Herbrand theorem	Forcing	The proof	Conclusion

A case study of forcing in classical realizability: Herbrand's theorem, proof and extracted algorithm

Lionel RIEG

LIP, ENS Lyon

Récré Meeting, November 15th 2012

Herbrand theorem	ΡΑ ω 000	Forcing 0000	The proof 0000	Conclusion
Motivations				

Extracting Herbrand trees

- through formalization in Coq and extraction: safe (adequacy) but slow (a lot of backtracks on the tree)
- direct program:

faster but unsafe (implemented in a modified KAM)

• through a forcing transformation:

the best of both worlds:

safe (adequacy with forcing)

fast (intuitionistic proof: no backtrack on the tree)

Herbrand theorem	ΡΑ ω 000	Forcing 0000	The proof 0000	Conclusion
Outline				

Herbrand theorem	<i>Ρ</i> Α <i>ω</i> 000	Forcing 0000	The proof 0000	Conclusion
Outline				

We start from an inconsistent universal theory *U*.

(*i.e.* a set of universal formulæ $U_i = \forall \vec{x}.F_i \vec{x}$ with F_i quantifier-free)

infinite interpretations

→ compactness -

finite information for each interpretation

We start from an inconsistent universal theory *U*.

(*i.e.* a set of universal formulæ $U_i = \forall \vec{x}.F_i \vec{x}$ with F_i quantifier-free)

This information can be presented as a decision tree or BDD.

Herbrand theorem		Forcing	The proof	Conclusion
00000	000	0000	0000	00
What is a He	erbrand tree	<u>ې</u>		

Definition (Herbrand tree)

- A binary tree where
 - inner nodes are labeled by atomic formulæ
 - branches represent partial interpretations
 - leaves contain contradictions

Herbrand theorem	<i>ΡΑω</i>	Forcing	The proof	Conclusion
○●○○○○	000	0000	0000	

What is a Herbrand tree?

Definition (Herbrand tree)

- A binary tree where
 - inner nodes are labeled by atomic formulæ
 - branches represent partial interpretations
 - leaves contain contradictions

Example

• $F_1 = P3$

•
$$F_2 = \forall n.P n \rightarrow P(n+1)$$

• $F_3 = \neg P 6$

Herbrand theorem	ΡΑ ω	Forcing	The proof	Conclusion
o●oooo	000	0000	0000	

What is a Herbrand tree?

Definition (Herbrand tree)

- A binary tree where
 - inner nodes are labeled by atomic formulæ
 - branches represent partial interpretations
 - leaves contain contradictions

Example

- $F_1 = P3$
- $F_2 = \forall n.P n \rightarrow P(n+1)$

• $F_3 = \neg P 6$

Herbrand theorem		Forcing	The proof	Conclusion
00000	000	0000	0000	00
Usual proof	of Herbran	d's theorem		

If for all interpretations $\mathscr{I}, \mathscr{I} \not\models U$, then U has a Herbrand tree.

Herbrand theorem		Forcing	The proof	Conclusion
00000	000	0000	0000	00
Usual proof	of Herbran	d's theorem		

If for all interpretations $\mathscr{I}, \mathscr{I} \not\models U$, then U has a Herbrand tree.

Let us fix an enumeration $(a_i)_{i \in \mathbb{N}}$ of the atoms.

(atoms = atomic formulæ)

Herbrand theorem		Forcing	The proof	Conclusion
00000	000	0000	0000	00
Usual proof of	of Herbran	d's theorem		

If for all interpretations \mathscr{I} , $\mathscr{I} \not\models U$, then U has a Herbrand tree.

consider the atom-enumerating complete infinite tree

Herbrand theorem		Forcing	The proof	Conclusion
00000	000	0000	0000	00
Usual proof of	of Herbran	d's theorem		

If for all interpretations \mathscr{I} , $\mathscr{I} \not\models U$, then U has a Herbrand tree.

pick any infinite branch

Herbrand theorem		Forcing	The proof	Conclusion
00000	000	0000	0000	00
Usual proof of	of Herbran	d's theorem		

If for all interpretations \mathscr{I} , $\mathscr{I} \not\models U$, then U has a Herbrand tree.

by hypothesis (and compactness), we can cut it at finite depth

Herbrand theorem		Forcing	The proof	Conclusion
00000	000	0000	0000	00
Usual proof of	of Herbran	d's theorem		

If for all interpretations \mathscr{I} , $\mathscr{I} \not\models U$, then U has a Herbrand tree.

conclude using weak Kőnig's lemma

Herbrand theorem	ΡΑ ω	Forcing	The proof	Conclusion
ooo●oo	000	0000	0000	
What can be imp	proved			

We want to avoid:

- the fixed enumeration of atoms

Herbrand theorem	ΡΑ ω	Forcing	The proof	Conclusion
ooo●oo	000	0000	0000	
What can be imp	proved			

We want to avoid:

- the fixed enumeration of atoms

A good enumeration

Herbrand theorem	ΡΑ ω 000	Forcing 0000	The proof 0000	Conclusion
What can be i	mproved			

We want to avoid:

- the fixed enumeration of atoms
- weak K
 őnig's lemma

A bad enumeration

Herbrand theorem		Forcing	The proof	Conclusion
000000	000	0000	0000	
A simpler proof	of Herbran	d's theorem		

(take $F\langle i, \vec{x} \rangle = F_i \vec{x}$)

Herbrand theorem	ΡΑω	Forcing	The proof	Conclusion
000000	000	0000	0000	00
A simpler pro	of of Harb	rand's theor	om	

(take $F\langle i, \vec{x} \rangle = F_i \vec{x}$)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U) and build a model of U.

We start from a leaf.

Herbra	and theor ●0	em	ΡΑ ω 000	Forcing 0000		The proof		Conclusion
As	simp	oler proof	of Herk	brand's the	eorem			
	Res	triction: U =	= {∀n. F n}			(take	$F\langle i, \vec{x} \rangle = F_i$	x)
	Proc	of. (by contr	aposition)					
	Ass and	ume that the build a mod	ere is no ⊢ lel of <i>U</i> .	lerbrand tree	(for <i>U</i>)		?	
	0	We start fro	om a leaf.					
	2	It is not a H leaves doe	lerbrand ti s not cont	ree so one of ain a contrad	its liction.			

 Herbrand theorem
 PA w
 Forcing
 The proof
 Conclusion

 Ocoo
 Ocoo
 Ocoo
 Ocoo
 Ocoo
 Ocoo

 A simpler proof of Herbrand's theorem
 Conclusion
 Ocoo
 Ocoo
 Ocoo

Restriction: $U = \{ \forall n. F n \}$

(take
$$F\langle i, \vec{x} \rangle = F_i \vec{x}$$
)

Proof. (by contraposition)

- We start from a leaf.
- It is not a Herbrand tree so one of its leaves does not contain a contradiction.
- Replace this leaf with an inner node.

 Herbrand theorem
 PA ω
 Forcing
 The proof
 Conclusion

 Ocool
 Ocool
 Ocool
 Ocool
 Ocool
 Ocool
 Ocool

 A simpler proof of Herbrand's theorem
 Ocool
 Ocool
 Ocool
 Ocool
 Ocool

Restriction: $U = \{ \forall n. F n \}$

(take
$$F\langle i, \vec{x} \rangle = F_i \vec{x}$$
)

Proof. (by contraposition)

- We start from a leaf.
- It is not a Herbrand tree so one of its leaves does not contain a contradiction.
- Replace this leaf with an inner node.
- Repeat this process.

Herbrand theorem PA... Forcing The proof Conclusion

Restriction: $U = \{ \forall n. F n \}$

(take
$$F\langle i, \vec{x} \rangle = F_i \vec{x}$$
)

Proof. (by contraposition)

- We start from a leaf.
- It is not a Herbrand tree so one of its leaves does not contain a contradiction.
- Replace this leaf with an inner node.
- Repeat this process.

A simpler proof of Herbrand's theorem							
000000	000	0000	0000	00			
Herbrand theorem		Forcing	The proof	Conclusion			

(take
$$F\langle i, \vec{x} \rangle = F_i \vec{x}$$
)

Proof. (by contraposition)

- We start from a leaf.
- It is not a Herbrand tree so one of its leaves does not contain a contradiction.
- Replace this leaf with an inner node.
- Repeat this process.

000000	000	0000	0000	00		
A simpler proof of Herbrand's theorem						

(take
$$F\langle i, \vec{x} \rangle = F_i \vec{x}$$
)

Proof. (by contraposition)

- We start from a leaf.
- It is not a Herbrand tree so one of its leaves does not contain a contradiction.
- Replace this leaf with an inner node.
- Repeat this process.

Herbrand theorem		Forcing	The proof	Conclusion
000000	000	0000	0000	
A simpler pr	oof of Herb	rand's theor	em	

(take
$$F\langle i, \vec{x} \rangle = F_i \vec{x}$$
)

Proof. (by contraposition)

- We start from a leaf.
- It is not a Herbrand tree so one of its leaves does not contain a contradiction.
- Replace this leaf with an inner node.
- Repeat this process.

Herbrand theorem		Forcing	The proof	Conclusion
000000	000	0000	0000	
A simpler pr	oof of Herb	rand's theor	em	

(take
$$F\langle i, \vec{x} \rangle = F_i \vec{x}$$
)

Proof. (by contraposition)

- We start from a leaf.
- It is not a Herbrand tree so one of its leaves does not contain a contradiction.
- Replace this leaf with an inner node.
- Repeat this process.

Herbrand theorem		Forcing	The proof	Conclusion
000000	000	0000	0000	
A simpler pr	oof of Herb	rand's theor	em	

(take
$$F\langle i, \vec{x} \rangle = F_i \vec{x}$$

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U) and build a model of U.

- We start from a leaf.
- It is not a Herbrand tree so one of its leaves does not contain a contradiction.
- Replace this leaf with an inner node.
- Bepeat this process.

The infinite branch is a model.

Herbrand theorem PA Forcing The proof Conclusion occord of Herbrand's theorem

Restriction: $U = \{ \forall n. F n \}$

(take
$$F\langle i, \vec{x} \rangle = F_i \vec{x}$$
)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U) and build a model of U.

- We start from a leaf.
- It is not a Herbrand tree so one of its leaves does not contain a contradiction.
- Replace this leaf with an inner node.
- Repeat this process.

The infinite branch is a model.

But proof is classical ~> backtracking

Herbrand theorem PA Forcing The proof Conclusion occord of Herbrand's theorem

Restriction: $U = \{ \forall n. F n \}$

(take
$$F\langle i, \vec{x} \rangle = F_i \vec{x}$$
)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U) and build a model of U.

- We start from a leaf.
- It is not a Herbrand tree so one of its leaves does not contain a contradiction.
- Replace this leaf with an inner node.
- Repeat this process.

The infinite branch is a model.

But proof is classical \rightsquigarrow backtracking This infinite branch can be provided by a Cohen real

Herbrand theorem	ΡΑ ω	Forcing	The proof	Conclusion
oooooo●	000	0000	୦୦୦୦	
Checking Herbra	and trees			

How can we check that a tree *t* is a Herbrand tree?

Herbrand theorem	ΡΑ ω	Forcing	The proof	Conclusion
oooooo●	000	0000	0000	
Checking Herbra	and trees			

How can we check that a tree *t* is a Herbrand tree? By induction on *t*:

• while descending along *t*, remember a finite valuation *p*

• use this finite valuation *p* for evaluation at the leaves

Herbrand theorem	ΡΑ ω	Forcing	The proof	Conclusion
	000	0000	0000	00
Checking Herbr	and trees	;		

How can we check that a tree *t* is a Herbrand tree? By induction on *t*: subHtree : finite valuation \rightarrow tree \rightarrow Bool

- while descending along t, remember a finite valuation p subHtree p (Node a t₁ t₂) = subHtree (a⁺ ∪ p) t₁ && subHtree (a⁻ ∪ p) t₂
- use this finite valuation p for evaluation at the leaves subHtree p (Leaf n) = eval p (F n) 0

Herbrand theorem		Forcing	The proof	Conclusion
000000	000	0000	0000	00
Checking He	erbrand tree	es		

How can we check that a tree *t* is a Herbrand tree? By induction on *t*: subHtree : finite valuation \rightarrow tree \rightarrow Bool

• while descending along *t*, remember a finite valuation *p* subHtree *p* (Node *a* $t_1 t_2$) =

subHtree $(a^+ \cup p) t_1$ && subHtree $(a^- \cup p) t_2$

 use this finite valuation p for evaluation at the leaves subHtree p (Leaf n) = eval p (F n) 0

t is a Herbrand tree \iff subHtree \emptyset *t* = 1

Herbrand theorem	ΡΑω	Forcing	The proof	Conclusion
Checking Herbr	and tree		0000	00

How can we check that a tree *t* is a Herbrand tree? By induction on *t*: subHtree : finite valuation \rightarrow tree \rightarrow Bool

 while descending along t, remember a finite valuation p subHtree p (Node a t₁ t₂) =

subHtree $(a^+ \cup p) t_1$ && subHtree $(a^- \cup p) t_2$

 use this finite valuation p for evaluation at the leaves subHtree p (Leaf n) = eval p (F n) 0

t is a Herbrand tree \iff subHtree \emptyset *t* = 1

Remarks

• eval p(Fn)b = 1 means:

p has enough information to evaluate F n

the result of evaluation is b

 building the tree bottom-up: unordered partial valuation → ordered branches

Herbrand theorem	ΡΑω 000	Forcing 0000	The proof 0000	Conclusion
Outline				

Herbrand theorem	ΡΑω	Forcing	The proof	Conclusion
000000	000	0000	0000	00
Higher orde	r Peano Ari	thmetic		

Logical setting:

- minimal language: \forall, \rightarrow
- multi-sorted classical logic
 - basic sorts: *ι* individuals
 - o propositions (higher-order)

Herbrand theorem PA a Forcing Conclusion Conclusion

Logical setting:

- minimal language: ∀, →
- multi-sorted classical logic
 - basic sorts: *ι* individuals
 - o propositions (higher-order)
- Ø datatype: relativization predicate on the sort ı

Example

Bool:
$$b \in \text{Bool} := \forall Z. Z(0) \to Z(1) \to Z(b)$$

 \mathbb{N} : $x \in \mathbb{N}$:= $\forall Z. Z(0) \to (\forall n, Z(n) \to Z(n+1)) \to Z(x)$

Notations

 $\forall n \in \mathbb{N}. A := \forall n. n \in \mathbb{N} \to A \qquad \exists n \in \mathbb{N}. A := \exists n. n \in \mathbb{N} \land A$

Herbrand theorem	PAω	Forcing	The proof	Conclusion
000000	000	0000	0000	
Datatypes us	ed in the f	ormalization		

- Inductive definitions: Atom (atomic formulæ)
 - Comp $(\forall/\exists$ -free formulæ) o
 - tree (binary trees)
 - FVal (finite valuations)

<abstract datatype>

$$c := \bot |$$
 Atomic $a | c \Rightarrow c$

$$t := \text{Leaf } n \mid \text{Node } a t t$$

$$p := \emptyset \mid a^+ :: p \mid a^- :: p$$

 $a \in Atom, a \notin p$

Herbrand theorem	ΡΑω	Forcing	The proof	Conclusion
000000	000	0000	0000	
Datatypes used	in the form	alization		

Inductive definitions: Atom (atomic formulæ) tree (binary trees) FVal (finite valuations)

<abstract datatype> Comp (\forall/\exists -free formulæ) $c := \bot \mid$ Atomic $a \mid c \Rightarrow c$ $t := \text{Leaf } n \mid \text{Node } a t t$ $p := \emptyset \mid a^+ :: p \mid a^- :: p$ $a \in Atom, a \notin p$

Relativization predicates:

•
$$c \in \text{Comp} := \forall Z. \ Z(\bot) \rightarrow$$

 $(\forall a \in \text{Atom} . \ Z(\text{Atomic } a)) \rightarrow$
 $(\forall c_1. \forall c_2. \ Z(c_1) \rightarrow Z(c_2) \rightarrow Z(c_1 \Rightarrow c_2)) \rightarrow$
 $Z(c)$
• $p \in \text{FVal} := \forall Z. \ Z(\emptyset) \rightarrow$
 $(\forall q. \forall a \in \text{Atom}. \ a \notin q \mapsto Z(q) \rightarrow Z(a^+ :: q)) \rightarrow$
 $(\forall q. \forall a \in \text{Atom}. \ a \notin q \mapsto Z(q) \rightarrow Z(a^- :: q)) \rightarrow$
 $Z(p)$
• $t \in \text{tree} := ...$

Herbrand theorem	<i>Ρ</i> Αω οο●	Forcing 0000	The proof 0000	Conclusion
Herbrand's theo	rem in PAα)		

• premise:

• conclusion:

Herbrand theorem	<i>Ρ</i> Αω 00●	Forcing 0000	The proof 0000	Conclusion
Herbrand's the	eorem in	ΡΑω		

• premise: some transformations

$$\forall \mathscr{I}.\mathscr{I} \not\models U \equiv \forall \mathscr{I}.\mathscr{I} \not\models (\forall n \in \mathbb{N}.Fn)$$

 $\iff \forall \mathscr{I}.\exists n \in \mathbb{N}.\mathscr{I} \not\models Fn$
 $\iff \forall^{\iota \to 0}\rho.\exists n \in \mathbb{N}.\neg(\text{interp}\rho(Fn))$

• conclusion:

Herbrand theorem	<i>Ρ</i> Αω ○○●	Forcing 0000	The proof 0000	Conclusion
Herbrand's the	orem in	ΡΑω		

• premise: some transformations $\forall \mathscr{I}.\mathscr{I} \not\models U \equiv \forall \mathscr{I}.\mathscr{I} \not\models (\forall n \in \mathbb{N}. F n)$ $\iff \forall \mathscr{I}. \exists n \in \mathbb{N}. \mathscr{I} \not\models F n$ $\iff \forall^{\iota \to o} \rho. \exists n \in \mathbb{N}. \neg (\text{interp} \rho (F n))$

• conclusion: direct translation $\exists t \in \text{tree. subHtree} \oslash t = 1$

Herbrand theorem	ΡΑω 00●	Forcing 0000	The proof 0000	Conclusion
Herbrand's th	eorem in			

• premise: some transformations $\forall \mathscr{I}.\mathscr{I} \not\models U \equiv \forall \mathscr{I}.\mathscr{I} \not\models (\forall n \in \mathbb{N}. F n)$ $\iff \forall \mathscr{I}. \exists n \in \mathbb{N}. \mathscr{I} \not\models F n$ $\iff \forall^{\iota \to o} \rho. \exists n \in \mathbb{N}. \neg (\text{interp } \rho(F n))$

• conclusion: direct translation $\exists t \in \text{tree. subHtree} \oslash t = 1$

We write subH $p := \exists t \in \text{tree. subHtree } p t = 1$.

 $\left(\forall^{\iota \to o} \rho. \exists n \in \mathbb{N}. \neg (\operatorname{interp} \rho (Un)) \right) \to \operatorname{subH} \emptyset$

Herbrand theorem	<i>Ρ</i> Αω 000	Forcing	The proof 0000	Conclusion
Outline				

Herbrar 00000	nd theorem	ΡΑ ω 000	Forcing ●000	The p		Conclusion
Re	call on the for	cing tran	sformatio	on		
	Taken from [Kri1	1] and [Miq1	1]			
	Input (forcing stru	ucture)				
	A forcing structur	e is given b	у			
	a set (κ, C)	of forcing co	onditions	(p	∈ C written C[p))
	a product op	eration · c	n forcing co	onditions		
	a maximal c	ondition 1				
	a bunch of p	oroof terms of	α_0,\ldots,α_8			
			:			

Output (program transformation)

A logical transformation:

$$: A \sim t^* : p \Vdash A$$

Adequacy lemmas:

 $\begin{array}{cccc} t:A \rightarrow t \Vdash A & t:A \rightarrow t^* \Vdash p \ \mbox{I\!F} \ A \\ \mbox{A wrapper w s.t.} & t:1 \ \mbox{I\!F} \ A \rightarrow w \ t:A & (\mbox{if} \ A \ \mbox{arithmetical}) \end{array}$

Herbrand theorem	ΡΑ ω 000	Forcing o●oo	The proof 0000	Conclusion
In our case (1/3): prerequisites				

Implementation of finite relations over Atom \times Bool into ι :

 Herbrand theorem
 PAω
 Forcing
 The proof
 Conclusion

 000000
 0000
 0000
 0000
 0000

 In our case (1/3): prerequisites

Implementation of finite relations over Atom \times Bool into ι :

• Primitives:

empty relation singleton relation union of relation test of a binding

 Herbrand theorem
 PAω
 Forcing
 The proof
 Conclusion

 000000
 000
 0000
 0000
 0000

 In our case (1/3): prerequisites

Implementation of finite relations over Atom \times Bool into ι :

- Primitives: empty relation Ø : ι singleton relation sing : ι → ι → ι (notations: a⁺ and a⁻) union of relation U : ι → ι → ι test of a binding test : ι → ι → ι → ι
- Properties:
 - $\bullet\,$ commutativity, associativity, idempotence of $\cup\,$
 - \emptyset is a neutral element for \cup
 - totality of test: $\forall a \in \text{Atom} . \forall b \in \text{Bool} . \forall p$. test $a b p \in \text{Bool}$
 - behavior of test w.r.t. ∪, Ø, a⁺, a⁻

Herbrand theorem PAW Forcing Conclusion OOOO Conclusion

Implementation of finite relations over Atom \times Bool into ι :

- Primitives: empty relation \emptyset : ι singleton relation sing : $\iota \rightarrow \iota \rightarrow \iota$ (notations: a^+ and a^-) union of relation \cup : $\iota \rightarrow \iota \rightarrow \iota$ test of a binding test : $\iota \rightarrow \iota \rightarrow \iota \rightarrow \iota$
- Properties:
 - commutativity, associativity, idempotence of \cup
 - \varnothing is a neutral element for \cup
 - totality of test: $\forall a \in \text{Atom} . \forall b \in \text{Bool} . \forall p$. test $a \ b \ p \in \text{Bool}$
 - behavior of test w.r.t. ∪, Ø, a⁺, a⁻
- Two definitions:

membership test mem a p := test $a 0 p \parallel$ test a 1 padding a binding (a, b) :: p := sing $a b \cup p$

Herbrand theorem		Forcing	The proof	Conclusion
000000	000	0000	0000	
In our case (2/3): the fo	rcing structu	ure	

Our forcing structure:

- $\kappa := \iota$, $C[p] := p \in FVal \land (subH p \rightarrow subH \emptyset)$
- $p \cdot q := p \cup q$
- 1 := Ø
- $\alpha_0, \ldots, \alpha_8$ comes from the interface of finite relations

Remarks

- C is a datatype
- FVal represents finite functions from ω to 2
- C[p] = p ∈ FVal gives Cohen forcing conditions
 → add a single new (non computable) real number

Forcing universe = Base universe + a new set G

$$\begin{array}{ccc} PA\omega + G & \longrightarrow & \overline{\text{Forcing translation}} & \longrightarrow & PA\omega \\ A & & & p \Vdash A \\ t: A & & & t^*: p \Vdash A \\ q \in G & & & p \leqslant q \end{array}$$

Herbrand theorem PAW Forcing The proof Conclusion occord The generic set G

Forcing universe = Base universe + a new set G

$PA\omega+G$	\longrightarrow	Forcing translation	\longrightarrow	$P\!A\omega$
Α		L		p⊪A
t : A				t* : p IF A
q∈G				p≤q

• Nice properties of *G* in the forcing universe: non empty G(1)included in *C* $\forall p. G(p) \rightarrow C[p]$ filter $\forall p \forall q. G(p) \rightarrow G(q) \rightarrow G(p \cdot q)$ genericity (we shall use instead a simple instance)

• Simple translation in the base universe $p \Vdash q \in G \equiv p \leq q := \forall r. C[p \cdot r] \rightarrow C[q \cdot r]$

Herbrand theorem	<i>Ρ</i> Αω 000	Forcing 0000	The proof	Conclusion
Outline				

Herbrand theorem	ΡΑ ω 000	Forcing	The proof ●000	Conclusion
The big picture				

Base universe	Forcing universe

Herbrand theorem	<i>Ρ</i> Α <i>ω</i> 000	Forcing 0000	The proof ●ooo	Conclusion
The big picture				

Base universe

Herbrand theorem	<i>Ρ</i> Α <i>ω</i> 000	Forcing 0000	The proof ●ooo	Conclusion
The big picture				

Base universe

- Build the forcing structure
- Assume the premise

Herbrand theorem	ΡΑ ω 000	Forcing 0000	The proof ●ooo	Conclusion
The big picture				

Base universe

- Build the forcing structure
- Assume the premise

Herbrand theorem	ΡΑ ω 000	Forcing 0000	The proof ●ooo	Conclusion
The big picture				

Base universe

- Build the forcing structure
- Assume the premise

Forcing universe

Make the proof t : subH Ø

Herbrand theorem	ΡΑ ω 000	Forcing 0000	The proof ●000	Conclusion
The big picture				

Base universe

- Build the forcing structure
- Assume the premise

 Use the forcing translation t* : 1 IF subH Ø

- Make the proof
 - $t: \mathsf{subH} \emptyset$

Herbrand theorem	ΡΑ ω 000	Forcing 0000	The proof ●000	Conclusion
The big picture				

Base universe

- Build the forcing structure
- Assume the premise

- Use the forcing translation t* : 1 IF subH Ø
- Remove forcing w t* : subH Ø

- Make the proof
 - $t: \mathsf{subH} \emptyset$

Herbrand theorem	ΡΑ ω 000	Forcing 0000	The proof ●000	Conclusion
The big picture				

Base universe

- Build the forcing structure
- Assume the premise

- Solution Use the forcing translation t* : 1 IF subH Ø
- Remove forcing w t* : subH Ø
- Extract a witness (classical realizability)

- Make the proof
 - $t: \mathsf{subH} \emptyset$

Herbrand theorem PAW Forcing The proof Conclusion of Step 4: The proof (in the forcing universe)

Best done on the blackboard

Herbrand theorem	<i>Ρ</i> Αω 000	Forcing 0000	The proof oo●o	Conclusion
Step 5: Translat	ing axioms			

The usual axioms of *G* are already done.

(G non empty, G included in C, G filter)

Herbrand theorem	<i>Ρ</i> Α <i>ω</i> 000	Forcing 0000	The proof ○○●○	Conclusion
Step 5: Trans	slating axic	oms		

The usual axioms of *G* are already done.

(G non empty, G included in C, G filter)

Last axiom to translate:

 $\forall a \in Atom. \exists p \in G. \exists b \in Bool. test a b p = 1$

i.e. find a proof term for 1 IF $\forall a \in Atom$. $\exists p \in G$. $\exists b \in Bool$. test $a \ b \ p = 1$

Two solutions → two ways of building the tree: left-to-right scan right-to-left scan

Herbrand theorem	<i>Ρ</i> Αω 000	Forcing 0000	The proof ○○○●	Conclusion
Step 6: Absolute	e formulæ			

Definition (Absolute formula)

A formula is absolute when $\forall p \in C. A \leftrightarrow p \Vdash A$ that is there exists proof terms $\xi_A : p \Vdash A \rightarrow C[p] \rightarrow A$ $\xi'_A : (C[p] \rightarrow A) \rightarrow p \Vdash A$

 Absolute sort: ι^{*} = ι whereas o^{*} = κ → o everything in ι → no computational object changes

Absolute set = absolute sort + absolute relativization predicate

- example: datatypes (N, Bool, FVal, Atom, Comp, tree) equality on ι
- counter-example: total valuations $\iota \rightarrow o$

subH $\emptyset := \exists t \in \text{tree. subHtree } \emptyset t = 1$ is absolute

The wrapper w is simply ξ

Herbrand theorem	ΡΑ ω	Forcing	The proof	Conclusion
	000	0000	0000	●○
Extracted alg	orithm			

- No fixed enumeration needed
 - \rightarrow enumeration built by the proof of the premise
- Herbrand tree inside forcing condition:

 $p \in FVal$ position in the tree subH $p \rightarrow$ subH \oslash context of the current tree

- Intuitionistic proof: no backtrack in real mode
- Execution in the KFAM

Herbrand theorem	ΡΑ ω	Forcing	The proof	Conclusion
	000	0000	0000	○●
Conclusion				

- One example of forcing on individuals
- Example of forcing to find better proofs, not new results
- Goal reached: fast and safe algorithm

Herbrand theorem	ΡΑ ω	Forcing	The proof	Conclusion
	000	0000	0000	O
Conclusion				

- One example of forcing on individuals
- Example of forcing to find better proofs, not new results
- Goal reached: fast and safe algorithm

Thank you