ψ is akin choosing an appropriate
(co)induction hypothesis.
Cut admissibility does not guarantee subformulæproperty.
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Implicit (co)induction

Γ, φ[µx.φ/x] ⊢ ∆
(µl)

Γ, µx.φ ⊢ ∆

Γ ⊢ φ[µx.φ/x],∆
(µr)

Γ ⊢ µx.φ,∆
Γ, φ[νx.φ/x] ⊢ ∆

(νl)
Γ, νx.φ ⊢ ∆

Γ ⊢ φ[νx.φ/x],∆
(νr)

Γ ⊢ νx.φ,∆

µℓ and µr expresses that µx.φ is a pre fixpoint and post
fixpoint of φ respectively.
Similarly for νℓ and νr.

Hang on!

µx.φ and νx.φ are indeed fixpoints but not necessarily least
and greatest.
νx.x cannot be proven.
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Non-wellfounded proofs

Let’s allow proof trees of infinite height.
Now νx.x can be proved:

...
(ν)

⊢ νx.x
(ν)

⊢ νx.x

But inconsistent!
...

(µ)
µx.x

(µ)
µx.x

...
(ν)

νx.x, Γ
(ν)

νx.x, Γ
(cut)

Γ

Progress condition: Along every branch, the smallest for-
mula occurring infinitely often is a ν-formula.
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Circular proofs

Circular proofs := Non-wellfounded proofs that have finitely
distinct subtrees.

In terms of mathematical content, like a proof by infinite descent.

Brotherston-Simpson hypothesis
Induction is as powerful as infinite descent.

Regularisation hypothesis
Circular proofs are as powerful as non-wellfounded proofs.

Note that circular proofs arise in not just logics with fixed points.
Notably, arithmetic, provability logics like Gödel-Lob logic, etc.
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µLK regularisation

Theorem
Non-wellfounded proofs and circular proofs prove exactly the
same set of µLK theorems.

Game GΓ

Arena is the set of all possible sequents in a
proof of Γ.

Prover chooses an inference rule r with
conclusion the current state ∆.

Denier chooses one of the premisses ∆′.

A play is winning iff it starts from Γ and satisfies
the progress condition.

∆ ∆′
r
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µLK regularisation

Lemma
GΓ is a parity game.

Proof idea
Arena is finite (seqeunts are sets and made of subformulæ
of Γ).
The progress condition is a parity condition.

Proof of regularisation
There is a non-wellfounded proof of Γ ⇒ Prover has a winning
strategy in GΓ ⇒ Prover has a memoryless winning strategy
(Determinacy of parity games) ⇒ There is a circular proof of Γ.

8 35



Regularisation in substructurals

Let φ = νx.xOx

····
⊢ φ,φ, φ

(O)
⊢ φOφ,φ

(ν)
⊢ φ,φ

(O)
⊢ φOφ

(ν)
⊢ φ

⊢φ, µx.x
⊢νx.x, φ

(ν)
⊢νx.x, φ

(cut)
⊢ φ,φ, µx.x

(O)
⊢ φOφ, µx.x

(ν)
⊢φ, µx.x

⊢νx.x
(ν)

⊢νx.x
(cut)

⊢ φ

The first proof is non-wellfounded since weakening is not
allowed.
In fact, there is no circular proof if cuts are not allowed!
However, there is a circular proof with cuts.

Regularisation hypothesis
Circular proofs with cuts are as powerful as non-wellfounded proofs.
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Linear logic with fixpoints



Structural rules

⊢ ∆, φ, φ′,∆′

⊢ ∆, φ′, φ,∆′ (ex)
⊢ ∆, φ, φ

⊢ ∆, φ
(c)

⊢ ∆

⊢ ∆, φ
(w)

Exchange: sequents as lists → sequents as multisets
Contraction: sequent as multisets → sequent as sets

Substructural logic(s) := Logics where one or more of the
structural rules are absent or only allowed under controlled
circumstances.
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Curry-Howard correspondence

Establishes a direct connection between logic and type
systems for models of computation.
Can be seen at three levels:

1. formulas ↔ types.
2. proof objects ↔ programs.
3. normalisation ↔ computation/reduction.

Substructural type systems:= Type systems analogous to
substructural logics

Exchange Contraction Weakening Every variable is used
× × × Exactly once in the order introduced
✓ × × Exactly once
✓ × ✓ At most once
✓ ✓ × At least once
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Linear logic (MALL)

conjunction disjunction "true" "false"
multiplicative ⊗ O 1 ⊥

additive N ⊕ ⊤ 0

(id)
⊢ φ,φ⊥

⊢ Γ1, φ ⊢ Γ2, φ
⊥

(cut)
⊢ Γ1, Γ2

⊢ Γ, φ1, φ2
(O)

⊢ Γ, φ1Oφ2

⊢ Γ1, φ1 ⊢ Γ2, φ2
(⊗)

⊢ Γ1, Γ2, φ1 ⊗ φ2

⊢ Γ, φi
(⊕i)⊢ Γ, φ1 ⊕ φ2

⊢ Γ, φ1 ⊢ Γ, φ2
(N)

⊢ Γ, φ1Nφ2

(1)
⊢ 1

⊢ Γ
(⊥)

⊢ Γ,⊥
(⊤)

⊢ Γ,⊤ No rule for 0
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µMALL and its proof systems

µMALL = MALL + fixpoints

Wellfounded system := µMALLind Circular system := µMALL⟳

Non-wellfounded system := µMALL∞
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Computation content of µMALLind

N := µx.1⊕ x
ListA := µx.⊥⊕ (A⊗ x)
StreamA := νx.A⊗ x

1 ≡

(1)
⊢ 1

(⊕1)⊢ 1⊕ N
(µ)

⊢ N , 2 ≡

(1)
⊢ 1

(⊕1)⊢ 1⊕ N
(µ)

⊢ N
(⊕2)⊢ 1⊕ N
(µ)

⊢ N , . . .
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Contraction’s back on the menu, boys!

In "full" linear logic there are exponential modalities that
allow weakening and contractions.
Exponentials can be encoded in µMALL (with a few caveats).
Also, natural numbers encoded using fixpoints can be
contracted:

(id)
N⊗ N ⊢ N⊗ N

(id)
N⊗ N ⊢ N⊗ N

(⊕2
ℓ)1⊕ (N⊗ N) ⊢ N⊗ N

(µℓ)N ⊢ N⊗ N

Remember N := µx.1⊕ x

15 35



Computation content of µMALL∞ (& µMALL⟳)

N := µx.1⊕ x
ListA := µx.⊥⊕ (A⊗ x)
StreamA := νx.A⊗ x

1 :: 2 :: 3 · · · ≡

1▽
⊢ N

2▽
⊢ N

····
⊢ StreamN

(⊗)
⊢ N⊗ StreamN

(ν)
⊢ StreamN

(⊗)
⊢ N⊗ StreamN

(ν)
⊢ StreamN 1ω ≡

1▽
⊢ N ⊢ StreamN

(⊗)
⊢ N⊗ StreamN

(ν)
⊢ StreamN

The first stream cannot be represented by a circular proof.
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Cut elimination

Cut elimination ↔ computation/evaluation in CH
Stronger than cut admissibility which requires only the
existence of a cut-free proof.
Need to prove productivity instead of termination.

n▽
⊢ N

f▽
N ⊢ StreamN

(cut)
⊢ StreamN ⇝∞

nω

▽
⊢ StreamN

where f :=

dup▽
N ⊢ N⊗ N

(id)
N ⊢ N N ⊢ StreamN

(⊗r)N,N ⊢ N⊗ StreamN
(νr)N,N ⊢ StreamN

(⊗ℓ)N⊗ N ⊢ StreamN
(cut)

N ⊢ StreamN
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The landscape of µMALL

Abstract syntax

Ludics (BDS’15)
Game semantics (Clairambault’09)

Understanding cut elimination

Proof-nets (DS’19, DPS’21)
Bouncing threads (BDKS)

Denotational semantics

Coherence space semantics (EJ’21)
Categorical semantics (FS’13)

Provability

Complexity (DDS)
Truth Semantics (DJS)
Annotated sequents (NST’18)

Curry-Howard correspon-
dence

Session types (DP)
Relation with System T (KPP’21)
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Complexity



(Non)-regularisable

Theorem
µMALL⟳ ⊊ µMALL∞

Proof idea
Show that µMALL∞ is Π0

1 -hard (consequently undecidable).
µMALL⟳ is in Σ0

1 .
(circular proofs are finitely representable, hence enumerable)
If µMALL∞ = µMALL⟳, then Π0

1 ⊆ Σ0
1 . Contradiction!

Non-constructive!
We do not exhibit an actual sequent
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Provability of linear logic

Fragment of linear logic Complexity of Provability
MLL NP-complete [Kanovich’91]
MALL PSPACE-complete [LMSS’90]
MELL ?
LL Undecidable [LMSS’90]

In comparison, LK is NP-complete and LJ is PSPACE-complete.
Exponentials can be encoded in µMALL. So, we expect it to
be at least as hard as LL.
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Counter machines

Counter a ∈ N0 and dec(a) fails if a = 0

p q

r

inc(a);dec(a) fails

dec(a) succeeds

inc(a);dec(a) succeeds

dec(a) fails

dec(a)

inc(a)

Halting of one counter automata decidable (Folklore)
Halting of two counter automata Σ0

1 -complete (Minsky)
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Reduction to Minsky machine

p q

r

inc(a);dec(a) fails

dec(a) succeeds

inc(a);dec(a) succeeds

dec(a) fails

dec(a)

inc(a)

Jinc(a)K := p⊥ ⊗ (aOq)

⊢ p,p⊥
⊢ a,a,a,q

(O)
⊢ a,a,aOq

(⊗)
⊢ a,a,p,p⊥ ⊗ (aOq)

Encode dec and zero-check.

φ := νx.⊥N(
⊕
I∈M

JIKOx)

Theorem
⊢ p, φ provable iff M is
non-halting.

Proof idea
(⇐) This relies on being able to

use JIK for every I ∈ M.
(⇒) This relies on cut

admissibility and focussing
(the ability to apply certain
rules context-freely).
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Vector addition systems (& extensions)

p q

r

(0,0,1)

(1,0,0)

(1,2,3)

(−3,−2,−1)

(0,0,−2)

(0,−1,0)

Starting from ⟨p, (0,0,0)⟩ is ⟨q, (10, 10, 10)⟩ reachable?

Theorem
Reachability of vector addition system with states is decidable
and reduces from the provability of the Horn-fragment of MELL.
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Vector addition systems (& extensions)

p q

r

(1,2,3)

(−3,−2,−1)

(0,0,−2)

(0,−1,0)

Branching VASS
Multiplicative splitting

⟨q, (3, 2,0)⟩ ⟨r, (1,0,0)⟩
⟨p, (4, 2,0)⟩

Set of accepting
configurations called
axioms

Starting from ⟨q, (10, 10, 10)⟩ is there a run tree ending in axioms?

Theorem
BVASS reachability is open and equivalent to the provability of
MELL.
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Vector addition systems (& extensions)

p q

r

(1,2,3)

(−3,−2,−1)

(0,0,−2)

(0,−1,0)

Alternating VASS
Additive splitting

⟨q, (4, 2,0)⟩ ⟨r, (4, 2,0)⟩
⟨p, (4, 2,0)⟩

Set of accepting
configurations called
axioms

Starting from ⟨q, (10, 10, 10)⟩ is there a run tree ending in axioms?

Theorem
AVASS reachability is undecidable and reduces to µMALL
provability with only µ.
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What about Brotherston-Simpson?

Towards µMALLind = µMALL⟳

NTS’181 gives an annotated circular system that can be finitised.

Towards µMALLind ̸= µMALL⟳

Both µMALLind and µMALL⟳ have the same complexity!
Cannot use the complexity argument of non-regularisation.
Suppose an oracle gives us a sequent that has a µMALL⟳
proof but not a µMALLind proof. How do we verify this?
Since provability is undecidable, there is no general
algorithm!

1Rémi Nollet, Alexis Saurin, and Christine Tasson. “Local Validity for Circular Proofs in
Linear Logic with Fixed Points”. In: 27th EACSL Annual Conference on Computer Science
Logic, CSL 2018, Birmingham, UK. ed. by Dan R. Ghica and Achim Jung. Vol. 119. LIPIcs.
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Phase semantics



Truth semantics

Establishes a semantic meaning of truth.
Gives a mapping J•K : Formulas → Mathematical Object such
that a formula is provable iff its interpretation satisfies some
property.
Via CH, corresponds to type inhabitation.

Example

Truth semantics of LK : Boolean algebras
Truth semantics of LJ : Heyting algebras
Truth semantics of S4 : Boolean algebras with an interior
operator
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Truth semantics of LL

Truth semantics is basically the Lindenbaum algebra i.e. the
quotient of logical formulas under provability equivalence.

Context matters!
T ⊢ φ⊸ ψ and T ⊢ ψ⊸ χ does not imply T ⊢ φ⊸ χ rather
T, T ⊢ φ⊸ χ.

Define Pr(φ) := {Γ | ⊢ Γ, φ is provable}
Pr(⊥) = Set of all provable sequents.
Pr(φ⊗ ψ) = {Γ1 ⊎ Γ2 | Γ1 ∈ Pr(φ), Γ2 ∈ Pr(ψ)} = Pr(φ).Pr(ψ)
Pr(φNψ) = Pr(φ) ∩ Pr(ψ) . . .

The algebraic object we are after must be a monoid and a lattice
(a.k.a residuated semilattice).
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Phase semantics of MALL

Phase space
A phase space is a commutative monoid M along with a ⊥⊥⊆ M.
Let X, Y ⊆ M. Define

XY := {xy | x ∈ X, y ∈ Y} X⊥ := {z | ∀x ∈ X.xz ∈⊥⊥}

X is called a fact if X⊥⊥ = X.

We interpret formulas (and sequents) on facts.
Jφ⊗ ψK = (JφK.JψK)⊥⊥ JφOψK = (JφK⊥JψK⊥)

⊥

JφNψK = JφK ∩ JψK Jφ⊕ ψK = (JφK ∪ JψK)⊥⊥

Theorem (Girard’87)
Γ is provable in MALL iff 1 ∈ JΓK
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Syntactic monoid

Let M = Set of all sequents.
Let Γ,∆ ∈ M. Then, Γ ·∆ = Γ,∆.
Therefore, (M, ·,∅) is a monoid.
Let ⊥⊥= Pr(⊥) and we have a phase space.

Lemma (Adequation lemma)
JΓK ⊆ Pr(Γ)

Completeness proof
∅ ∈ JΓK ⇒ ∅ ∈ Pr(Γ) ⇒ ⊢ Γ,∅ is provable.
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Phase semantics of µMALL

Fact
The set of facts is a complete lattice.

∴ We can interpret fixpoint formulas as:

Jµx.φK = lfp(λX.φ(X)) Jνx.φK = gfp(λX.φ(X))

The interpretations are facts by Knaster-Tarski theorem.

Too liberal!
Not every fact is an image of J•K. So, Jφ(X)K doesn’t necessarily
correspond to the interpretation of any formula.

Sound but not complete!

Restrict to a subset of fact closed under µMALL operations.
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Soundness and completeness

Theorem
Γ is provable in µMALLind iff 1 ∈ JΓK

Proof idea
(⇒) Soundness is easy induction on the proof.
(⇐) For completeness, we start from the syntactic monoid but

induction on formulas does not work (due to absence of
subformula property)! We use Girard’s candidates of
reducibility.

Define ⟨φ⟩ := {F ∈ Facts | F ⊆ Pr(φ)}

Lemma (Adequation Lemma)
For all facts F ∈ ⟨ψ⟩, Jφ(F)K ⊆ Pr(φ(ψ)).
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Closure ordinals

Let f be a monotonic function on a complete lattice
(L,≤,⊤,⊥,∧,∨). By Knaster-Tarski’s theorem, it has a fixed
point. But can we compute it?

Θ0 = f (⊥);

Θα+1 = f (Θα);

Θλ =
∧
α∈λ

Θα.

The seqeuence Θ0,Θ1, . . . is ultimately stationary and the
lfp of f . The smallest ordinal α such that Θα = Θα+1 is the
closure ordinal of f .

But, computing closure ordinals in phase spaces is hard!
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An infinitary calculus

What if we say we approximate lfp and gfp by their ω-th
approximation?

Jµx.φK =

⋃
n≥0

Jφn(0)K

⊥⊥

Jνx.φK =
⋂
n≥0

Jφn(⊤)K

This gives us an idea for new inference rules for fixpoints:

⊢ Γ,

n︷ ︸︸ ︷
φ(φ(· · · (φ(0)) · · · )

(µω)⊢ Γ, µx.φ
⊢ Γ,⊤ ⊢ Γ, φ(⊤) ⊢ Γ, φ(φ(⊤)) . . .

(νω)⊢ Γ, νx.φ

We call this system µMALLω.
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An infinitary calculus

Theorem
The new intepretation is sound and complete wrt µMALLω.

Theorem
µMALLω admits cuts.

Advantage Completeness is easy since there is a (sort-of)
subformula property. Cut admissibility can be
proved using standard techniques from
arithmetic.

Disadvantage Does not prove the same theorems as µMALLind .
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Future work

Is µMALL∞ Π0
1 -complete?

Either give a Π0
1 algorithm or improve the lower bound.

How does one extend the truth semantics to µMALL∞?

Soundness proofs for non-wellfounded calculi usually goes
through finding a chain of countermodels that imply
non-progression of an infinite branch. We do find the chain, but
the non-progression is not clear.
Compute closure ordinals of (classes of) µMALL formulas

Computing closure ordinal of formulas as simple aOx is difficult.
Is µMALLω ⊊ µMALLind ?
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Thank you!
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