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Extracting Herbrand trees

@ through formalization in Coq and extraction:
safe (adequacy) but slow (a lot of backtracks on the tree)

@ direct program:
faster but unsafe (implemented in a modified KAM)

@ through a forcing transformation:
the best of both worlds:
safe (adequacy with forcing)
fast (intuitionistic proof: no backtrack on the tree)
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Idea behind Herbrand theorem

We start from an inconsistent universal theory U.
(i.e. a set of universal formulee U; = VX.F; X with F; quantifier-free)

infinite finite information
. i — | compactness | — . )
interpretations for each interpretation
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Idea behind Herbrand theorem

We start from an inconsistent universal theory U.
(i.e. a set of universal formulee U; = VX.F; X with F; quantifier-free)

infinite

= R finite information
interpretations P for each interpretation

infinite number
of interpretations

finite information

— | Herbrand theorem | — : :
for all interpretations

This information can be presented as a decision tree or BDD.
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A binary tree where
@ inner nodes are labeled by atomic formulee
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Usual proof of Herbrand’s theorem

Theorem (Herbrand)
If for all interpretations .#, .% & U, then U has a Herbrand tree.
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Usual proof of Herbrand’s theorem

Theorem (Herbrand)
If for all interpretations .#, .% & U, then U has a Herbrand tree.

Let us fix an enumeration (a;)ien of the atoms.
(atoms = atomic formulee)



Theorem (Herbrand)
If for all interpretations .#, .% & U, then U has a Herbrand tree.

S A N

AN AN AN AN

consider the atom-enumerating complete infinite tree



Theorem (Herbrand)
If for all interpretations .#, .% & U, then U has a Herbrand tree.

1 A N

as as
Q4 Q4 QA4 Q4 QA4 QA4 QA4 QA4 QA4 A4 QA4 A4 A4 A4 As Qs

pick any infinite branch



Usual proof of Herbrand’s theorem

Theorem (Herbrand)
If for all interpretations .#, .% & U, then U has a Herbrand tree.
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by hypothesis (and compactness), we can cut it at finite depth

as as
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Usual proof of Herbrand’s theorem

Theorem (Herbrand)
If for all interpretations .#, .% & U, then U has a Herbrand tree.
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conclude using weak Kdnig’'s lemma
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@ the fixed enumeration of atoms
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What can be improved

We want to avoid:
@ the fixed enumeration of atoms
@ weak Kbnig’s lemma

0-0-0-0-@-0-@-0-
@ @@ @@ @@@m
@m @m @-@ma-@me-@m

[(F][E5]  [E] [-5] (] [5] [F] [&5] [R][ES] [R] [R5] [R][RS] [R] [RS5]

A bad enumeration



Herbrand theorem
000000

A simpler proof of Herbrand’s theorem

Restriction: U = {¥n. F n} (take F (i,X) = F; X)



Herbrand theorem
000000

A simpler proof of Herbrand’s theorem

Restriction: U = {¥n. F n} (take F (i,X) = F; X)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

@ We start from a leaf.
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A simpler proof of Herbrand’s theorem

Restriction: U = {¥n. F n} (take F (i,X) = F; X)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

@ We start from a leaf.

@ It is not a Herbrand tree so one of its
leaves does not contain a contradiction.

© Replace this leaf with an inner node.
© Repeat this process.
The infinite branch is a model.

But proof is classical ~ backtracking
This infinite branch can be provided by a Cohen real



Herbrand theorem
00000e

Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?



Herbrand theorem
00000e

Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?
By induction on t:
@ while descending along t, remember a finite valuation p

@ use this finite valuation p for evaluation at the leaves



Herbrand theorem
00000e

Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?
By induction on t:  subHtree : finite valuation — tree — Bool
@ while descending along t, remember a finite valuation p
subHtree p (Node a ty ) =
subHtree (a* U p) t; && subHtree (a” U p) t

@ use this finite valuation p for evaluation at the leaves
subHtree p (Leafn) = evalp (Fn)0



Herbrand theorem
00000e

Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?
By induction on t:  subHtree : finite valuation — tree — Bool
@ while descending along t, remember a finite valuation p

subHtree p (Node a ty ) =
subHtree (a* U p) t; && subHtree (a” U p) t

@ use this finite valuation p for evaluation at the leaves
subHtree p (Leafn) = evalp (Fn)0

tis a Herbrand tree < subHtree ot =1



Herbrand theorem
00000e

Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?
By induction on t:  subHtree : finite valuation — tree — Bool

@ while descending along t, remember a finite valuation p
subHtree p (Node a ty ) =

subHtree (a* U p) t; && subHtree (a” U p) t
@ use this finite valuation p for evaluation at the leaves
subHtree p (Leafn) = evalp (Fn)0

tis a Herbrand tree < subHtree ot =1

@ evalp(F n)b =1 means:

@ p has enough information to evaluate F n
@ the result of evaluation is b

@ building the tree bottom-up:
unordered partial valuation ~» ordered branches
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e minimal language: v, —
e multi-sorted classical logic
basic sorts: ¢ individuals
o0 propositions (higher-order)
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Higher order Peano Arithmetic

@ Logical setting:
e minimal language: v, —
e multi-sorted classical logic
basic sorts: ¢ individuals
o0 propositions (higher-order)

@ datatype: relativization predicate on the sort ¢

Bool : b € Bool :=VZ.Z(0) - Z(1 )—>Z(b)
N : xeN :=VZ.2Z(0) - (Yn,Z(n) - Z(n+ 1)) - Z(x)

VneIN.A:=V¥nneN—->A dneN.A:=dn.neNAA
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Datatypes used in the formalization

@ Inductive definitions:

Atom  (atomic formulee) <abstract datatype>
Comp (¥/3-freeformulee) ¢ := L | Atomica | c=c¢
tree (binary trees) t := Leafn | Nodeatt
FVal (finite valuations) p =0 |atzp|la::p

acAtom,a¢p
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Datatypes used in the formalization

@ Inductive definitions:

Atom  (atomic formulee) <abstract datatype>
Comp (¥/3-freeformulee) ¢ := L | Atomica | c=c¢
tree (binary trees) t .= Leafn | Nodeatt
FVal (finite valuations) p =0 |atzp|la::p

aeAtom,aé¢p
@ Relativization predicates:
e ceComp:=VYZ. Z(L) —
Ya e Atom . Z(Atomic a)) -
YerVeo. Z(¢y) — Z(c2) = Z(cr = c2)) -
Z(c)
e peFVal:=VZ Z(2) -»
(Vq.Va e Atom.a¢ g Z(q) » Z(a* = q)) -
(Vq.Va € Atom.a¢ g+ Z(q) - Z(a : q)) -

Z(p)
o tetree :=...
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Herbrand’s theorem in PAw

Usual statement: (V.7. .# | U) — 3t. tis a Herbrand tree (for U)

@ premise:

@ conclusion:
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Herbrand’s theorem in PAw

Usual statement: (V.7. .# | U) — 3t. tis a Herbrand tree (for U)

@ premise: some transformations
VI IHU = VI IS (YneN.Fn)
— VAL IAne N..LF Fn
& ¥'7%.3n € N.—(interpp (F n))

@ conclusion: direct translation
dt € tree. subHtree @t = 1

We write subH p := 3t € tree. subHtreept = 1.

(VHOp. dn e N. =(interpp (Un))) — subH®@
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Recall on the forcing transformation

Taken from [Kri11] and [Mig11]

Input (forcing structure)

A forcing structure is given by
@ a set («, C) of forcing conditions (b € C written CJ[p])
@ a product operation - on forcing conditions
@ a maximal condition 1

@ a bunch of proof terms «ay,...,as

Output (program transformation)

A logical transformation:
t:A ~ t':plFA
Adequacy lemmas:
t:tA>tHA t:A->t"rplFA
A wrapper w s.t. t:1FA->wt: A (if A arithmetical)
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In our case (1/3): prerequisites

Implementation of finite relations over Atom x Bool into ¢:

@ Primitives:
empty relation @
singleton relation sing : « — ¢« — ¢ (notations: a* and a’)
union of relation U Lo Lo

testofabinding test (1>t o>

@ Properties:
e commutativity, associativity, idempotence of U
e @ is a neutral element for U
o totality of test: Va € Atom .Vb € Bool .¥p. testa b p € Bool
e behavior of testw.rt. U, @, a*, a
@ Two definitions:
membership test memap
adding a binding (a,b) : p :

testaOp | testalp
singabup
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In our case (2/3): the forcing structure

Our forcing structure:
° k=1, C[p] := p € FVal A(subH p — subH @)
@ p-g:=puUq
e1:=0
@ ay,...,ag comes from the interface of finite relations

C is a datatype

FVal represents finite functions from w to 2

Clp] = p e FVal  gives Cohen forcing conditions
~» add a single new (non computable) real number
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In our case (3/3): the generic set G

Forcing universe = Base universe + a new set G

PAw+G — ’ Forcing translation ‘ — PAw
A plFA
t:A r:plFA

qeG p<q
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In our case (3/3): the generic set G

Forcing universe = Base universe + a new set G

PAw+G — ’ Forcing translation ‘ — PAw

A plFA
[:A :plFA

qeG p<g

@ Nice properties of G in the forcing universe:
non empty G(1)
includedin C  Vp.G(p) — C|p]

filter YpYq. G(p) — G(q) = G(p- q)
genericity (we shall use instead a simple instance)

@ Simple translation in the base universe
plFqeG = p<q := Vr.Clp-r] - C[q-r]
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The big picture

The proof is split across the forcing and base universes.

Base universe Forcing universe
@ Build the forcing structure
© Assume the premise
Q Lift the premise

O Make the proof
t:subH@

@ Use the forcing translation
t*:1IFsubH®

© Remove forcing
wt* : subH®

@ Extract a witness
(classical realizability)
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Step 4: The proof (in the forcing universe)

Best done on the blackboard
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Step 5: Translating axioms

The usual axioms of G are already done.
(G non empty, G included in C, G filter)
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Step 5: Translating axioms

The usual axioms of G are already done.
(G non empty, G included in C, G filter)

Last axiom to translate:
Va € Atom.dp € G.db € Bool. testabp =1

i.e. find a proof term for
1IF VYa € Atom.3p € G.3b € Bool. testabp = 1

Two solutions  ~»  two ways of building the tree:
left-to-right scan right-to-left scan



The proof
000@

Step 6: Absolute formulae

Definition (Absolute formula)

A formula is absolute when Vpe C.A & p IF A
that is there exists proof terms
éa:plFA—>Clpl—> A
& :(Clpl]=>A)—>plFA

@ Absolute sort: * =t whereas 0* =k — 0
everythingin: ~» no computational object changes
@ Absolute set = absolute sort + absolute relativization predicate

o example: datatypes (IN, Bool, FVal, Atom, Comp, tree)
equality on ¢
e counter-example: total valuations ¢t — o

subH@ := 1t € tree. subHtree@t = 1 is absolute

The wrapper w is simply &
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Extracted algorithm

@ No fixed enumeration needed
~» enumeration built by the proof of the premise

@ Herbrand tree inside forcing condition:
p € FVal position in the tree
subHp — subH@ context of the current tree
@ Intuitionistic proof: no backtrack in real mode

@ Execution in the KFAM
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Conclusion

@ One example of forcing on individuals
@ Example of forcing to find better proofs, not new results
@ Goal reached: fast and safe algorithm
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Conclusion

@ One example of forcing on individuals
@ Example of forcing to find better proofs, not new results
@ Goal reached: fast and safe algorithm

Thank you
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