
Herbrand theorem PAω Forcing The proof Conclusion

A case study of forcing in classical realizability:
Herbrand’s theorem, proof and extracted

algorithm

Lionel Rieg

LIP, ENS Lyon

Récré Meeting, November 15th 2012

Herbrand theorem PAω Forcing The proof Conclusion

Motivations

Extracting Herbrand trees

through formalization in Coq and extraction:
safe (adequacy) but slow (a lot of backtracks on the tree)

direct program:
faster but unsafe (implemented in a modified KAM)

through a forcing transformation:
the best of both worlds:

safe (adequacy with forcing)
fast (intuitionistic proof: no backtrack on the tree)

Herbrand theorem PAω Forcing The proof Conclusion

Outline

1 Herbrand theorem

2 PAω

3 Forcing

4 The proof

Herbrand theorem PAω Forcing The proof Conclusion

Outline

1 Herbrand theorem

2 PAω

3 Forcing

4 The proof

Herbrand theorem PAω Forcing The proof Conclusion

Idea behind Herbrand theorem

We start from an inconsistent universal theory U.
(i.e. a set of universal formulæ Ui = ∀~x.Fi ~x with Fi quantifier-free)

infinite
interpretations

→ compactness →
finite information

for each interpretation

infinite number
of interpretations

→ Herbrand theorem →
finite information

for all interpretations

This information can be presented as a decision tree or BDD.

Herbrand theorem PAω Forcing The proof Conclusion

Idea behind Herbrand theorem

We start from an inconsistent universal theory U.
(i.e. a set of universal formulæ Ui = ∀~x.Fi ~x with Fi quantifier-free)

infinite
interpretations

→ compactness →
finite information

for each interpretation

infinite number
of interpretations

→ Herbrand theorem →
finite information

for all interpretations

This information can be presented as a decision tree or BDD.

Herbrand theorem PAω Forcing The proof Conclusion

What is a Herbrand tree?

Definition (Herbrand tree)
A binary tree where

inner nodes are labeled by atomic formulæ

branches represent partial interpretations

leaves contain contradictions

Example

F1 = P 3

F2 = ∀n.P n → P (n + 1)

F3 = ¬P 6

Herbrand theorem PAω Forcing The proof Conclusion

What is a Herbrand tree?

Definition (Herbrand tree)
A binary tree where

inner nodes are labeled by atomic formulæ

branches represent partial interpretations

leaves contain contradictions

Example

F1 = P 3

F2 = ∀n.P n → P (n + 1)

F3 = ¬P 6

P 3

P 4

T

F₁

F

P 5

T

F₂ 3

F

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

Herbrand theorem PAω Forcing The proof Conclusion

What is a Herbrand tree?

Definition (Herbrand tree)
A binary tree where

inner nodes are labeled by atomic formulæ

branches represent partial interpretations

leaves contain contradictions

Example

F1 = P 3

F2 = ∀n.P n → P (n + 1)

F3 = ¬P 6

P 3

F₂ 3

T

F₁

F

P 4

F

P 5

T

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

Herbrand theorem PAω Forcing The proof Conclusion

Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.

Herbrand theorem PAω Forcing The proof Conclusion

Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.

Let us fix an enumeration (ai)i∈N of the atoms.
(atoms = atomic formulæ)

Herbrand theorem PAω Forcing The proof Conclusion

Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.

a₀

a₁ a₁

a₂ a₂ a₂ a₂

a₃ a₃ a₃ a₃ a₃ a₃ a₃ a₃

a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄

consider the atom-enumerating complete infinite tree

Herbrand theorem PAω Forcing The proof Conclusion

Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.

a₀

a₁ a₁

a₂ a₂ a₂ a₂

a₃ a₃ a₃ a₃ a₃ a₃ a₃ a₃

a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄

pick any infinite branch

Herbrand theorem PAω Forcing The proof Conclusion

Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.

a₀

a₁ a₁

a₂ a₂ a₂ a₂

a₃ a₃ a₃⊥ a₃ a₃ a₃ a₃

a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄

by hypothesis (and compactness), we can cut it at finite depth

Herbrand theorem PAω Forcing The proof Conclusion

Usual proof of Herbrand’s theorem

Theorem (Herbrand)

If for all interpretations I , I 6|= U, then U has a Herbrand tree.

a₀

a₁ ⊥

a₂⊥

a₃⊥

⊥ ⊥

conclude using weak Kőnig’s lemma

Herbrand theorem PAω Forcing The proof Conclusion

What can be improved

We want to avoid:
the fixed enumeration of atoms
weak Kőnig’s lemma

Herbrand theorem PAω Forcing The proof Conclusion

What can be improved

We want to avoid:
the fixed enumeration of atoms
weak Kőnig’s lemma

P 3

P 4

T

F₁

F

P 5

T

F₂ 3

F

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

A good enumeration

Herbrand theorem PAω Forcing The proof Conclusion

What can be improved

We want to avoid:
the fixed enumeration of atoms
weak Kőnig’s lemma

P 0

P 1 P 1

P 2 P 2 P 2 P 2

P 3 P 3 P 3 P 3 P 3 P 3 P 3 P 3

P 4

T

F₁

F

P 5

T

F₂ 3

F

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

P 4

T

F₁

F

P 5

T

F₂ 3

F

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

P 4

T

F₁

F

P 5

T

F₂ 3

F

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

P 4

T

F₁

F

P 5

T

F₂ 3

F

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

P 4

T

F₁

F

P 5

T

F₂ 3

F

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

P 4

T

F₁

F

P 5

T

F₂ 3

F

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

P 4

T

F₁

F

P 5

T

F₂ 3

F

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

P 4

T

F₁

F

P 5

T

F₂ 3

F

P 6

T

F₂ 4

F

F₃

T

F₂ 5

F

A bad enumeration

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.

2 It is not a Herbrand tree so one of its
leaves does not contain a contradiction.

3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.

3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

?

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.

4 Repeat this process.

The infinite branch is a model.

a₄

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

a₄

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

a₄

?

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

a₄

a₇

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

a₄

a₇

?

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

a₄

a₇

a₀

?

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

a₄

a₇

a₀

a₂

?

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

a₄

a₇

a₀

a₂

?

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

a₄

a₇

a₀

a₂

?

But proof is classical{ backtracking

This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

A simpler proof of Herbrand’s theorem

Restriction: U = {∀n.F n} (take F 〈i, ~x〉 = Fi ~x)

Proof. (by contraposition)

Assume that there is no Herbrand tree (for U)
and build a model of U.

1 We start from a leaf.
2 It is not a Herbrand tree so one of its

leaves does not contain a contradiction.
3 Replace this leaf with an inner node.
4 Repeat this process.

The infinite branch is a model.

a₄

a₇

a₀

a₂

?

But proof is classical{ backtracking
This infinite branch can be provided by a Cohen real

Herbrand theorem PAω Forcing The proof Conclusion

Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?

By induction on t :

subHtree : finite valuation→ tree→ Bool

while descending along t , remember a finite valuation p

subHtree p (Node a t1 t2) =
subHtree (a+ ∪ p) t1 && subHtree (a- ∪ p) t2

use this finite valuation p for evaluation at the leaves

subHtree p (Leaf n) = eval p (F n) 0

t is a Herbrand tree ⇐⇒ subHtree∅ t = 1

Remarks

eval p (F n) b = 1 means:
1 p has enough information to evaluate F n
2 the result of evaluation is b

building the tree bottom-up:
unordered partial valuation{ ordered branches

Herbrand theorem PAω Forcing The proof Conclusion

Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?
By induction on t :

subHtree : finite valuation→ tree→ Bool

while descending along t , remember a finite valuation p

subHtree p (Node a t1 t2) =
subHtree (a+ ∪ p) t1 && subHtree (a- ∪ p) t2

use this finite valuation p for evaluation at the leaves

subHtree p (Leaf n) = eval p (F n) 0

t is a Herbrand tree ⇐⇒ subHtree∅ t = 1

Remarks

eval p (F n) b = 1 means:
1 p has enough information to evaluate F n
2 the result of evaluation is b

building the tree bottom-up:
unordered partial valuation{ ordered branches

Herbrand theorem PAω Forcing The proof Conclusion

Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?
By induction on t : subHtree : finite valuation→ tree→ Bool

while descending along t , remember a finite valuation p
subHtree p (Node a t1 t2) =

subHtree (a+ ∪ p) t1 && subHtree (a- ∪ p) t2
use this finite valuation p for evaluation at the leaves
subHtree p (Leaf n) = eval p (F n) 0

t is a Herbrand tree ⇐⇒ subHtree∅ t = 1

Remarks

eval p (F n) b = 1 means:
1 p has enough information to evaluate F n
2 the result of evaluation is b

building the tree bottom-up:
unordered partial valuation{ ordered branches

Herbrand theorem PAω Forcing The proof Conclusion

Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?
By induction on t : subHtree : finite valuation→ tree→ Bool

while descending along t , remember a finite valuation p
subHtree p (Node a t1 t2) =

subHtree (a+ ∪ p) t1 && subHtree (a- ∪ p) t2
use this finite valuation p for evaluation at the leaves
subHtree p (Leaf n) = eval p (F n) 0

t is a Herbrand tree ⇐⇒ subHtree∅ t = 1

Remarks

eval p (F n) b = 1 means:
1 p has enough information to evaluate F n
2 the result of evaluation is b

building the tree bottom-up:
unordered partial valuation{ ordered branches

Herbrand theorem PAω Forcing The proof Conclusion

Checking Herbrand trees

How can we check that a tree t is a Herbrand tree?
By induction on t : subHtree : finite valuation→ tree→ Bool

while descending along t , remember a finite valuation p
subHtree p (Node a t1 t2) =

subHtree (a+ ∪ p) t1 && subHtree (a- ∪ p) t2
use this finite valuation p for evaluation at the leaves
subHtree p (Leaf n) = eval p (F n) 0

t is a Herbrand tree ⇐⇒ subHtree∅ t = 1

Remarks

eval p (F n) b = 1 means:
1 p has enough information to evaluate F n
2 the result of evaluation is b

building the tree bottom-up:
unordered partial valuation{ ordered branches

Herbrand theorem PAω Forcing The proof Conclusion

Outline

1 Herbrand theorem

2 PAω

3 Forcing

4 The proof

Herbrand theorem PAω Forcing The proof Conclusion

Higher order Peano Arithmetic

1 Logical setting:
minimal language: ∀,→
multi-sorted classical logic
basic sorts: ι individuals

o propositions (higher-order)

2 datatype: relativization predicate on the sort ι

Example

Bool : b ∈ Bool := ∀Z .Z(0)→ Z(1)→ Z(b)
N : x ∈ N := ∀Z .Z(0)→

(
∀n,Z(n)→ Z(n + 1)

)
→ Z(x)

Notations
∀n ∈ N.A := ∀n. n ∈ N→ A ∃n ∈ N.A := ∃n. n ∈ N ∧ A

Herbrand theorem PAω Forcing The proof Conclusion

Higher order Peano Arithmetic

1 Logical setting:
minimal language: ∀,→
multi-sorted classical logic
basic sorts: ι individuals

o propositions (higher-order)
2 datatype: relativization predicate on the sort ι

Example

Bool : b ∈ Bool := ∀Z .Z(0)→ Z(1)→ Z(b)
N : x ∈ N := ∀Z .Z(0)→

(
∀n,Z(n)→ Z(n + 1)

)
→ Z(x)

Notations
∀n ∈ N.A := ∀n. n ∈ N→ A ∃n ∈ N.A := ∃n. n ∈ N ∧ A

Herbrand theorem PAω Forcing The proof Conclusion

Datatypes used in the formalization

Inductive definitions:
Atom (atomic formulæ) <abstract datatype>
Comp (∀/∃-free formulæ) c := ⊥ | Atomic a | c ⇒ c
tree (binary trees) t := Leaf n | Node a t t
FVal (finite valuations) p := ∅ | a+ :: p | a- :: p

a ∈ Atom, a < p

Relativization predicates:
c ∈ Comp := ∀Z . Z(⊥)→(

∀a ∈ Atom .Z(Atomic a)
)
→(

∀c1.∀c2.Z(c1)→ Z(c2)→ Z(c1 ⇒ c2)
)
→

Z(c)
p ∈ FVal := ∀Z . Z(∅)→(

∀q.∀a ∈ Atom. a < q 7→ Z(q)→ Z(a+ :: q)
)
→(

∀q.∀a ∈ Atom. a < q 7→ Z(q)→ Z(a- :: q)
)
→

Z(p)
t ∈ tree := . . .

Herbrand theorem PAω Forcing The proof Conclusion

Datatypes used in the formalization

Inductive definitions:
Atom (atomic formulæ) <abstract datatype>
Comp (∀/∃-free formulæ) c := ⊥ | Atomic a | c ⇒ c
tree (binary trees) t := Leaf n | Node a t t
FVal (finite valuations) p := ∅ | a+ :: p | a- :: p

a ∈ Atom, a < p

Relativization predicates:
c ∈ Comp := ∀Z . Z(⊥)→(

∀a ∈ Atom .Z(Atomic a)
)
→(

∀c1.∀c2.Z(c1)→ Z(c2)→ Z(c1 ⇒ c2)
)
→

Z(c)
p ∈ FVal := ∀Z . Z(∅)→(

∀q.∀a ∈ Atom. a < q 7→ Z(q)→ Z(a+ :: q)
)
→(

∀q.∀a ∈ Atom. a < q 7→ Z(q)→ Z(a- :: q)
)
→

Z(p)
t ∈ tree := . . .

Herbrand theorem PAω Forcing The proof Conclusion

Herbrand’s theorem in PAω

Usual statement: (∀I.I 6|= U)→ ∃t . t is a Herbrand tree (for U)

premise:

some transformations
∀I.I 6|= U ≡ ∀I.I 6|= (∀n ∈ N.F n)

⇐⇒ ∀I.∃n ∈ N.I 6|= F n
⇐⇒ ∀ι→oρ.∃n ∈ N.¬(interp ρ (F n))

conclusion:

direct translation
∃t ∈ tree. subHtree∅ t = 1

We write subH p := ∃t ∈ tree. subHtree p t = 1.(
∀ι→oρ.∃n ∈ N.¬(interp ρ (U n))

)
→ subH∅

Herbrand theorem PAω Forcing The proof Conclusion

Herbrand’s theorem in PAω

Usual statement: (∀I.I 6|= U)→ ∃t . t is a Herbrand tree (for U)

premise: some transformations
∀I.I 6|= U ≡ ∀I.I 6|= (∀n ∈ N.F n)

⇐⇒ ∀I.∃n ∈ N.I 6|= F n
⇐⇒ ∀ι→oρ.∃n ∈ N.¬(interp ρ (F n))

conclusion:

direct translation
∃t ∈ tree. subHtree∅ t = 1

We write subH p := ∃t ∈ tree. subHtree p t = 1.(
∀ι→oρ.∃n ∈ N.¬(interp ρ (U n))

)
→ subH∅

Herbrand theorem PAω Forcing The proof Conclusion

Herbrand’s theorem in PAω

Usual statement: (∀I.I 6|= U)→ ∃t . t is a Herbrand tree (for U)

premise: some transformations
∀I.I 6|= U ≡ ∀I.I 6|= (∀n ∈ N.F n)

⇐⇒ ∀I.∃n ∈ N.I 6|= F n
⇐⇒ ∀ι→oρ.∃n ∈ N.¬(interp ρ (F n))

conclusion: direct translation
∃t ∈ tree. subHtree∅ t = 1

We write subH p := ∃t ∈ tree. subHtree p t = 1.(
∀ι→oρ.∃n ∈ N.¬(interp ρ (U n))

)
→ subH∅

Herbrand theorem PAω Forcing The proof Conclusion

Herbrand’s theorem in PAω

Usual statement: (∀I.I 6|= U)→ ∃t . t is a Herbrand tree (for U)

premise: some transformations
∀I.I 6|= U ≡ ∀I.I 6|= (∀n ∈ N.F n)

⇐⇒ ∀I.∃n ∈ N.I 6|= F n
⇐⇒ ∀ι→oρ.∃n ∈ N.¬(interp ρ (F n))

conclusion: direct translation
∃t ∈ tree. subHtree∅ t = 1

We write subH p := ∃t ∈ tree. subHtree p t = 1.(
∀ι→oρ.∃n ∈ N.¬(interp ρ (U n))

)
→ subH∅

Herbrand theorem PAω Forcing The proof Conclusion

Outline

1 Herbrand theorem

2 PAω

3 Forcing

4 The proof

Herbrand theorem PAω Forcing The proof Conclusion

Recall on the forcing transformation

Taken from [Kri11] and [Miq11]

Input (forcing structure)

A forcing structure is given by

a set (κ,C) of forcing conditions (p ∈ C written C[p])

a product operation · on forcing conditions

a maximal condition 1

a bunch of proof terms α0, . . . , α8

Output (program transformation)

A logical transformation:
t : A { t∗ : p F A

Adequacy lemmas:
t : A → t A t : A → t∗ p F A

A wrapper w s.t. t : 1 F A → w t : A (if A arithmetical)

Herbrand theorem PAω Forcing The proof Conclusion

In our case (1/3): prerequisites

Implementation of finite relations over Atom×Bool into ι:

Primitives:
empty relation ∅ : ι
singleton relation sing : ι→ ι→ ι (notations: a+ and a-)
union of relation ∪ : ι→ ι→ ι

test of a binding test : ι→ ι→ ι→ ι

Properties:
commutativity, associativity, idempotence of ∪
∅ is a neutral element for ∪
totality of test: ∀a ∈ Atom .∀b ∈ Bool .∀p. test a b p ∈ Bool
behavior of test w.r.t. ∪, ∅, a+, a-

Two definitions:
membership test mem a p := test a 0 p || test a 1 p
adding a binding (a, b) :: p := sing a b ∪ p

Herbrand theorem PAω Forcing The proof Conclusion

In our case (1/3): prerequisites

Implementation of finite relations over Atom×Bool into ι:

Primitives:
empty relation ∅ : ι
singleton relation sing : ι→ ι→ ι (notations: a+ and a-)
union of relation ∪ : ι→ ι→ ι

test of a binding test : ι→ ι→ ι→ ι

Properties:
commutativity, associativity, idempotence of ∪
∅ is a neutral element for ∪
totality of test: ∀a ∈ Atom .∀b ∈ Bool .∀p. test a b p ∈ Bool
behavior of test w.r.t. ∪, ∅, a+, a-

Two definitions:
membership test mem a p := test a 0 p || test a 1 p
adding a binding (a, b) :: p := sing a b ∪ p

Herbrand theorem PAω Forcing The proof Conclusion

In our case (1/3): prerequisites

Implementation of finite relations over Atom×Bool into ι:

Primitives:
empty relation ∅ : ι
singleton relation sing : ι→ ι→ ι (notations: a+ and a-)
union of relation ∪ : ι→ ι→ ι

test of a binding test : ι→ ι→ ι→ ι

Properties:
commutativity, associativity, idempotence of ∪
∅ is a neutral element for ∪
totality of test: ∀a ∈ Atom .∀b ∈ Bool .∀p. test a b p ∈ Bool
behavior of test w.r.t. ∪, ∅, a+, a-

Two definitions:
membership test mem a p := test a 0 p || test a 1 p
adding a binding (a, b) :: p := sing a b ∪ p

Herbrand theorem PAω Forcing The proof Conclusion

In our case (1/3): prerequisites

Implementation of finite relations over Atom×Bool into ι:

Primitives:
empty relation ∅ : ι
singleton relation sing : ι→ ι→ ι (notations: a+ and a-)
union of relation ∪ : ι→ ι→ ι

test of a binding test : ι→ ι→ ι→ ι

Properties:
commutativity, associativity, idempotence of ∪
∅ is a neutral element for ∪
totality of test: ∀a ∈ Atom .∀b ∈ Bool .∀p. test a b p ∈ Bool
behavior of test w.r.t. ∪, ∅, a+, a-

Two definitions:
membership test mem a p := test a 0 p || test a 1 p
adding a binding (a, b) :: p := sing a b ∪ p

Herbrand theorem PAω Forcing The proof Conclusion

In our case (2/3): the forcing structure

Our forcing structure:

κ := ι, C[p] := p ∈ FVal∧(subH p → subH∅)

p · q := p ∪ q

1 := ∅

α0, . . . , α8 comes from the interface of finite relations

Remarks
C is a datatype

FVal represents finite functions from ω to 2

C[p] = p ∈ FVal gives Cohen forcing conditions
{ add a single new (non computable) real number

Herbrand theorem PAω Forcing The proof Conclusion

In our case (3/3): the generic set G

Forcing universe = Base universe + a new set G

PAω+ G −→ Forcing translation −→ PAω
A p F A

t : A t∗ : p F A
q ∈ G p 6 q

Nice properties of G in the forcing universe:
non empty G(1)
included in C ∀p.G(p)→ C[p]
filter ∀p∀q.G(p)→ G(q)→ G(p · q)
genericity (we shall use instead a simple instance)

Simple translation in the base universe
p F q ∈ G ≡ p 6 q := ∀r .C[p · r]→ C[q · r]

Herbrand theorem PAω Forcing The proof Conclusion

In our case (3/3): the generic set G

Forcing universe = Base universe + a new set G

PAω+ G −→ Forcing translation −→ PAω
A p F A

t : A t∗ : p F A
q ∈ G p 6 q

Nice properties of G in the forcing universe:
non empty G(1)
included in C ∀p.G(p)→ C[p]
filter ∀p∀q.G(p)→ G(q)→ G(p · q)
genericity (we shall use instead a simple instance)

Simple translation in the base universe
p F q ∈ G ≡ p 6 q := ∀r .C[p · r]→ C[q · r]

Herbrand theorem PAω Forcing The proof Conclusion

Outline

1 Herbrand theorem

2 PAω

3 Forcing

4 The proof

Herbrand theorem PAω Forcing The proof Conclusion

The big picture

The proof is split across the forcing and base universes.

Base universe

1 Build the forcing structure
2 Assume the premise
3 Lift the premise
4 Make the proof

t : subH∅
5 Use the forcing translation

t∗ : 1 F subH∅
6 Remove forcing

w t∗ : subH∅
7 Extract a witness

(classical realizability)

Forcing universe

1 Build the forcing structure
2 Assume the premise
3 Lift the premise
4 Make the proof

t : subH∅
5 Use the forcing translation

t∗ : 1 F subH∅
6 Remove forcing

w t∗ : subH∅
7 Extract a witness

(classical realizability)

Herbrand theorem PAω Forcing The proof Conclusion

The big picture

The proof is split across the forcing and base universes.

Base universe
1 Build the forcing structure

2 Assume the premise
3 Lift the premise
4 Make the proof

t : subH∅
5 Use the forcing translation

t∗ : 1 F subH∅
6 Remove forcing

w t∗ : subH∅
7 Extract a witness

(classical realizability)

Forcing universe

1 Build the forcing structure
2 Assume the premise
3 Lift the premise
4 Make the proof

t : subH∅
5 Use the forcing translation

t∗ : 1 F subH∅
6 Remove forcing

w t∗ : subH∅
7 Extract a witness

(classical realizability)

Herbrand theorem PAω Forcing The proof Conclusion

The big picture

The proof is split across the forcing and base universes.

Base universe
1 Build the forcing structure
2 Assume the premise

3 Lift the premise
4 Make the proof

t : subH∅
5 Use the forcing translation

t∗ : 1 F subH∅
6 Remove forcing

w t∗ : subH∅
7 Extract a witness

(classical realizability)

Forcing universe

1 Build the forcing structure
2 Assume the premise
3 Lift the premise
4 Make the proof

t : subH∅
5 Use the forcing translation

t∗ : 1 F subH∅
6 Remove forcing

w t∗ : subH∅
7 Extract a witness

(classical realizability)

Herbrand theorem PAω Forcing The proof Conclusion

The big picture

The proof is split across the forcing and base universes.

Base universe
1 Build the forcing structure
2 Assume the premise

3 Lift the premise
4 Make the proof

t : subH∅
5 Use the forcing translation

t∗ : 1 F subH∅
6 Remove forcing

w t∗ : subH∅
7 Extract a witness

(classical realizability)

Forcing universe

1 Build the forcing structure
2 Assume the premise

3 Lift the premise

4 Make the proof
t : subH∅

5 Use the forcing translation
t∗ : 1 F subH∅

6 Remove forcing
w t∗ : subH∅

7 Extract a witness
(classical realizability)

Herbrand theorem PAω Forcing The proof Conclusion

The big picture

The proof is split across the forcing and base universes.

Base universe
1 Build the forcing structure
2 Assume the premise

3 Lift the premise
4 Make the proof

t : subH∅
5 Use the forcing translation

t∗ : 1 F subH∅
6 Remove forcing

w t∗ : subH∅
7 Extract a witness

(classical realizability)

Forcing universe

1 Build the forcing structure
2 Assume the premise

3 Lift the premise
4 Make the proof

t : subH∅

5 Use the forcing translation
t∗ : 1 F subH∅

6 Remove forcing
w t∗ : subH∅

7 Extract a witness
(classical realizability)

Herbrand theorem PAω Forcing The proof Conclusion

The big picture

The proof is split across the forcing and base universes.

Base universe
1 Build the forcing structure
2 Assume the premise

3 Lift the premise
4 Make the proof

t : subH∅

5 Use the forcing translation
t∗ : 1 F subH∅

6 Remove forcing
w t∗ : subH∅

7 Extract a witness
(classical realizability)

Forcing universe

1 Build the forcing structure
2 Assume the premise

3 Lift the premise
4 Make the proof

t : subH∅

5 Use the forcing translation
t∗ : 1 F subH∅

6 Remove forcing
w t∗ : subH∅

7 Extract a witness
(classical realizability)

Herbrand theorem PAω Forcing The proof Conclusion

The big picture

The proof is split across the forcing and base universes.

Base universe
1 Build the forcing structure
2 Assume the premise

3 Lift the premise
4 Make the proof

t : subH∅

5 Use the forcing translation
t∗ : 1 F subH∅

6 Remove forcing
w t∗ : subH∅

7 Extract a witness
(classical realizability)

Forcing universe

1 Build the forcing structure
2 Assume the premise

3 Lift the premise
4 Make the proof

t : subH∅

5 Use the forcing translation
t∗ : 1 F subH∅

6 Remove forcing
w t∗ : subH∅

7 Extract a witness
(classical realizability)

Herbrand theorem PAω Forcing The proof Conclusion

The big picture

The proof is split across the forcing and base universes.

Base universe
1 Build the forcing structure
2 Assume the premise

3 Lift the premise
4 Make the proof

t : subH∅

5 Use the forcing translation
t∗ : 1 F subH∅

6 Remove forcing
w t∗ : subH∅

7 Extract a witness
(classical realizability)

Forcing universe

1 Build the forcing structure
2 Assume the premise

3 Lift the premise
4 Make the proof

t : subH∅

5 Use the forcing translation
t∗ : 1 F subH∅

6 Remove forcing
w t∗ : subH∅

7 Extract a witness
(classical realizability)

Herbrand theorem PAω Forcing The proof Conclusion

Step 4: The proof (in the forcing universe)

Best done on the blackboard

Herbrand theorem PAω Forcing The proof Conclusion

Step 5: Translating axioms

The usual axioms of G are already done.
(G non empty, G included in C, G filter)

Last axiom to translate:
∀a ∈ Atom.∃p ∈ G.∃b ∈ Bool. test a b p = 1

i.e. find a proof term for
1 F ∀a ∈ Atom.∃p ∈ G.∃b ∈ Bool. test a b p = 1

Two solutions { two ways of building the tree:
left-to-right scan right-to-left scan

Herbrand theorem PAω Forcing The proof Conclusion

Step 5: Translating axioms

The usual axioms of G are already done.
(G non empty, G included in C, G filter)

Last axiom to translate:
∀a ∈ Atom.∃p ∈ G.∃b ∈ Bool. test a b p = 1

i.e. find a proof term for
1 F ∀a ∈ Atom.∃p ∈ G.∃b ∈ Bool. test a b p = 1

Two solutions { two ways of building the tree:
left-to-right scan right-to-left scan

Herbrand theorem PAω Forcing The proof Conclusion

Step 6: Absolute formulæ

Definition (Absolute formula)

A formula is absolute when ∀p ∈ C .A ↔ p F A
that is there exists proof terms
ξA : p F A → C[p]→ A
ξ′A : (C[p]→ A)→ p F A

Absolute sort: ι∗ = ι whereas o∗ = κ → o
everything in ι { no computational object changes

Absolute set = absolute sort + absolute relativization predicate

example: datatypes (N,Bool,FVal,Atom,Comp, tree)
equality on ι

counter-example: total valuations ι→ o

subH∅ := ∃t ∈ tree. subHtree∅ t = 1 is absolute

The wrapper w is simply ξ

Herbrand theorem PAω Forcing The proof Conclusion

Extracted algorithm

No fixed enumeration needed
{ enumeration built by the proof of the premise

Herbrand tree inside forcing condition:
p ∈ FVal position in the tree
subH p → subH∅ context of the current tree

Intuitionistic proof: no backtrack in real mode

Execution in the KFAM

Herbrand theorem PAω Forcing The proof Conclusion

Conclusion

One example of forcing on individuals

Example of forcing to find better proofs, not new results

Goal reached: fast and safe algorithm

Thank you

Herbrand theorem PAω Forcing The proof Conclusion

Conclusion

One example of forcing on individuals

Example of forcing to find better proofs, not new results

Goal reached: fast and safe algorithm

Thank you

	Herbrand theorem
	PA
	Forcing
	The proof

