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Motivations

Extracting Herbrand trees

through formalization in Coq and extraction:
safe (adequacy) but slow (a lot of backtracks on the tree)

direct program:
faster but unsafe (implemented in a modified KAM)

through a forcing transformation:
the best of both worlds:

safe (adequacy with forcing)
fast (intuitionistic proof: no backtrack on the tree)
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Idea behind Herbrand theorem

We start from an inconsistent universal theory U.
(i.e. a set of universal formulæ Ui = ∀~x.Fi ~x with Fi quantifier-free)

infinite
interpretations

→ compactness →
finite information

for each interpretation

infinite number
of interpretations

→ Herbrand theorem →
finite information

for all interpretations

This information can be presented as a decision tree or BDD.
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What is a Herbrand tree?

Definition (Herbrand tree)
A binary tree where

inner nodes are labeled by atomic formulæ

branches represent partial interpretations

leaves contain contradictions

Example

F1 = P 3

F2 = ∀n.P n → P (n + 1)

F3 = ¬P 6
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Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.

Let us fix an enumeration (ai)i∈N of the atoms.
(atoms = atomic formulæ)
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Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.

a₀

a₁ a₁

a₂ a₂ a₂ a₂

a₃ a₃ a₃ a₃ a₃ a₃ a₃ a₃

a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄

consider the atom-enumerating complete infinite tree
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Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.
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Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.

a₀

a₁ a₁

a₂ a₂ a₂ a₂

a₃ a₃ a₃⊥ a₃ a₃ a₃ a₃

a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄

by hypothesis (and compactness), we can cut it at finite depth
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Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.

a₀

a₁ ⊥

a₂⊥

a₃⊥

⊥ ⊥

conclude using weak Kőnig’s lemma
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A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real
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Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?

By induction on t :

subHtree : finite valuation→ tree→ Bool

while descending along t , remember a finite valuation p

subHtree p (Node a t1 t2) =
subHtree (a+ ∪ p) t1 && subHtree (a- ∪ p) t2

use this finite valuation p for evaluation at the leaves

subHtree p (Leaf n) = eval p (F n) 0

t is a Herbrand tree ⇐⇒ subHtree∅ t = 1

Remarks

eval p (F n) b = 1 means:
1 p has enough information to evaluate F n
2 the result of evaluation is b

building the tree bottom-up:
unordered partial valuation{ ordered branches
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Higher order Peano Arithmetic

1 Logical setting:
minimal language: ∀,→
multi-sorted classical logic
basic sorts: ι individuals

o propositions (higher-order)

2 datatype: relativization predicate on the sort ι

Example

Bool : b ∈ Bool := ∀Z .Z(0)→ Z(1)→ Z(b)
N : x ∈ N := ∀Z .Z(0)→

(
∀n,Z(n)→ Z(n + 1)

)
→ Z(x)

Notations
∀n ∈ N.A := ∀n. n ∈ N→ A ∃n ∈ N.A := ∃n. n ∈ N ∧ A
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Datatypes used in the formalization

Inductive definitions:
Atom (atomic formulæ) <abstract datatype>
Comp (∀/∃-free formulæ) c := ⊥ | Atomic a | c ⇒ c
tree (binary trees) t := Leaf n | Node a t t
FVal (finite valuations) p := ∅ | a+ :: p | a- :: p

a ∈ Atom, a < p

Relativization predicates:
c ∈ Comp := ∀Z . Z(⊥)→(

∀a ∈ Atom .Z(Atomic a)
)
→(

∀c1.∀c2.Z(c1)→ Z(c2)→ Z(c1 ⇒ c2)
)
→

Z(c)
p ∈ FVal := ∀Z . Z(∅)→(

∀q.∀a ∈ Atom. a < q 7→ Z(q)→ Z(a+ :: q)
)
→(

∀q.∀a ∈ Atom. a < q 7→ Z(q)→ Z(a- :: q)
)
→

Z(p)
t ∈ tree := . . .
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Herbrand’s theorem in PAω

Usual statement: (∀I.I 6|= U)→ ∃t . t is a Herbrand tree (for U)

premise:

some transformations
∀I.I 6|= U ≡ ∀I.I 6|= (∀n ∈ N.F n)

⇐⇒ ∀I.∃n ∈ N.I 6|= F n
⇐⇒ ∀ι→oρ.∃n ∈ N.¬(interp ρ (F n))

conclusion:

direct translation
∃t ∈ tree. subHtree∅ t = 1

We write subH p := ∃t ∈ tree. subHtree p t = 1.(
∀ι→oρ.∃n ∈ N.¬(interp ρ (U n))

)
→ subH∅
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Recall on the forcing transformation

Taken from [Kri11] and [Miq11]

Input (forcing structure)

A forcing structure is given by

a set (κ,C) of forcing conditions (p ∈ C written C[p])

a product operation · on forcing conditions

a maximal condition 1

a bunch of proof terms α0, . . . , α8

Output (program transformation)

A logical transformation:
t : A { t∗ : p F A

Adequacy lemmas:
t : A → t  A t : A → t∗  p F A

A wrapper w s.t. t : 1 F A → w t : A (if A arithmetical)
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In our case (1/3): prerequisites

Implementation of finite relations over Atom×Bool into ι:

Primitives:
empty relation ∅ : ι
singleton relation sing : ι→ ι→ ι (notations: a+ and a-)
union of relation ∪ : ι→ ι→ ι

test of a binding test : ι→ ι→ ι→ ι

Properties:
commutativity, associativity, idempotence of ∪
∅ is a neutral element for ∪
totality of test: ∀a ∈ Atom .∀b ∈ Bool .∀p. test a b p ∈ Bool
behavior of test w.r.t. ∪, ∅, a+, a-

Two definitions:
membership test mem a p := test a 0 p || test a 1 p
adding a binding (a, b) :: p := sing a b ∪ p
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In our case (2/3): the forcing structure

Our forcing structure:

κ := ι, C[p] := p ∈ FVal∧(subH p → subH∅)

p · q := p ∪ q

1 := ∅

α0, . . . , α8 comes from the interface of finite relations

Remarks
C is a datatype

FVal represents finite functions from ω to 2

C[p] = p ∈ FVal gives Cohen forcing conditions
{ add a single new (non computable) real number
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In our case (3/3): the generic set G

Forcing universe = Base universe + a new set G

PAω+ G −→ Forcing translation −→ PAω
A p F A

t : A t∗ : p F A
q ∈ G p 6 q

Nice properties of G in the forcing universe:
non empty G(1)
included in C ∀p.G(p)→ C[p]
filter ∀p∀q.G(p)→ G(q)→ G(p · q)
genericity (we shall use instead a simple instance)

Simple translation in the base universe
p F q ∈ G ≡ p 6 q := ∀r .C[p · r]→ C[q · r]
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The big picture

The proof is split across the forcing and base universes.

Base universe

1 Build the forcing structure
2 Assume the premise
3 Lift the premise
4 Make the proof

t : subH∅
5 Use the forcing translation

t∗ : 1 F subH∅
6 Remove forcing

w t∗ : subH∅
7 Extract a witness

(classical realizability)
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Step 4: The proof (in the forcing universe)

Best done on the blackboard
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Step 5: Translating axioms

The usual axioms of G are already done.
(G non empty, G included in C, G filter)

Last axiom to translate:
∀a ∈ Atom.∃p ∈ G.∃b ∈ Bool. test a b p = 1

i.e. find a proof term for
1 F ∀a ∈ Atom.∃p ∈ G.∃b ∈ Bool. test a b p = 1

Two solutions { two ways of building the tree:
left-to-right scan right-to-left scan
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Step 6: Absolute formulæ

Definition (Absolute formula)

A formula is absolute when ∀p ∈ C .A ↔ p F A
that is there exists proof terms
ξA : p F A → C[p]→ A
ξ′A : (C[p]→ A)→ p F A

Absolute sort: ι∗ = ι whereas o∗ = κ → o
everything in ι { no computational object changes

Absolute set = absolute sort + absolute relativization predicate

example: datatypes (N,Bool,FVal,Atom,Comp, tree)
equality on ι

counter-example: total valuations ι→ o

subH∅ := ∃t ∈ tree. subHtree∅ t = 1 is absolute

The wrapper w is simply ξ
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Extracted algorithm

No fixed enumeration needed
{ enumeration built by the proof of the premise

Herbrand tree inside forcing condition:
p ∈ FVal position in the tree
subH p → subH∅ context of the current tree

Intuitionistic proof: no backtrack in real mode

Execution in the KFAM
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Conclusion

One example of forcing on individuals

Example of forcing to find better proofs, not new results

Goal reached: fast and safe algorithm

Thank you
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