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Voevodsky: Provides a new insight on Type Theory
 

where we can have univalence

Vladimir Voevodsky. Univalent Foundations of Mathematics
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What is univalence ?

Coarsely, the fact that to isomorphic types are equal.
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With this model, we can get more extensional principles

• Proof irrelevance :  ∀ (π,π’:P), π = π’

• Propositional extensionality :  P ↔ Q → P = Q

 
• Functional extensionality : ∀ x, f x = g x→ f = g 

• Reasoning modulo 
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This interpretation of Type Theory is difficult to 
understand / analyze / exploit:

• the definition of ω-groupoids (Batanin, Leinster)
  is (very) difficult to grasp in details

• dependent sums and products are interpreted 
  using sections & projections

Leinster, Higher operads, higher categories
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Using ω-dimensional (or even 2-dimensional) Type Theory

with decidable type checker requires more insight on 

 the interpretation.

Coq with weak ω-groupoids 
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We advocate for an internalization 

of weak ω-groupoids interpretation in Coq

Coq with weak ω-groupoids 
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Altenkirch and Rypacek : A Syntactical Approach to Weak ω-Groupoids

Full description of weak ω-groupoids is a difficult task.

Altenkirch and Rypacek: formalization assuming that all 
diagrams commute, instead of using minimal set of coherences

Problem: no inductive principles to reason on coherences.



Univalence for free, not yet
Ascola

Why [weak] [ω]-groupoids ? 

9

• Weak: 
-don’t want to rely on (Leibniz) equality in the definition

• ω :
- useful for a complete notion of univalence

- useful to avoid truncation in the model

- but not absolutely necessary as a first step
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We will give an internalization 

of weak 2-groupoids interpretation in Coq
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In Hofmann & Streicher:                  , GPD are 1-groupoids

Weak 2 groupoids against groupoids

In Hofmann and Streicher: JT K : GPD. GPD are 1-groupoids:

⌃A : Set;⌃ ⇠ : A ! A ! Set;
⌃ ⇠equiv : 8 x y,Equivalence (x ⇠ y) eq . . .

Morphisms representing identities are identified up to propositional
equality (eq : ⇧A,A ! A ! Set).

Weak 2-groupoids: morphisms representing identities are identified
up to another notion of “equivalence”.

⌃A : Set;⌃ ⇠1 : A ! A ! Set;
⌃ ⇠2 : 8 {x y} (p q : x ⇠1 y), Set;

⌃ ⇠2�equiv 8 x y,Equivalence (x ⇠1 y) ⇠2 . . . .

E.g: JPropK := (Prop, i↵, irrel, . . .).
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Morphisms representing identities are identified 
up to propositional equality.

Weak 2-groupoids:  
morphisms representing identities are identified
up to another notion of “equivalence”.

Weak 2 groupoids against groupoids

In Hofmann and Streicher: JT K : GPD. GPD are 1-groupoids:

⌃A : Set;⌃ ⇠ : A ! A ! Set;
⌃ ⇠equiv : 8 x y,Equivalence (x ⇠ y) eq . . .

Morphisms representing identities are identified up to propositional
equality (eq : ⇧A,A ! A ! Set).

Weak 2-groupoids: morphisms representing identities are identified
up to another notion of “equivalence”.

⌃A : Set;⌃ ⇠1 : A ! A ! Set;
⌃ ⇠2 : 8 {x y} (p q : x ⇠1 y), Set;

⌃ ⇠2�equiv 8 x y,Equivalence (x ⇠1 y) ⇠2 . . . .

E.g: JPropK := (Prop, i↵, irrel, . . .).

Matthieu Sozeau - Univalence for Free 3



Univalence for free, not yet
Ascola

Weak 2-groupoids vs 
groupoids

12

Weak 2 groupoids agains groupoids

GPD are weak 2-groupoids where the equality of morphisms is
propositional equality eq (which has J but not UIP ).

Not sticking to identity sets (which are at the origin of the
groupoid/homotopy models), we can realize a richer model.

Principle Definition of equality
Proof-irrelevance Irrelevant equality
Propositional extensionality Logical equivalence
Functional extensionality Pointwise equality
Univalence Isomorphism

Matthieu Sozeau - Univalence for Free 4
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The rest of the talk will describe our internalization of 

the weak 2-groupoids interpretation in Coq
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Our interpretation relies on:

• Type classes
 
• Polymorphic universes

• Better management of projections in Coq
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12 Univalence For Free, not yet

Definition sum eq2 T (F :Weak1Fibration T ) (M N : sum type F ) : HomT (sum eq M

N ) :=
⁄ e e’ , {P : [e] ≥ [e’ ] & fi2 e ≥ fi2 e’ ¶ (eq rect’ eq P ı (fi2 M ))}.

Program Definition Sum T (F :Weak1Fibration T ) : [ Type] :=
(sum type F ; ).

The proof that we actually have a 2-groupoid makes use of the fact that ≥ on F ı t is
always trivial to complete proofs that would have been derivable at level 3 only.

3.8 The translation process

We now present a translation that internalizes homotopy type theory into the Calculus of
Constructions (CC) using our 2-groupoid interpretation.

J Type K © Type

J Prop K © Prop

J T æ U K © J T K ≠æ J U K
J ’ t : T , U K © Prod J (⁄ t , U ; ) K
J ⁄ t : T , M K © (⁄ t : J T K , J M K ; )

J x :A K © x : [ J T K ]

J M N K © J M K ı J N K
J {t : T , U } K © Sum J (⁄ t , U ; ) K
J fii M K © fii J M K

The translation is conservative with respect to CC because it conserves all the computation
content and only adds missing terms for compatibilities and naturalities.

Note that in the translation of products, functions and sums, the missing terms for
compatibilities and naturalities are treated as obligations. It is still an open problem to know
whether every such obligations can be automatically computed from the original term before
translation. The connection between Œ-groupoids and homotopy type theory guarantees
that such proofs exist but does not say much about their shape.

3.9 Univalence axiom and others as lemmas

As a sanity check, we now prove that the equality we defined on propositions, Prop, functions,
dependent pairs and Type behave as expected.

First, we state that equality on proofs is irrelevant and equality on propositions is given
by ¡.

Lemma prop extensional (P Q : [ Prop]) : [P ] ¡ [Q ] æ P ≥1 Q .

Lemma proof irrelevant (P : [ Prop]) (p q : [P ]) : p ≥1 q .

We also have functional extensionality, for the dependent and non-dependent function
spaces, at the price of a naturality condition (see nat trans).

Lemma functional extensionality A B (f g : [A ≠æ B ]) :
nat trans f g æ f ≥1 g .

Lemma functional extensionality dep T U (f g : [ Prod (T :=T ) U ]) :
Dnat trans f g æ f ≥1 g .

To prove equality on dependent pairs, it is enough to prove equality of the corresponding
projections.
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Lemma sum extensional T F (m n : [ Sum (T :=T ) F ]) :
’ (P : [m] ≥1 [n]), eq rect’ [F ] P ı (fi2 m) ≥1 fi2 n æ m ≥1 n.

Finally, we have the univalence principle on types.

Lemma univalence statement (U V : [ Type]) : (Equiv U V ) æ U ≥1 V .

4 An example using univalence

To illustrate the use of univalence in our equality, we will define the type ’ X : Type, (X
æ X ) æ X æ X of Church naturals and show that it is equal to the inductive type nat of
inductive Coq naturals.

Showing that those two types are equal amounts to constructing a homotopic equivalence
between them. The proof that we actually have an equivalence relies on the fact that every
inhabitant of cnat is parametric with respect to the variable X . This principle is not provable
in Coq and will be posed as an axiom in our development. However it is validated meta-
theoretically by a parametricity result on (a slight refinement of) CIC in Keller and Lasson’s
work [8].

The first problem to define the type of Church integers is to derive the (nested) proofs of
functoriality of the function ⁄ X , (X æ X ) æ X æ X . To do that, we show that the arrow
(≠æ) is functorial. Based on this, we can construct an other arrow (⇣) on endofunctors on
Type.

Program Definition endo fun (f g : [ Type ≠æ Type]) : [ Type ≠æ Type]
:= (⁄ X , (f ı X ) ≠æ (g ı X ); ).

Infix ”⇣” := endo fun (at level 80, right associativity).

This arrow expects two endofunctors on Type and pre-composes them with (≠æ) to
get a new endofunctor on Type.

The idea is to use an encoding of ⁄-terms with one free variable as endofunctors to define
the type of Church naturals. In this encoding, the variable is seen as the identity functor.

Definition Var := identity Type : [ Type ≠æ Type].

Then, the functor cnatT corresponding to the term ⁄ X , (X æ X ) æ X æ X can be
defined directly.

Definition cnatT : [ Type ≠æ Type] := (Var ⇣ Var) ⇣ Var ⇣ Var.

As all our constructions are functorial, there is no need to prove extra compatibilities to
define the type of Church naturals.

Program Definition cnat := Prod cnatT : [ Type].

Let us now define the 2-groupoid of inductive natural numbers. It has natural numbers
as objects, the Leibniz equality (eq of Coq) for ≥1 and is irrelevant on ≥2. This corresponds
to the fact that uniqueness of (Leibniz) identity proofs for nat holds in CIC, as for any
decidable type.

Program Definition nat : [ Type] :=
(nat ; IrrRelWeak2Groupoid (m := eq) ).

The zero of nat is still the zero 0 of nat, but we need to promote the successor constructor
S to a functor succ that contains the (trivial) proofs of compatibility with Leibniz equality.

Program Definition succ : [ nat ≠æ nat] := (⁄ n , S n; ).
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Weak 2-groupoids 
in Coq
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Start with computational notion of family of morphisms 

4 Univalence For Free, not yet

now2 This formalization is a great benchmark for universe polymorphism as it stresses the
universe system by constructing a hierarchy of types embedded in nested structures.

3 The translation

3.1 Definition of weak-2-groupoids

We formalize weak-2-groupoids using type classes. Contrarily to what is done in the usual
Setoid translation, the basic notion of morphisms is given as inhabitants of a relation in
Type:

Definition HomT (A : Type) := A æ A æ Type.

Homs are relation, that is inhabitants of type HomT T for a particular T , and morphisms
are inhabitants of a hom.

Given a hom, we define type classes that represents that the Hom-set of morphisms
on a Type A is reflexive (which corresponds to the identity morphism), symmetric (which
corresponds to the existence of an inverse morphism for every morphism) and transitive
(which corresponds to morphisms composition).

Class Identity {A} (Hom : HomT A) :=
identity : ’ x , Hom x x .

Class Inverse {A} (Hom : HomT A) :=
inverse : ’ x y :A, Hom x y æ Hom y x .

Class Composition {A} (Hom : HomT A) :=
composition : ’ {x y z :A}, Hom x y æ Hom y z æ Hom x z .

Notation ”g ° f” := (composition f g) (at level 50).

Class Equivalence T (Eq : HomT T ):= {

Equivalence Identity :> Identity Eq ;
Equivalence Inverse :> Inverse Eq ;
Equivalence Composition :> Composition Eq

}.

In a 2-groupoid, all 2-morphisms are invertible and higher equalities are trivial. Thus
the set of 2-Homs denoted by ≥2 corresponds to an equivalence relation.

Class HomT T (Hom : HomT T ) := {eq : ’ {x y : T}, HomT (Hom x y)}.
Infix ”≥” := eq (at level 80).

Class Category T (Hom : HomT T ) (Hom2 : HomT Hom) := {

Category Identity :> Identity Hom;
Category Composition :> Composition Hom;

id R : ’ x y (f : Hom x y), f ¶ (identity x ) ≥ f ;
id L : ’ x y (f : Hom x y), (identity y) ¶ f ≥ f ;
assoc : ’ x y z w (f : Hom x y) (g : Hom y z ) (h: Hom z w),

(h ¶ g) ¶ f ≥ h ¶ (g ¶ f );
comp : ’ x y z (f f ’ : Hom x y) (g g’ : Hom y z ),

2 Available at http://tabareau.fr/univalence_for_free.
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Define type classes for identity, inverse and composition

4 Univalence For Free, not yet
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2 Available at http://tabareau.fr/univalence_for_free.
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The definition of Category is defined with 2 HomTs.
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2 Available at http://tabareau.fr/univalence_for_free.
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f ≥ f ’ æ g ≥ g’ æ g ¶ f ≥ g’ ¶ f ’

}.

Class Groupoid T (Hom : HomT T ) (Hom2 : HomT Hom) (Groupoid Category : Category
Hom2 ) := {

Groupoid Inverse :> Inverse Hom;

inv R : ’ x y (f : Hom x y), f ¶ (inverse f ) ≥ identity ;
inv L : ’ x y (f : Hom x y), (inverse f ) ¶ f ≥ identity ;
inv : ’ x y (f f ’ :Hom x y), f ≥ f ’ æ inverse f ≥ inverse f ’}.

We start with the definition of 2-1 categories, that is weak 2-categories where 2-Homs
are isoHoms. Technically, we use it for the 2-1 category of functors and iso-natural trans-
formations, which is not a 2-groupoid but will be a useful structure in the definitions and
proofs about type equivalences.

Definition HorComp {T} {Hom1 : HomT1 T} {Hom2 : HomT eq1} {Category 1 :
Category Hom2} {x y z}

{f f ’ : x ≥1 y} {g g’ : y ≥1 z} : f ≥2 f ’ æ g ≥2 g’ æ g ¶ f ≥2 g’ ¶ f ’ :=
comp f f ’ g g’ .

Infix ”**” := HorComp (at level 50).

Class Weak2Category T := {

Hom1 :> HomT1 T ;
Hom2 :> HomT eq1;
Hom3 :> ’ x y : T , HomT (eq (x :=x ) (y :=y));

Category 1 :> Category Hom2;
Category 2 :> ’ x y , Category (Hom3 x y);
Equivalence 3 :> ’ x y (e e’ : x ≥1 y), Equivalence (eq (x :=e) (y :=e’ ));

ExLawId : ’ x y z (f : x ≥1 y) (g : y ≥1 z ),
identity f ** identity g ˜3 identity (g ¶ f );

ExLawComp : ’ x y z (f f ’ f ’’ : x ≥1 y) (g g’ g’’ : y ≥1 z )
(– : f ≥2 f ’ ) (–’ :f ’≥2f ’’ ) (—:g ≥2 g’ ) (—’ :g’≥2 g’’ ),
(–’ ¶ –) ** (—’ ¶ —) ˜3 (–’ ** —’ ) ¶ (– ** —);

AssociativityCoherence : ’ x y z w v (f : x ≥1 y) (g : y ≥1 z ) (h : z ≥1 w) (i : w ≥1 v),
assoc (g ¶ f ) h i ¶ assoc f g (i ¶ h) ˜3
(assoc f g h ** identity i) ¶ assoc f (h ¶ g) i ¶ (identity f **

assoc g h i);

IdentityCoherence : ’ x y z (f : x ≥1 y) (g : y ≥1 z ),
(id L f ** identity g) ¶ assoc f (identity y) g ˜3 identity f ** id R

g

}.

Class Weak2 1Category T := {

Weak2 1Category Weak2Category :> Weak2Category T ;
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(–’ ¶ –) ** (—’ ¶ —) ≥3 (–’ ** —’ ) ¶ (– ** —);

AssociativityCoherence : ’ x y z w v

(f : x ≥1 y) (g : y ≥1 z ) (h : z ≥1 w) (i : w ≥1 v),
assoc’ (g ¶ f ) h i ¶ assoc’ f g (i ¶ h) ≥3
(assoc’ f g h ** identity i) ¶ assoc’ f (h ¶ g) i ¶ (identity f ** assoc’ g h i);

IdentityCoherence : ’ x y z (f : x ≥1 y) (g : y ≥1 z ),
(id L’ f ** identity g) ¶ assoc’ f (identity y) g ≥3 identity f ** id R’ g

}.

Class Weak2 1Category T := {

Weak2 1Category Weak2Category :> Weak2Category T ;
Groupoid2 :> ’ x y , Groupoid (Category2 x y)

}.
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Using our “open” definition of a category 
a weak 2-category is simply as a category at all levels...

M. Sozeau and N. Tabareau 5

f ≥ f ’ æ g ≥ g’ æ g ¶ f ≥ g’ ¶ f ’

}.

Class Groupoid T (Hom : HomT T ) (Hom2 : HomT Hom) (Groupoid Category : Category
Hom2 ) := {

Groupoid Inverse :> Inverse Hom;

inv R : ’ x y (f : Hom x y), f ¶ (inverse f ) ≥ identity ;
inv L : ’ x y (f : Hom x y), (inverse f ) ¶ f ≥ identity ;
inv : ’ x y (f f ’ :Hom x y), f ≥ f ’ æ inverse f ≥ inverse f ’}.

We start with the definition of 2-1 categories, that is weak 2-categories where 2-Homs
are isoHoms. Technically, we use it for the 2-1 category of functors and iso-natural trans-
formations, which is not a 2-groupoid but will be a useful structure in the definitions and
proofs about type equivalences.

Definition HorComp {T} {Hom1 : HomT1 T} {Hom2 : HomT eq1} {Category 1 :
Category Hom2} {x y z}

{f f ’ : x ≥1 y} {g g’ : y ≥1 z} : f ≥2 f ’ æ g ≥2 g’ æ g ¶ f ≥2 g’ ¶ f ’ :=
comp f f ’ g g’ .

Infix ”**” := HorComp (at level 50).

Class Weak2Category T := {

Hom1 :> HomT1 T ;
Hom2 :> HomT eq1;
Hom3 :> ’ x y : T , HomT (eq (x :=x ) (y :=y));

Category 1 :> Category Hom2;
Category 2 :> ’ x y , Category (Hom3 x y);
Equivalence 3 :> ’ x y (e e’ : x ≥1 y), Equivalence (eq (x :=e) (y :=e’ ));

ExLawId : ’ x y z (f : x ≥1 y) (g : y ≥1 z ),
identity f ** identity g ˜3 identity (g ¶ f );

ExLawComp : ’ x y z (f f ’ f ’’ : x ≥1 y) (g g’ g’’ : y ≥1 z )
(– : f ≥2 f ’ ) (–’ :f ’≥2f ’’ ) (—:g ≥2 g’ ) (—’ :g’≥2 g’’ ),
(–’ ¶ –) ** (—’ ¶ —) ˜3 (–’ ** —’ ) ¶ (– ** —);

AssociativityCoherence : ’ x y z w v (f : x ≥1 y) (g : y ≥1 z ) (h : z ≥1 w) (i : w ≥1 v),
assoc (g ¶ f ) h i ¶ assoc f g (i ¶ h) ˜3
(assoc f g h ** identity i) ¶ assoc f (h ¶ g) i ¶ (identity f **

assoc g h i);

IdentityCoherence : ’ x y z (f : x ≥1 y) (g : y ≥1 z ),
(id L f ** identity g) ¶ assoc f (identity y) g ˜3 identity f ** id R

g

}.

Class Weak2 1Category T := {

Weak2 1Category Weak2Category :> Weak2Category T ;
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... plus compatibilities of course

M. Sozeau and N. Tabareau 5

f ≥ f ’ æ g ≥ g’ æ g ¶ f ≥ g’ ¶ f ’

}.

Class Groupoid T (Hom : HomT T ) (Hom2: HomT Hom)
(Groupoid Category : Category Hom2) := {

Groupoid Inverse :> Inverse Hom;

inv R : ’ x y (f : Hom x y), f ¶ (inverse f ) ≥ identity ;
inv L : ’ x y (f : Hom x y), (inverse f ) ¶ f ≥ identity ;
inv : ’ x y (f f ’ :Hom x y), f ≥ f ’ æ inverse f ≥ inverse f ’}.

We start with the definition of 2-1 categories, that is weak 2-categories where 2-Homs
are isoHoms. Technically, we use it for the 2-1 category of functors and iso-natural trans-
formations, which is not a 2-groupoid but will be a useful structure in the definitions and
proofs about type equivalences.

Definition HorComp {T} {Hom1 : HomT1 T} {Hom2 : HomT eq1}
{Category1 : Category Hom2} {x y z} {f f ’ : x ≥1 y} {g g’ : y ≥1 z}:

f ≥2 f ’ æ g ≥2 g’ æ g ¶ f ≥2 g’ ¶ f ’ := comp f f ’ g g’ .

Infix ”**” := HorComp (at level 50).

Class Weak2Category T := {

Hom1 :> HomT1 T ;
Hom2 :> HomT eq1;
Hom3 :> ’ x y : T , HomT (eq (x :=x ) (y :=y));

Category1 :> Category Hom2;
Category2 :> ’ x y , Category (Hom3 x y);
Equivalence 3 :> ’ x y (e e’ : x ≥1 y), Equivalence (eq (x :=e) (y :=e’ ));

ExLawId : ’ x y z (f : x ≥1 y) (g : y ≥1 z ),
identity f ** identity g ≥3 identity (g ¶ f );

ExLawComp : ’ x y z (f f ’ f ’’ : x ≥1 y) (g g’ g’’ : y ≥1 z )
(– : f ≥2 f ’ ) (–’ :f ’≥2f ’’ ) (—:g ≥2 g’ ) (—’ :g’≥2 g’’ ),
(–’ ¶ –) ** (—’ ¶ —) ≥3 (–’ ** —’ ) ¶ (– ** —);

AssociativityCoherence : ’ x y z w v

(f : x ≥1 y) (g : y ≥1 z ) (h : z ≥1 w) (i : w ≥1 v),
assoc’ (g ¶ f ) h i ¶ assoc’ f g (i ¶ h) ≥3
(assoc’ f g h ** identity i) ¶ assoc’ f (h ¶ g) i ¶ (identity f ** assoc’ g h i);

IdentityCoherence : ’ x y z (f : x ≥1 y) (g : y ≥1 z ),
(id L’ f ** identity g) ¶ assoc’ f (identity y) g ≥3 identity f ** id R’ g

}.

Class Weak2 1Category T := {

Weak2 1Category Weak2Category :> Weak2Category T ;
Groupoid2 :> ’ x y , Groupoid (Category2 x y)

}.
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Horizontal composition of 2 cells is given by 
the witness of compatibility of composition

M. Sozeau and N. Tabareau 5

f ≥ f ’ æ g ≥ g’ æ g ¶ f ≥ g’ ¶ f ’

}.

Class Groupoid T (Hom : HomT T ) (Hom2: HomT Hom)
(Groupoid Category : Category Hom2) := {

Groupoid Inverse :> Inverse Hom;

inv R : ’ x y (f : Hom x y), f ¶ (inverse f ) ≥ identity ;
inv L : ’ x y (f : Hom x y), (inverse f ) ¶ f ≥ identity ;
inv : ’ x y (f f ’ :Hom x y), f ≥ f ’ æ inverse f ≥ inverse f ’}.

We start with the definition of 2-1 categories, that is weak 2-categories where 2-Homs
are isoHoms. Technically, we use it for the 2-1 category of functors and iso-natural trans-
formations, which is not a 2-groupoid but will be a useful structure in the definitions and
proofs about type equivalences.

Definition HorComp {T} {Hom1 : HomT1 T} {Hom2 : HomT eq1}
{Category1 : Category Hom2} {x y z} {f f ’ : x ≥1 y} {g g’ : y ≥1 z}:

f ≥2 f ’ æ g ≥2 g’ æ g ¶ f ≥2 g’ ¶ f ’ := comp f f ’ g g’ .

Infix ”**” := HorComp (at level 50).

Class Weak2Category T := {

Hom1 :> HomT1 T ;
Hom2 :> HomT eq1;
Hom3 :> ’ x y : T , HomT (eq (x :=x ) (y :=y));

Category1 :> Category Hom2;
Category2 :> ’ x y , Category (Hom3 x y);
Equivalence 3 :> ’ x y (e e’ : x ≥1 y), Equivalence (eq (x :=e) (y :=e’ ));

ExLawId : ’ x y z (f : x ≥1 y) (g : y ≥1 z ),
identity f ** identity g ≥3 identity (g ¶ f );

ExLawComp : ’ x y z (f f ’ f ’’ : x ≥1 y) (g g’ g’’ : y ≥1 z )
(– : f ≥2 f ’ ) (–’ :f ’≥2f ’’ ) (—:g ≥2 g’ ) (—’ :g’≥2 g’’ ),
(–’ ¶ –) ** (—’ ¶ —) ≥3 (–’ ** —’ ) ¶ (– ** —);

AssociativityCoherence : ’ x y z w v

(f : x ≥1 y) (g : y ≥1 z ) (h : z ≥1 w) (i : w ≥1 v),
assoc’ (g ¶ f ) h i ¶ assoc’ f g (i ¶ h) ≥3
(assoc’ f g h ** identity i) ¶ assoc’ f (h ¶ g) i ¶ (identity f ** assoc’ g h i);

IdentityCoherence : ’ x y z (f : x ≥1 y) (g : y ≥1 z ),
(id L’ f ** identity g) ¶ assoc’ f (identity y) g ≥3 identity f ** id R’ g

}.

Class Weak2 1Category T := {

Weak2 1Category Weak2Category :> Weak2Category T ;
Groupoid2 :> ’ x y , Groupoid (Category2 x y)

}.



Univalence for free, not yet
Ascola

Compatibilities in string diagrams

24

92 Algèbre libre d’une T -théorie enrichie

Cette représentation par diagrammes de cordes nous permet de décrire les lois de cohérence
par des petits « films » décrivant la déformation des morphismes structuraux. Par exemple,
le film de gauche de la Figure 3.1 indique que les deux façons que l’on a de passer d’une
association à gauche à une association à droite sont identiques.

B1(D,E) ⇣ a

a

a⇣ B1(A,B)

=

a

a

B1(B,C) ⇣ r

a

l ⇣ B1(A,B)

= id

Fig. 3.1 – Lois de cohérence pour l’associativité et l’identité dans une V-bicatégorie

Définition 3.10 (foncteur relâché enrichie)
Un morphisme de V-bicatégorie aussi appelé foncteur relâché enrichi sur V (V-foncteur
relâché) F : B ≠æ C entre deux V-bicatégories est la donnée :

– d’une fonction F : B0 æ C0 qui associe pour chaque 0-cellule A de la bicatégorie
B une 0-cellule FA de la bicatégorie C ;

– d’un V-foncteur F : B1(A,B)æ C1(FA,FB) pour chaque paire de 0-cellules A et
B ;

– de deux V-transformations naturelles F̃2 et F̃0 pour chaque triplet A, B et C de
la bicatégorie B

B1(B,C) ⇣ C1(FA,FB)
F⇣C1(FA,FB) //

�� ��
↵◆ F̃2

C1(FB,FC) ⇣ C1(FA,FB)

¶
✏✏

B1(B,C) ⇣ B1(A,B)

B1(B,C)⇣F
OO

¶ ))SSSSSSSSSS C1(FA,FC)

B1(A,C)
F

44jjjjjjjjjjj
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Weak 2-Groupoid is a weak 2-Category where the 
underlying Categories are Groupoids

6 Univalence For Free, not yet

Groupoid 2 :> ’ x y , Groupoid (Category 2 x y)
}.

Definition Weak2 1CatType := {T :Type & Weak2 1Category T }.

Now, a weak 2-groupoid is just a 2-1 category where all 1-Homs are invertible and subject
to additional compatibility laws on the inversion.

Class Weak2Groupoid T := {

Weak2Groupoid Weak2 1Category :> Weak2 1Category T ;
Groupoid 1 :> Groupoid Category 1}.

Definition Weak2GroupoidType := {T :Type & Weak2Groupoid T }.

3.1.0.1 Notation.

We introduce the following notation that defines an application when the function is part of
a dependent sum.

Notation ”M @ N” := ([M ] N ) (at level 55).

3.2 Prop extensionality and proof irrelevance

Equality on proofs is irrelevant. What we mean by irrelevant is that the set of (iso-)Homs
between any two proofs of the same proposition is a singleton.

Definition Hom irr (T : Type) : HomT T := ⁄ , unit.

We define an instance IrrRelWeak2Groupoid T m for Weak2Groupoid T when m is an
equivalence and the second equality is relevant. We will use this instance to define 2-groupoid
degenerated at level 2, as for instance for Prop.

Class PropIrr (P :Prop) : Type :=
{ prop irr groupoid := IrrRelWeak2Groupoid (T :=P) (Hom := Hom irr P) }.

Program Definition Propositions := { P : Prop & PropIrr P }.

Equality between propositions of type Propositions is given by logical equivalence on
the underlying propositions, i.e. propositional extensionality. This is a degenerate case of
univalence, where the proofs that the two maps form an isomorphism is trivially true due
to the above definition of equality of witnesses: they are all equal.

3.3 Functional Extensionality and natural transformations

A morphism between two 2-groupoids is a 2-functor, i.e. a function between objects of the
2-groupoids that transports higher Homs, subject to compatibility laws.

Class Functor T U (Hom : HomT T ) (Hom2 : HomT Hom) (Hom’ : HomT U ) (Hom2’ :
HomT Hom’ )
(Cat : Category Hom2 ) (Cat’ : Category Hom2’ ) (f : T æ U ) := {

map : ’ {x y}, Hom x y æ Hom’ (f x ) (f y) ;

map comp : ’ x y z (e:Hom x y) (e’ :Hom y z ), map (e’ ¶ e) ≥2 map e’ ¶ map e ;
map id : ’ x , map (identity x ) ≥2 identity (f x )

}.

6 Univalence For Free, not yet

Groupoid 2 :> ’ x y , Groupoid (Category 2 x y)
}.

Definition Weak2 1CatType := {T :Type & Weak2 1Category T }.

Now, a weak 2-groupoid is just a 2-1 category where all 1-Homs are invertible and subject
to additional compatibility laws on the inversion.

Class Weak2Groupoid T := {

Weak2Groupoid Weak2 1Category :> Weak2 1Category T ;
Groupoid 1 :> Groupoid Category 1}.

Definition Weak2GroupoidType := {T :Type & Weak2Groupoid T }.

3.1.0.1 Notation.

We introduce the following notation that defines an application when the function is part of
a dependent sum.

Notation ”M @ N” := ([M ] N ) (at level 55).

3.2 Prop extensionality and proof irrelevance

Equality on proofs is irrelevant. What we mean by irrelevant is that the set of (iso-)Homs
between any two proofs of the same proposition is a singleton.

Definition Hom irr (T : Type) : HomT T := ⁄ , unit.

We define an instance IrrRelWeak2Groupoid T m for Weak2Groupoid T when m is an
equivalence and the second equality is relevant. We will use this instance to define 2-groupoid
degenerated at level 2, as for instance for Prop.

Class PropIrr (P :Prop) : Type :=
{ prop irr groupoid := IrrRelWeak2Groupoid (T :=P) (Hom := Hom irr P) }.

Program Definition Propositions := { P : Prop & PropIrr P }.

Equality between propositions of type Propositions is given by logical equivalence on
the underlying propositions, i.e. propositional extensionality. This is a degenerate case of
univalence, where the proofs that the two maps form an isomorphism is trivially true due
to the above definition of equality of witnesses: they are all equal.

3.3 Functional Extensionality and natural transformations

A morphism between two 2-groupoids is a 2-functor, i.e. a function between objects of the
2-groupoids that transports higher Homs, subject to compatibility laws.

Class Functor T U (Hom : HomT T ) (Hom2 : HomT Hom) (Hom’ : HomT U ) (Hom2’ :
HomT Hom’ )
(Cat : Category Hom2 ) (Cat’ : Category Hom2’ ) (f : T æ U ) := {

map : ’ {x y}, Hom x y æ Hom’ (f x ) (f y) ;

map comp : ’ x y z (e:Hom x y) (e’ :Hom y z ), map (e’ ¶ e) ≥2 map e’ ¶ map e ;
map id : ’ x , map (identity x ) ≥2 identity (f x )

}.

6 Univalence For Free, not yet

Definition Weak2 1CatType := {T :Type & Weak2 1Category T }.

Now, a weak 2-groupoid is just a 2-1 category where all 1-Homs are invertible and subject
to additional compatibility laws on the inversion.

Class Weak2Groupoid T := {

Weak2Groupoid Weak2 1Category :> Weak2 1Category T ;
Groupoid1 :> Groupoid Category1}.

Definition Weak2GroupoidType := {T :Type & Weak2Groupoid T }.

3.1.0.1 Notation.

We introduce the following notation that defines an application when the function is part of
a dependent sum.

Notation ”M @ N” := ([M ] N ) (at level 55).

3.2 Prop extensionality and proof irrelevance

Equality on proofs is irrelevant. What we mean by irrelevant is that the set of (iso-)Homs
between any two proofs of the same proposition is a singleton.

Definition Hom irr (T : Type) : HomT T := ⁄ , unit.

We define an instance IrrRelWeak2Groupoid T m for Weak2Groupoid T when m is an
equivalence and the second equality is relevant. We will use this instance to define 2-groupoid
degenerated at level 2, as for instance for Prop.

Class PropIrr (P :Prop) : Type :=
{ prop irr groupoid := IrrRelWeak2Groupoid (T :=P) (Hom := Hom irr P) }.

Program Definition Propositions := { P : Prop & PropIrr P }.

Equality between propositions of type Propositions is given by logical equivalence on
the underlying propositions, i.e. propositional extensionality. This is a degenerate case of
univalence, where the proofs that the two maps form an isomorphism is trivially true due
to the above definition of equality of witnesses: they are all equal.

Definition i↵’ : HomT Propositions := fun P Q ∆ [P ] ¡ [Q ].

Program Definition Prop : Weak2GroupoidType :=
(Propositions ; IrrRelWeak2Groupoid (Hom:=i↵’) ).

3.3 Functional Extensionality and natural transformations

A morphism between two 2-groupoids is a 2-functor, i.e. a function between objects of the
2-groupoids that transports higher Homs, subject to compatibility laws.

Class Functor T U (Hom : HomT T ) (Hom2: HomT Hom) (Hom’ : HomT U ) (Hom2’ :
HomT Hom’ )
(Cat : Category Hom2) (Cat’ : Category Hom2’ ) (f : T æ U ) := {

map : ’ {x y}, Hom x y æ Hom’ (f x ) (f y) ;

map comp : ’ x y z (e:Hom x y) (e’ :Hom y z ), map (e’ ¶ e) ≥2 map e’ ¶ map e ;
map id : ’ x , map (identity x ) ≥2 identity (f x )
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Proof irrelevance,
Propositional extensionality
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6 Univalence For Free, not yet

Definition Weak2 1CatType := {T :Type & Weak2 1Category T }.

Now, a weak 2-groupoid is just a 2-1 category where all 1-Homs are invertible and subject
to additional compatibility laws on the inversion.

Class Weak2Groupoid T := {

Weak2Groupoid Weak2 1Category :> Weak2 1Category T ;
Groupoid 1 :> Groupoid Category 1}.

Definition Weak2GroupoidType := {T :Type & Weak2Groupoid T }.

3.1.0.1 Notation.

We introduce the following notation that defines an application when the function is part of
a dependent sum.

Notation ”M @ N” := ([M ] N ) (at level 55).

3.2 Prop extensionality and proof irrelevance

Equality on proofs is irrelevant. What we mean by irrelevant is that the set of (iso-)Homs
between any two proofs of the same proposition is a singleton.

Definition Hom irr (T : Type) : HomT T := ⁄ , unit.

We define an instance IrrRelWeak2Groupoid T m for Weak2Groupoid T when m is an
equivalence and the second equality is relevant. We will use this instance to define 2-groupoid
degenerated at level 2, as for instance for Prop.

Class PropIrr (P :Prop) : Type :=
{ prop irr groupoid := IrrRelWeak2Groupoid (T :=P) (Hom := Hom irr P) }.

Program Definition Propositions := { P : Prop & PropIrr P }.

Equality between propositions of type Propositions is given by logical equivalence on
the underlying propositions, i.e. propositional extensionality. This is a degenerate case of
univalence, where the proofs that the two maps form an isomorphism is trivially true due
to the above definition of equality of witnesses: they are all equal.

3.3 Functional Extensionality and natural transformations

A morphism between two 2-groupoids is a 2-functor, i.e. a function between objects of the
2-groupoids that transports higher Homs, subject to compatibility laws.

Class Functor T U (Hom : HomT T ) (Hom2 : HomT Hom) (Hom’ : HomT U ) (Hom2’ :
HomT Hom’ )
(Cat : Category Hom2 ) (Cat’ : Category Hom2’ ) (f : T æ U ) := {

map : ’ {x y}, Hom x y æ Hom’ (f x ) (f y) ;

map comp : ’ x y z (e:Hom x y) (e’ :Hom y z ), map (e’ ¶ e) ≥2 map e’ ¶ map e ;
map id : ’ x , map (identity x ) ≥2 identity (f x )

}.

Definition assoc’’ {T Hom Hom2 Category} {x y z w : T} {e e’ e’’}:=
assoc (Hom := Hom) (Hom2 := Hom2 ) (Category := Category) x y z w e e’ e’’ .

6 Univalence For Free, not yet

Definition Weak2 1CatType := {T :Type & Weak2 1Category T }.

Now, a weak 2-groupoid is just a 2-1 category where all 1-Homs are invertible and subject
to additional compatibility laws on the inversion.

Class Weak2Groupoid T := {

Weak2Groupoid Weak2 1Category :> Weak2 1Category T ;
Groupoid 1 :> Groupoid Category 1}.

Definition Weak2GroupoidType := {T :Type & Weak2Groupoid T }.

3.1.0.1 Notation.

We introduce the following notation that defines an application when the function is part of
a dependent sum.

Notation ”M @ N” := ([M ] N ) (at level 55).

3.2 Prop extensionality and proof irrelevance

Equality on proofs is irrelevant. What we mean by irrelevant is that the set of (iso-)Homs
between any two proofs of the same proposition is a singleton.

Definition Hom irr (T : Type) : HomT T := ⁄ , unit.

We define an instance IrrRelWeak2Groupoid T m for Weak2Groupoid T when m is an
equivalence and the second equality is relevant. We will use this instance to define 2-groupoid
degenerated at level 2, as for instance for Prop.

Class PropIrr (P :Prop) : Type :=
{ prop irr groupoid := IrrRelWeak2Groupoid (T :=P) (Hom := Hom irr P) }.

Program Definition Propositions := { P : Prop & PropIrr P }.

Equality between propositions of type Propositions is given by logical equivalence on
the underlying propositions, i.e. propositional extensionality. This is a degenerate case of
univalence, where the proofs that the two maps form an isomorphism is trivially true due
to the above definition of equality of witnesses: they are all equal.

3.3 Functional Extensionality and natural transformations

A morphism between two 2-groupoids is a 2-functor, i.e. a function between objects of the
2-groupoids that transports higher Homs, subject to compatibility laws.

Class Functor T U (Hom : HomT T ) (Hom2 : HomT Hom) (Hom’ : HomT U ) (Hom2’ :
HomT Hom’ )
(Cat : Category Hom2 ) (Cat’ : Category Hom2’ ) (f : T æ U ) := {

map : ’ {x y}, Hom x y æ Hom’ (f x ) (f y) ;

map comp : ’ x y z (e:Hom x y) (e’ :Hom y z ), map (e’ ¶ e) ≥2 map e’ ¶ map e ;
map id : ’ x , map (identity x ) ≥2 identity (f x )

}.

Definition assoc’’ {T Hom Hom2 Category} {x y z w : T} {e e’ e’’}:=
assoc (Hom := Hom) (Hom2 := Hom2 ) (Category := Category) x y z w e e’ e’’ .

6 Univalence For Free, not yet

Definition Weak2 1CatType := {T :Type & Weak2 1Category T }.

Now, a weak 2-groupoid is just a 2-1 category where all 1-Homs are invertible and subject
to additional compatibility laws on the inversion.

Class Weak2Groupoid T := {

Weak2Groupoid Weak2 1Category :> Weak2 1Category T ;
Groupoid1 :> Groupoid Category1}.

Definition Weak2GroupoidType := {T :Type & Weak2Groupoid T }.

3.1.0.1 Notation.

We introduce the following notation that defines an application when the function is part of
a dependent sum.

Notation ”M @ N” := ([M ] N ) (at level 55).

3.2 Prop extensionality and proof irrelevance

Equality on proofs is irrelevant. What we mean by irrelevant is that the set of (iso-)Homs
between any two proofs of the same proposition is a singleton.

Definition Hom irr (T : Type) : HomT T := ⁄ , unit.

We define an instance IrrRelWeak2Groupoid T m for Weak2Groupoid T when m is an
equivalence and the second equality is relevant. We will use this instance to define 2-groupoid
degenerated at level 2, as for instance for Prop.

Class PropIrr (P :Prop) : Type :=
{ prop irr groupoid := IrrRelWeak2Groupoid (T :=P) (Hom := Hom irr P) }.

Program Definition Propositions := { P : Prop & PropIrr P }.

Equality between propositions of type Propositions is given by logical equivalence on
the underlying propositions, i.e. propositional extensionality. This is a degenerate case of
univalence, where the proofs that the two maps form an isomorphism is trivially true due
to the above definition of equality of witnesses: they are all equal.

Definition i↵’ : HomT Propositions := fun P Q ∆ [P ] ¡ [Q ].

Program Definition Prop : Weak2GroupoidType :=
(Propositions ; IrrRelWeak2Groupoid (Hom:=i↵’) ).

3.3 Functional Extensionality and natural transformations

A morphism between two 2-groupoids is a 2-functor, i.e. a function between objects of the
2-groupoids that transports higher Homs, subject to compatibility laws.

Class Functor T U (Hom : HomT T ) (Hom2: HomT Hom) (Hom’ : HomT U ) (Hom2’ :
HomT Hom’ )
(Cat : Category Hom2) (Cat’ : Category Hom2’ ) (f : T æ U ) := {

map : ’ {x y}, Hom x y æ Hom’ (f x ) (f y) ;

map comp : ’ x y z (e:Hom x y) (e’ :Hom y z ), map (e’ ¶ e) ≥2 map e’ ¶ map e ;
map id : ’ x , map (identity x ) ≥2 identity (f x )

The weak 2-groupoid of Props
Prop forms such a degenerated 2-groupoid, with 1-eq logical 
equivalence of propositions and irrelevant 2-eq representing 
equality of two proofs of the same proposition.
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Functions as 
weak 2-functors
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6 Univalence For Free, not yet

Definition Weak2 1CatType := {T :Type & Weak2 1Category T }.

Now, a weak 2-groupoid is just a 2-1 category where all 1-Homs are invertible and subject
to additional compatibility laws on the inversion.

Class Weak2Groupoid T := {

Weak2Groupoid Weak2 1Category :> Weak2 1Category T ;
Groupoid1 :> Groupoid Category1}.

Definition Weak2GroupoidType := {T :Type & Weak2Groupoid T }.

3.1.0.1 Notation.

We introduce the following notation that defines an application when the function is part of
a dependent sum.

Notation ”M @ N” := ([M ] N ) (at level 55).

3.2 Prop extensionality and proof irrelevance

Equality on proofs is irrelevant. What we mean by irrelevant is that the set of (iso-)Homs
between any two proofs of the same proposition is a singleton.

Definition Hom irr (T : Type) : HomT T := ⁄ , unit.

We define an instance IrrRelWeak2Groupoid T m for Weak2Groupoid T when m is an
equivalence and the second equality is relevant. We will use this instance to define 2-groupoid
degenerated at level 2, as for instance for Prop.

Class PropIrr (P :Prop) : Type :=
{ prop irr groupoid := IrrRelWeak2Groupoid (T :=P) (Hom := Hom irr P) }.

Program Definition Propositions := { P : Prop & PropIrr P }.

Equality between propositions of type Propositions is given by logical equivalence on
the underlying propositions, i.e. propositional extensionality. This is a degenerate case of
univalence, where the proofs that the two maps form an isomorphism is trivially true due
to the above definition of equality of witnesses: they are all equal.

3.3 Functional Extensionality and natural transformations

A morphism between two 2-groupoids is a 2-functor, i.e. a function between objects of the
2-groupoids that transports higher Homs, subject to compatibility laws.

Class Functor T U (Hom : HomT T ) (Hom2: HomT Hom) (Hom’ : HomT U ) (Hom2’ :
HomT Hom’ )
(Cat : Category Hom2) (Cat’ : Category Hom2’ ) (f : T æ U ) := {

map : ’ {x y}, Hom x y æ Hom’ (f x ) (f y) ;

map comp : ’ x y z (e:Hom x y) (e’ :Hom y z ), map (e’ ¶ e) ≥2 map e’ ¶ map e ;
map id : ’ x , map (identity x ) ≥2 identity (f x )

}.

Definition assoc’’ {T Hom Hom2 Category} {x y z w : T} {e e’ e’’}:=
assoc (Hom := Hom) (Hom2 := Hom2) (Category := Category) x y z w e e’ e’’ .

As for Category, the definition of Functor uses 2 HomTs.
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}.

Definition assoc’’ {T Hom Hom2 Category} {x y z w : T} {e e’ e’’}:=
assoc (Hom := Hom) (Hom2 := Hom2) (Category := Category) x y z w e e’ e’’ .

Class Weak2Functor {T U : Weak2GroupoidType} (f : [T ] æ [U ]) : Type :=
{

map1 :> Functor (eq pi3’ T ) (eq pi3’ U ) f ;
map2 :> ’ x y , Functor (eq pi2’ T x y) (eq pi2’ U (f x ) (f y)) (map f );
map3 : ’ (x y : [T ]) (e e’ : x ≥1 y) (E E’ : e ≥2 e’ ),

(E ≥3 E’ ) æ map (map f ) E ≥3 map (map f ) E’ ;

map2 id L : ’ (x y : [T ]) (e:x ≥1 y),
map (map f ) (id L’ e) ≥3
id L’ (map f e) ¶ (identity (map f e) ** map id f ) ¶ map comp f ;

map2 id R : ’ (x y : [T ]) (e:x ≥1 y),
map (map f ) (id R’ e) ≥3
id R’ (map f e) ¶ (map id f ** identity (map f e)) ¶ map comp f ;

map2 assoc : ’ (x y z w : [T ]) (e:x ≥1 y) (e’ :y ≥1 z ) (e’’ :z ≥1 w),
assoc’’ ¶ (identity ** map comp f e’ e’’ ) ¶ map comp f e (e’’ ¶ e’ ) ≥3
(map comp f ** identity ) ¶ map comp f (e’ ¶ e) e’’ ¶ map (map f ) assoc’’

}.

Definition Fun Type (T U : Weak2GroupoidType) :=
{f : [T ] æ [U ] & Weak2Functor f }.

Infix ”≠æ” := Fun Type (at level 55).

Note that we only impose compatibility with the composition as compatibilities with
identities and inverse Homs can be deduced from it.

Equivalence between functors is given by (iso-)natural transformations, which are actu-
ally equivalent to natural transformations for groupoids. We would like to insist here that
this naturality condition in the definition of functional extensionality is crucial in a higher
setting. It is usually omitted in formalizations of homotopy theory in Coq because there they
only consider the 1-groupoid case where the naturality becomes trivial, see for instance [3].

Definition inverse’ {T Hom} {Inverse:Inverse Hom} {x y : T} :=
inverse x y .

Class NaturalTransformation T U {f g : T ≠æ U } (– : ’ t : [T ], f ı t ≥1 g ı t) := {

– map : ’ {t t’} (e : t ≥1 t’ ), (– t’ ) ¶ (map [f ] e) ≥ (map [g ] e) ¶ (– t) ;
NatTrans comp : ’ t t’ t’’ (e : t ≥1 t’ ) (e’ : t’ ≥1 t’’ ),
(identity ** map comp [g ] e e’ ) ¶ – map (e’ ¶ e) ≥2
inverse’ (assoc’’) ¶ (– map e ** identity ) ¶ assoc’’ ¶
(identity ** – map e’ ) ¶ inverse’ (assoc’’) ¶
(map comp [f ] e e’ ** identity );

NatTrans id : ’ t ,
(identity ** map id [g ] t) ¶ – map (identity ) ≥2
inverse’ (id L’ ) ¶ id R’ ¶ (map id [f ] t ** identity )

Using our “open” definition of a Functor 
we can a weak 2-functor as a Functor at all levels...
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}.

Definition assoc’’ {T Hom Hom2 Category} {x y z w : T} {e e’ e’’}:=
assoc (Hom := Hom) (Hom2 := Hom2) (Category := Category) x y z w e e’ e’’ .

Class Weak2Functor {T U : Weak2GroupoidType} (f : [T ] æ [U ]) : Type :=
{

map1 :> Functor (eq pi3’ T ) (eq pi3’ U ) f ;
map2 :> ’ x y , Functor (eq pi2’ T x y) (eq pi2’ U (f x ) (f y)) (map f );
map3 : ’ (x y : [T ]) (e e’ : x ≥1 y) (E E’ : e ≥2 e’ ),

(E ≥3 E’ ) æ map (map f ) E ≥3 map (map f ) E’ ;

map2 id L : ’ (x y : [T ]) (e:x ≥1 y),
map (map f ) (id L’ e) ≥3
id L’ (map f e) ¶ (identity (map f e) ** map id f ) ¶ map comp f ;

map2 id R : ’ (x y : [T ]) (e:x ≥1 y),
map (map f ) (id R’ e) ≥3
id R’ (map f e) ¶ (map id f ** identity (map f e)) ¶ map comp f ;

map2 assoc : ’ (x y z w : [T ]) (e:x ≥1 y) (e’ :y ≥1 z ) (e’’ :z ≥1 w),
assoc’’ ¶ (identity ** map comp f e’ e’’ ) ¶ map comp f e (e’’ ¶ e’ ) ≥3
(map comp f ** identity ) ¶ map comp f (e’ ¶ e) e’’ ¶ map (map f ) assoc’’

}.

Definition Fun Type (T U : Weak2GroupoidType) :=
{f : [T ] æ [U ] & Weak2Functor f }.

Infix ”≠æ” := Fun Type (at level 55).

Note that we only impose compatibility with the composition as compatibilities with
identities and inverse Homs can be deduced from it.

Equivalence between functors is given by (iso-)natural transformations, which are actu-
ally equivalent to natural transformations for groupoids. We would like to insist here that
this naturality condition in the definition of functional extensionality is crucial in a higher
setting. It is usually omitted in formalizations of homotopy theory in Coq because there they
only consider the 1-groupoid case where the naturality becomes trivial, see for instance [3].

Definition inverse’ {T Hom} {Inverse:Inverse Hom} {x y : T} :=
inverse x y .

Class NaturalTransformation T U {f g : T ≠æ U } (– : ’ t : [T ], f ı t ≥1 g ı t) := {

– map : ’ {t t’} (e : t ≥1 t’ ), (– t’ ) ¶ (map [f ] e) ≥ (map [g ] e) ¶ (– t) ;
NatTrans comp : ’ t t’ t’’ (e : t ≥1 t’ ) (e’ : t’ ≥1 t’’ ),
(identity ** map comp [g ] e e’ ) ¶ – map (e’ ¶ e) ≥2
inverse’ (assoc’’) ¶ (– map e ** identity ) ¶ assoc’’ ¶
(identity ** – map e’ ) ¶ inverse’ (assoc’’) ¶
(map comp [f ] e e’ ** identity );

NatTrans id : ’ t ,
(identity ** map id [g ] t) ¶ – map (identity ) ≥2
inverse’ (id L’ ) ¶ id R’ ¶ (map id [f ] t ** identity )
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satisfaisant les axiomes de la Figure 3.2.

Lorsque les deux V-transformations naturelles sont des isomorphismes, on parle de
V-foncteur fort. On représente les deux V-transformations naturelles F̃2 et F̃0 par les
diagrammes de cordes suivants

F

F
F̃2≠≠æ F F̃0≠≠æ F

Encore une fois, ils permettent d’exprimer les lois de cohérence par les petits films de la
Figure 3.2.
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=
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Fig. 3.2 – Lois de cohérence pour les V-foncteurs relâchés

Remarque 3.11 (monade et foncteur relâché)
À la Section 1.2.3, nous avons défini la notion de monade dans une 2-catégorie. Cette
notion peut être étendue à une bicatégorie. On s’aperçoit alors qu’un foncteur relâché de
1æ B est la même chose qu’une monade dans B.

Définition 3.12 (transformation naturelle relâchée enrichie)
Une transformation naturelle relâchée enrichie sur V (V-transformation naturelle relâ-
chée) ◊ : F æ G : B ≠æ C entre deux V-foncteurs relâchés enrichis est la donnée :

– d’une famille de morphismes ◊A : 1æ B1(FA,GA) ;
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}.

Definition assoc’’ {T Hom Hom2 Category} {x y z w : T} {e e’ e’’}:=
assoc (Hom := Hom) (Hom2 := Hom2) (Category := Category) x y z w e e’ e’’ .

Class Weak2Functor {T U : Weak2GroupoidType} (f : [T ] æ [U ]) : Type :=
{

map1 :> Functor (eq pi3’ T ) (eq pi3’ U ) f ;
map2 :> ’ x y , Functor (eq pi2’ T x y) (eq pi2’ U (f x ) (f y)) (map f );
map3 : ’ (x y : [T ]) (e e’ : x ≥1 y) (E E’ : e ≥2 e’ ),

(E ≥3 E’ ) æ map (map f ) E ≥3 map (map f ) E’ ;

map2 id L : ’ (x y : [T ]) (e:x ≥1 y),
map (map f ) (id L’ e) ≥3
id L’ (map f e) ¶ (identity (map f e) ** map id f ) ¶ map comp f ;

map2 id R : ’ (x y : [T ]) (e:x ≥1 y),
map (map f ) (id R’ e) ≥3
id R’ (map f e) ¶ (map id f ** identity (map f e)) ¶ map comp f ;

map2 assoc : ’ (x y z w : [T ]) (e:x ≥1 y) (e’ :y ≥1 z ) (e’’ :z ≥1 w),
assoc’’ ¶ (identity ** map comp f e’ e’’ ) ¶ map comp f e (e’’ ¶ e’ ) ≥3
(map comp f ** identity ) ¶ map comp f (e’ ¶ e) e’’ ¶ map (map f ) assoc’’

}.

Definition Fun Type (T U : Weak2GroupoidType) :=
{f : [T ] æ [U ] & Weak2Functor f }.

Infix ”≠æ” := Fun Type (at level 55).

Note that we only impose compatibility with the composition as compatibilities with
identities and inverse Homs can be deduced from it.

Equivalence between functors is given by (iso-)natural transformations, which are actu-
ally equivalent to natural transformations for groupoids. We would like to insist here that
this naturality condition in the definition of functional extensionality is crucial in a higher
setting. It is usually omitted in formalizations of homotopy theory in Coq because there they
only consider the 1-groupoid case where the naturality becomes trivial, see for instance [3].

Definition inverse’ {T Hom} {Inverse:Inverse Hom} {x y : T} :=
inverse x y .

Class NaturalTransformation T U {f g : T ≠æ U } (– : ’ t : [T ], f ı t ≥1 g ı t) := {

– map : ’ {t t’} (e : t ≥1 t’ ), (– t’ ) ¶ (map [f ] e) ≥ (map [g ] e) ¶ (– t) ;
NatTrans comp : ’ t t’ t’’ (e : t ≥1 t’ ) (e’ : t’ ≥1 t’’ ),
(identity ** map comp [g ] e e’ ) ¶ – map (e’ ¶ e) ≥2
inverse’ (assoc’’) ¶ (– map e ** identity ) ¶ assoc’’ ¶
(identity ** – map e’ ) ¶ inverse’ (assoc’’) ¶
(map comp [f ] e e’ ** identity );

NatTrans id : ’ t ,
(identity ** map id [g ] t) ¶ – map (identity ) ≥2
inverse’ (id L’ ) ¶ id R’ ¶ (map id [f ] t ** identity )
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Definition nat trans T U (f g : T ≠æ U ) :=
{– : ’ t : [T ], f ı t ≥1 g ı t & NaturalTransformation –}.

Instance nat pi T U (f g : T ≠æ U ) (–:nat trans f g) : NaturalTransformation [–] := fi2
–.

Instance nat transHom T U : HomT1 (T ≠æ U ) := {eq1 := nat trans (T :=T ) (U :=U )}.

Class Modification T U {f g : T ≠æ U } {– — : nat trans f g}

(‰ : ’ {t}, – ı t ≥ — ı t) := {

‰ map : ’ {t t’} (e : t ≥1 t’ ),
– map e ¶ (identity ** ‰) ≥3
(‰ ** identity ) ¶ – map e

}.

Definition modification T U (f g : T ≠æ U ) (– — : nat trans f g) :=
{‰ : ’ t : [T ], – ı t ≥ — ı t & Modification ‰}.

Instance mod pi T U (f g : T ≠æ U ) (– —:nat trans f g) (‰ : modification – —):
Modification [‰] := fi2 ‰.

Instance modificationHom T U : HomT eq1 := {eq := modification (T :=T ) (U :=U )}.

We can now equip the function space with its 2-groupoid structure. Note here that we
(abusively) use the same notation for the functor type and its corresponding 2-groupoid.

Program Definition fun T U : Weak2GroupoidType := (T ≠æ U ; ).

Infix ”≠æ” := fun.

In the definition above, is instantiated by a proof that nat trans and modification form
a 2-groupoid on T ≠æ U .

3.4 Homotopic equivalences

The standard notion of equivalence between 2-groupoids is given by adjoint equivalences,
that is a map with its adjoint, two proofs that they form a section (or counit of the ad-
junction) and a retraction (or unit of the adjunction). Additionally, two triangle identities
between sections and retractions are required. This allows to eliminate a section against a
retraction in many proofs of naturality in our formalization.

Class Equiv struct T U (f : [T ≠æ U ]) := {

adjoint : [U ≠æ T ] ;
section : f ¶ adjoint ≥1 identity U ;
retraction : identity T ≥1 adjoint ¶ f ;
triangle : ’ t , (section ı ) ¶ map (retraction ı t) ≥ identity ;
triangle’ : ’ u, map (section ı u) ¶ (retraction ı ) ≥ identity }.

Definition Equiv A B := {f : A ≠æ B & Equiv struct f }.

2-groupoids and homotopic equivalences between them form a 3-groupoid. Equality
of homotopic equivalences is given by equivalence of adjunctions. As we only consider 2-
groupoids, the fact that 2-groupoids form a 3-groupoid is not explicit in the formalism in the
sense that we miss the last level of equality. We will see in the next sections that it will cause
some problems in the equality that can derived on homotopic rewriting, with repercussion
in the definition of dependent products and dependent sums.

Equality between weak 2 functor is given by natural 
transformations

6 Univalence For Free, not yet

Definition Weak2 1CatType := {T :Type & Weak2 1Category T }.

Now, a weak 2-groupoid is just a 2-1 category where all 1-Homs are invertible and subject
to additional compatibility laws on the inversion.

Class Weak2Groupoid T := {

Weak2Groupoid Weak2 1Category :> Weak2 1Category T ;
Groupoid1 :> Groupoid Category1}.

Definition Weak2GroupoidType := {T :Type & Weak2Groupoid T }.

3.1.0.1 Notation.

We introduce the following notation that defines an application when the function is part of
a dependent sum.

Notation ”M ı N” := ([M ] N ) (at level 55).

3.2 Prop extensionality and proof irrelevance

Equality on proofs is irrelevant. What we mean by irrelevant is that the set of (iso-)Homs
between any two proofs of the same proposition is a singleton.

Definition Hom irr (T : Type) : HomT T := ⁄ , unit.

We define an instance IrrRelWeak2Groupoid T m for Weak2Groupoid T when m is an
equivalence and the second equality is relevant. We will use this instance to define 2-groupoid
degenerated at level 2, as for instance for Prop.

Class PropIrr (P :Prop) : Type :=
{ prop irr groupoid := IrrRelWeak2Groupoid (T :=P) (Hom := Hom irr P) }.

Program Definition Propositions := { P : Prop & PropIrr P }.

Equality between propositions of type Propositions is given by logical equivalence on
the underlying propositions, i.e. propositional extensionality. This is a degenerate case of
univalence, where the proofs that the two maps form an isomorphism is trivially true due
to the above definition of equality of witnesses: they are all equal.

Definition i↵’ : HomT Propositions := fun P Q ∆ [P ] ¡ [Q ].

Program Definition Prop : Weak2GroupoidType :=
(Propositions ; IrrRelWeak2Groupoid (Hom:=i↵’) ).

3.3 Functional Extensionality and natural transformations

A morphism between two 2-groupoids is a 2-functor, i.e. a function between objects of the
2-groupoids that transports higher Homs, subject to compatibility laws.

Class Functor T U (Hom : HomT T ) (Hom2: HomT Hom) (Hom’ : HomT U ) (Hom2’ :
HomT Hom’ )
(Cat : Category Hom2) (Cat’ : Category Hom2’ ) (f : T æ U ) := {

map : ’ {x y}, Hom x y æ Hom’ (f x ) (f y) ;

map comp : ’ x y z (e:Hom x y) (e’ :Hom y z ), map (e’ ¶ e) ≥2 map e’ ¶ map e ;
map id : ’ x , map (identity x ) ≥2 identity (f x )
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}.

Definition assoc’’ {T Hom Hom2 Category} {x y z w : T} {e e’ e’’}:=
assoc (Hom := Hom) (Hom2 := Hom2) (Category := Category) x y z w e e’ e’’ .

Class Weak2Functor {T U : Weak2GroupoidType} (f : [T ] æ [U ]) : Type :=
{

map1 :> Functor (eq pi3’ T ) (eq pi3’ U ) f ;
map2 :> ’ x y , Functor (eq pi2’ T x y) (eq pi2’ U (f x ) (f y)) (map f );
map3 : ’ (x y : [T ]) (e e’ : x ≥1 y) (E E’ : e ≥2 e’ ),

(E ≥3 E’ ) æ map (map f ) E ≥3 map (map f ) E’ ;

map2 id L : ’ (x y : [T ]) (e:x ≥1 y),
map (map f ) (id L’ e) ≥3
id L’ (map f e) ¶ (identity (map f e) ** map id f ) ¶ map comp f ;

map2 id R : ’ (x y : [T ]) (e:x ≥1 y),
map (map f ) (id R’ e) ≥3
id R’ (map f e) ¶ (map id f ** identity (map f e)) ¶ map comp f ;

map2 assoc : ’ (x y z w : [T ]) (e:x ≥1 y) (e’ :y ≥1 z ) (e’’ :z ≥1 w),
assoc’’ ¶ (identity ** map comp f e’ e’’ ) ¶ map comp f e (e’’ ¶ e’ ) ≥3
(map comp f ** identity ) ¶ map comp f (e’ ¶ e) e’’ ¶ map (map f ) assoc’’

}.

Definition Fun Type (T U : Weak2GroupoidType) :=
{f : [T ] æ [U ] & Weak2Functor f }.

Infix ”≠æ” := Fun Type (at level 55).

Note that we only impose compatibility with the composition as compatibilities with
identities and inverse Homs can be deduced from it.

Equivalence between functors is given by (iso-)natural transformations, which are actu-
ally equivalent to natural transformations for groupoids. We would like to insist here that
this naturality condition in the definition of functional extensionality is crucial in a higher
setting. It is usually omitted in formalizations of homotopy theory in Coq because there they
only consider the 1-groupoid case where the naturality becomes trivial, see for instance [3].

Definition inverse’ {T Hom} {Inverse:Inverse Hom} {x y : T} :=
inverse x y .

Class NaturalTransformation T U {f g : T ≠æ U } (– : ’ t : [T ], f ı t ≥1 g ı t) := {

– map : ’ {t t’} (e : t ≥1 t’ ), (– t’ ) ¶ (map [f ] e) ≥ (map [g ] e) ¶ (– t) ;
NatTrans comp : ’ t t’ t’’ (e : t ≥1 t’ ) (e’ : t’ ≥1 t’’ ),
(identity ** map comp [g ] e e’ ) ¶ – map (e’ ¶ e) ≥2
inverse’ (assoc’’) ¶ (– map e ** identity ) ¶ assoc’’ ¶
(identity ** – map e’ ) ¶ inverse’ (assoc’’) ¶
(map comp [f ] e e’ ** identity );

NatTrans id : ’ t ,
(identity ** map id [g ] t) ¶ – map (identity ) ≥2
inverse’ (id L’ ) ¶ id R’ ¶ (map id [f ] t ** identity )
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Fig. 3.3 – Lois de cohérence pour les transformations naturelles
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}.

Definition nat trans T U (f g : T ≠æ U ) :=
{– : ’ t : [T ], f ı t ≥1 g ı t & NaturalTransformation –}.

Instance nat pi T U (f g : T ≠æ U ) (–:nat trans f g) : NaturalTransformation [–] := fi2
–.

Instance nat transHom T U : HomT1 (T ≠æ U ) := {eq1 := nat trans (T :=T ) (U :=U )}.

Class Modification T U {f g : T ≠æ U } {– — : nat trans f g}

(‰ : ’ {t}, – ı t ≥ — ı t) := {

‰ map : ’ {t t’} (e : t ≥1 t’ ),
– map e ¶ (identity ** ‰) ≥3
(‰ ** identity ) ¶ – map e

}.

Definition modification T U (f g : T ≠æ U ) (– — : nat trans f g) :=
{‰ : ’ t : [T ], – ı t ≥ — ı t & Modification ‰}.

Instance mod pi T U (f g : T ≠æ U ) (– —:nat trans f g) (‰ : modification – —):
Modification [‰] := fi2 ‰.

Instance modificationHom T U : HomT eq1 := {eq := modification (T :=T ) (U :=U )}.

We can now equip the function space with its 2-groupoid structure. Note here that we
(abusively) use the same notation for the functor type and its corresponding 2-groupoid.

Program Definition fun T U : Weak2GroupoidType := (T ≠æ U ; ).

Infix ”≠æ” := fun.

In the definition above, is instantiated by a proof that nat trans and modification form
a 2-groupoid on T ≠æ U .

3.4 Homotopic equivalences

The standard notion of equivalence between 2-groupoids is given by adjoint equivalences,
that is a map with its adjoint, two proofs that they form a section (or counit of the ad-
junction) and a retraction (or unit of the adjunction). Additionally, two triangle identities
between sections and retractions are required. This allows to eliminate a section against a
retraction in many proofs of naturality in our formalization.

Class Equiv struct T U (f : [T ≠æ U ]) := {

adjoint : [U ≠æ T ] ;
section : f ¶ adjoint ≥1 identity U ;
retraction : identity T ≥1 adjoint ¶ f ;
triangle : ’ t , (section ı ) ¶ map (retraction ı t) ≥ identity ;
triangle’ : ’ u, map (section ı u) ¶ (retraction ı ) ≥ identity }.

Definition Equiv A B := {f : A ≠æ B & Equiv struct f }.

2-groupoids and homotopic equivalences between them form a 3-groupoid. Equality
of homotopic equivalences is given by equivalence of adjunctions. As we only consider 2-
groupoids, the fact that 2-groupoids form a 3-groupoid is not explicit in the formalism in the
sense that we miss the last level of equality. We will see in the next sections that it will cause
some problems in the equality that can derived on homotopic rewriting, with repercussion
in the definition of dependent products and dependent sums.

Equality between natural transformations is given by 
modifications
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}.

Definition nat trans T U (f g : T ≠æ U ) :=
{– : ’ t : [T ], f ı t ≥1 g ı t & NaturalTransformation –}.

Instance nat pi T U (f g : T ≠æ U ) (–:nat trans f g) : NaturalTransformation [–] := fi2
–.

Instance nat transHom T U : HomT1 (T ≠æ U ) := {eq1 := nat trans (T :=T ) (U :=U )}.

Class Modification T U {f g : T ≠æ U } {– — : nat trans f g}

(‰ : ’ {t}, – ı t ≥ — ı t) := {

‰ map : ’ {t t’} (e : t ≥1 t’ ),
– map e ¶ (identity ** ‰) ≥3
(‰ ** identity ) ¶ – map e

}.

Definition modification T U (f g : T ≠æ U ) (– — : nat trans f g) :=
{‰ : ’ t : [T ], – ı t ≥ — ı t & Modification ‰}.

Instance mod pi T U (f g : T ≠æ U ) (– —:nat trans f g) (‰ : modification – —):
Modification [‰] := fi2 ‰.

Instance modificationHom T U : HomT eq1 := {eq := modification (T :=T ) (U :=U )}.

We can now equip the function space with its 2-groupoid structure. Note here that we
(abusively) use the same notation for the functor type and its corresponding 2-groupoid.

Program Definition fun T U : Weak2GroupoidType := (T ≠æ U ; ).

Infix ”≠æ” := fun.

In the definition above, is instantiated by a proof that nat trans and modification form
a 2-groupoid on T ≠æ U .

3.4 Homotopic equivalences

The standard notion of equivalence between 2-groupoids is given by adjoint equivalences,
that is a map with its adjoint, two proofs that they form a section (or counit of the ad-
junction) and a retraction (or unit of the adjunction). Additionally, two triangle identities
between sections and retractions are required. This allows to eliminate a section against a
retraction in many proofs of naturality in our formalization.

Class Equiv struct T U (f : [T ≠æ U ]) := {

adjoint : [U ≠æ T ] ;
section : f ¶ adjoint ≥1 identity U ;
retraction : identity T ≥1 adjoint ¶ f ;
triangle : ’ t , (section ı ) ¶ map (retraction ı t) ≥ identity ;
triangle’ : ’ u, map (section ı u) ¶ (retraction ı ) ≥ identity }.

Definition Equiv A B := {f : A ≠æ B & Equiv struct f }.

2-groupoids and homotopic equivalences between them form a 3-groupoid. Equality
of homotopic equivalences is given by equivalence of adjunctions. As we only consider 2-
groupoids, the fact that 2-groupoids form a 3-groupoid is not explicit in the formalism in the
sense that we miss the last level of equality. We will see in the next sections that it will cause
some problems in the equality that can derived on homotopic rewriting, with repercussion
in the definition of dependent products and dependent sums.
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96 Algèbre libre d’une T -théorie enrichie
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Fig. 3.4 – Lois de cohérence pour les modifications

– d’une V-transformation naturelle forte ÷ : 1æ T ;
– d’une V-modification inversible
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qui satisfont les deux axiomes de cohérence suivant :
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Remarquons que contrairement à ce qu’on peut trouver dans la littérature sur les
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We can form a weak 2-1 category whose:

• objects are types with a weak-2-groupoid structure
• 1-cells are weak 2-functors
• 2-cells are natural transformation
• 3-cells are modications
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Equality on Types
vs

Homotopic Equivalence
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Equivalence of weak 2-groupoids is homotopic equivalence: 

• a map with its adjoint

• 2 proofs that they form a section and a retraction 

• 2 triangle identities relating section and retraction.
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}.

Definition nat trans T U (f g : T ≠æ U ) :=
{– : ’ t : [T ], f ı t ≥1 g ı t & NaturalTransformation –}.

Instance nat pi T U (f g : T ≠æ U ) (–:nat trans f g) : NaturalTransformation [–] := fi2
–.

Instance nat transHom T U : HomT1 (T ≠æ U ) := {eq1 := nat trans (T :=T ) (U :=U )}.

Class Modification T U {f g : T ≠æ U } {– — : nat trans f g}

(‰ : ’ {t}, – ı t ≥ — ı t) := {

‰ map : ’ {t t’} (e : t ≥1 t’ ),
– map e ¶ (identity ** ‰) ≥3
(‰ ** identity ) ¶ – map e

}.

Definition modification T U (f g : T ≠æ U ) (– — : nat trans f g) :=
{‰ : ’ t : [T ], – ı t ≥ — ı t & Modification ‰}.

Instance mod pi T U (f g : T ≠æ U ) (– —:nat trans f g) (‰ : modification – —):
Modification [‰] := fi2 ‰.

Instance modificationHom T U : HomT eq1 := {eq := modification (T :=T ) (U :=U )}.

We can now equip the function space with its 2-groupoid structure. Note here that we
(abusively) use the same notation for the functor type and its corresponding 2-groupoid.

Program Definition fun T U : Weak2GroupoidType := (T ≠æ U ; ).

Infix ”≠æ” := fun.

In the definition above, is instantiated by a proof that nat trans and modification form
a 2-groupoid on T ≠æ U .

3.4 Homotopic equivalences

The standard notion of equivalence between 2-groupoids is given by adjoint equivalences,
that is a map with its adjoint, two proofs that they form a section (or counit of the ad-
junction) and a retraction (or unit of the adjunction). Additionally, two triangle identities
between sections and retractions are required. This allows to eliminate a section against a
retraction in many proofs of naturality in our formalization.

Class Equiv struct T U (f : [T ≠æ U ]) := {

adjoint : [U ≠æ T ] ;
section : f ¶ adjoint ≥1 identity U ;
retraction : identity T ≥1 adjoint ¶ f ;
triangle : ’ t , (section ı ) ¶ map (retraction ı t) ≥ identity ;
triangle’ : ’ u, map (section ı u) ¶ (retraction ı ) ≥ identity }.

Definition Equiv A B := {f : A ≠æ B & Equiv struct f }.

2-groupoids and homotopic equivalences between them form a 3-groupoid. Equality
of homotopic equivalences is given by equivalence of adjunctions. As we only consider 2-
groupoids, the fact that 2-groupoids form a 3-groupoid is not explicit in the formalism in the
sense that we miss the last level of equality. We will see in the next sections that it will cause
some problems in the equality that can derived on homotopic rewriting, with repercussion
in the definition of dependent products and dependent sums.
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Two adjunctions are equivalent if their left adjoint are 
equivalent and they agree on their section and 
retraction (the right adjoints always agree then)

M. Sozeau and N. Tabareau 9

Two adjunctions are equivalent if their left adjoint are equivalent and they agree on their
section and retraction (up-to the isomorphism). Note that equivalence of the right adjoint
can be deduced using Equiv adjoint and so is not part of the definition.

Definition Equiv adjoint A B (f f ’ : Equiv A B) :
[f ] ≥1 [f ’ ] æ adjoint [f ] ≥1 adjoint [f ’ ].

Record Equiv eq T U (f g : T <˜> U ) : Type :=
{equiv :> nat trans [f ] [g ] ;
eq section : ’ u,

section [f ] ı u ≥
section [g ] ¶ (nat comp’ (Equiv adjoint equiv) equiv) ı u;

eq retraction : ’ t ,
(nat comp’ equiv (Equiv adjoint equiv)) ¶ retraction [f ] ı t ≥
retraction [g ] ı t

}.

In the definition below, is instantiated by a proof that Equiv and Equiv eq form a
2-groupoid.

Program Definition Type : Weak2GroupoidType := (Weak2GroupoidType ; ).

3.5 Rewriting in homotopy type theory

When considering a dependent type F : [A ≠æ Type], the map function provides an ho-
motopic equivalence between F ı x and F ı y for any x and y such that x ≥1 y . But the
underlying map of homotopic equivalence can be use to rewrite any term of type [F ı x ] to
a term of type [F ı y ].

Definition eq rect’ (A : [ Type]) (x : [A]) (F : [A ≠æ Type]) (y : [A])
(e : x ≥1 y) := [map [F ] e] : (F ı x ) ≠æ (F ı y).

In the same way, a dependent type F : [A ≠æ Prop] gives a way to transform any proof
of [F ı x ] to a proof of [F ı y ].

Definition eq ind’ (A : [ Type]) (x : [A]) (F : [A ≠æ Prop]) (y : [A])
(e : x ≥1 y) : [F ı x ] æ [F ı y ] := let (l ,r) := (map [F ] e : i↵’ (F ı x ) (F ı y)) in l .

Using compatibility on map, we can reason on di↵erent ways of rewriting. Intuitively, any
two rewriting maps with the same domain and codomain should be the same up to homotopy.
But as we only consider 2-groupoids, we are missing higher-order compatibilities. Here is
an example of two derivable equalities between two rewriting maps.

Definition eq rect’ eq (A : [ Type]) (x : [A]) (F : [A ≠æ Type])
(y : [A]) (e e’ : x ≥1 y) (H : e ≥ e’ ) : eq rect’ x F y e ≥1 eq rect’ x F y e’ :=
equiv (map (Functor := map2 (Weak2Functor := fi2 F ) x y) (map [F ]) H ).

Definition eq rect’ map (A : [ Type]) (x : [A]) (F : [A ≠æ Type])
(p q : [F ı x ]) (y : [A]) (e : x ≥1 y) (H : p ≥1 q) :
(eq rect’ x F y e) ı p ≥1 (eq rect’ x F y e) ı q := map [[map [F ] e]] H .

Definition eq rect’ comp (A : [ Type]) (x y z : [A]) (F : [A ≠æ Type])
(e : x ≥1 y) (e’ : y ≥1 z ) :
eq rect’ x F z (e’ ¶ e) ≥1 eq rect’ y F z e’ ¶ eq rect’ x F y e :=
(equiv (map comp [F ] e e’ )).

Definition eq rect’ eq comp (T :[ Type]) (U : [T ≠æ Type])
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Two adjunctions are equivalent if their left adjoint are equivalent and they agree on their
section and retraction (up-to the isomorphism). Note that equivalence of the right adjoint
can be deduced using Equiv adjoint and so is not part of the definition.

Definition Equiv adjoint A B (f f ’ : Equiv A B) :
[f ] ≥1 [f ’ ] æ adjoint [f ] ≥1 adjoint [f ’ ].

Record Equiv eq T U (f g : T <˜> U ) : Type :=
{equiv :> nat trans [f ] [g ] ;
eq section : ’ u,

section [f ] ı u ≥
section [g ] ¶ (nat comp’ (Equiv adjoint equiv) equiv) ı u;

eq retraction : ’ t ,
(nat comp’ equiv (Equiv adjoint equiv)) ¶ retraction [f ] ı t ≥
retraction [g ] ı t

}.

In the definition below, is instantiated by a proof that Equiv and Equiv eq form a
2-groupoid.

Program Definition Type : Weak2GroupoidType := (Weak2GroupoidType ; ).

3.5 Rewriting in homotopy type theory

When considering a dependent type F : [A ≠æ Type], the map function provides an ho-
motopic equivalence between F ı x and F ı y for any x and y such that x ≥1 y . But the
underlying map of homotopic equivalence can be use to rewrite any term of type [F ı x ] to
a term of type [F ı y ].

Definition eq rect’ (A : [ Type]) (x : [A]) (F : [A ≠æ Type]) (y : [A])
(e : x ≥1 y) := [map [F ] e] : (F ı x ) ≠æ (F ı y).

In the same way, a dependent type F : [A ≠æ Prop] gives a way to transform any proof
of [F ı x ] to a proof of [F ı y ].

Definition eq ind’ (A : [ Type]) (x : [A]) (F : [A ≠æ Prop]) (y : [A])
(e : x ≥1 y) : [F ı x ] æ [F ı y ] := let (l ,r) := (map [F ] e : i↵’ (F ı x ) (F ı y)) in l .

Using compatibility on map, we can reason on di↵erent ways of rewriting. Intuitively, any
two rewriting maps with the same domain and codomain should be the same up to homotopy.
But as we only consider 2-groupoids, we are missing higher-order compatibilities. Here is
an example of two derivable equalities between two rewriting maps.

Definition eq rect’ eq (A : [ Type]) (x : [A]) (F : [A ≠æ Type])
(y : [A]) (e e’ : x ≥1 y) (H : e ≥ e’ ) : eq rect’ x F y e ≥1 eq rect’ x F y e’ :=
equiv (map (Functor := map2 (Weak2Functor := fi2 F ) x y) (map [F ]) H ).

Definition eq rect’ map (A : [ Type]) (x : [A]) (F : [A ≠æ Type])
(p q : [F ı x ]) (y : [A]) (e : x ≥1 y) (H : p ≥1 q) :
(eq rect’ x F y e) ı p ≥1 (eq rect’ x F y e) ı q := map [[map [F ] e]] H .

Definition eq rect’ comp (A : [ Type]) (x y z : [A]) (F : [A ≠æ Type])
(e : x ≥1 y) (e’ : y ≥1 z ) :
eq rect’ x F z (e’ ¶ e) ≥1 eq rect’ y F z e’ ¶ eq rect’ x F y e :=
(equiv (map comp [F ] e e’ )).

Definition eq rect’ eq comp (T :[ Type]) (U : [T ≠æ Type])

M. Sozeau and N. Tabareau 9

Two adjunctions are equivalent if their left adjoint are equivalent and they agree on their
section and retraction (up-to the isomorphism). Note that equivalence of the right adjoint
can be deduced using Equiv adjoint and so is not part of the definition.

Definition Equiv adjoint A B (f f ’ : Equiv A B) :
[f ] ≥1 [f ’ ] æ adjoint [f ] ≥1 adjoint [f ’ ].

Record Equiv eq T U (f g : T <˜> U ) : Type :=
{equiv :> nat trans [f ] [g ] ;
eq section : ’ u,

section [f ] ı u ≥
section [g ] ¶ (nat comp’ (Equiv adjoint equiv) equiv) ı u;

eq retraction : ’ t ,
(nat comp’ equiv (Equiv adjoint equiv)) ¶ retraction [f ] ı t ≥
retraction [g ] ı t

}.

In the definition below, is instantiated by a proof that Equiv and Equiv eq form a
2-groupoid.

Program Definition Type : Weak2GroupoidType := (Weak2GroupoidType ; ).

3.5 Rewriting in homotopy type theory

When considering a dependent type F : [A ≠æ Type], the map function provides an ho-
motopic equivalence between F ı x and F ı y for any x and y such that x ≥1 y . But the
underlying map of homotopic equivalence can be use to rewrite any term of type [F ı x ] to
a term of type [F ı y ].

Definition eq rect’ (A : [ Type]) (x : [A]) (F : [A ≠æ Type]) (y : [A])
(e : x ≥1 y) := [map [F ] e] : (F ı x ) ≠æ (F ı y).

In the same way, a dependent type F : [A ≠æ Prop] gives a way to transform any proof
of [F ı x ] to a proof of [F ı y ].

Definition eq ind’ (A : [ Type]) (x : [A]) (F : [A ≠æ Prop]) (y : [A])
(e : x ≥1 y) : [F ı x ] æ [F ı y ] := let (l ,r) := (map [F ] e : i↵’ (F ı x ) (F ı y)) in l .

Using compatibility on map, we can reason on di↵erent ways of rewriting. Intuitively, any
two rewriting maps with the same domain and codomain should be the same up to homotopy.
But as we only consider 2-groupoids, we are missing higher-order compatibilities. Here is
an example of two derivable equalities between two rewriting maps.

Definition eq rect’ eq (A : [ Type]) (x : [A]) (F : [A ≠æ Type])
(y : [A]) (e e’ : x ≥1 y) (H : e ≥ e’ ) : eq rect’ x F y e ≥1 eq rect’ x F y e’ :=
equiv (map (Functor := map2 (Weak2Functor := fi2 F ) x y) (map [F ]) H ).

Definition eq rect’ map (A : [ Type]) (x : [A]) (F : [A ≠æ Type])
(p q : [F ı x ]) (y : [A]) (e : x ≥1 y) (H : p ≥1 q) :
(eq rect’ x F y e) ı p ≥1 (eq rect’ x F y e) ı q := map [[map [F ] e]] H .

Definition eq rect’ comp (A : [ Type]) (x y z : [A]) (F : [A ≠æ Type])
(e : x ≥1 y) (e’ : y ≥1 z ) :
eq rect’ x F z (e’ ¶ e) ≥1 eq rect’ y F z e’ ¶ eq rect’ x F y e :=
(equiv (map comp [F ] e e’ )).

Definition eq rect’ eq comp (T :[ Type]) (U : [T ≠æ Type])

_Type is a weak 2-groupoid whose:

• objects are types with a weak-2-groupoid structure
• 1-equivalences are homotopic equivalences
• 2-equivalences are adjoint equivalences
• 3-equivalences are modifications
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Note that Weak2GroupoidType is used at 
two different universe levels here.

Note also that _Type is a weak 3-groupoid, but it 
cannot be expressed in our formalism.
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Rewriting 
in 

Homotopy Type Theory
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Rewriting in homotopy type theory

The map function on F : [A �! Type] gives an (homotopic)
equivalence F ? x ⇠2 F ? y if x ⇠1 y .
This means we can rewrite [F ? x ] into [F ? y ] using the function
part of the equivalence.

Definition eq rect {A : [ Type]} {x : [A]}
{F : [A �! Type]} {y : [A]}
(e : x ⇠1 y) (p : [F ? x]) : [F ? y] :=
[map [F] e] ? p.

Matthieu Sozeau - Univalence for Free 27
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Two adjunctions are equivalent if their left adjoint are equivalent and they agree on their
section and retraction (up-to the isomorphism). Note that equivalence of the right adjoint
can be deduced using Equiv adjoint and so is not part of the definition.

Definition Equiv adjoint A B (f f ’ : Equiv A B) :
[f ] ≥1 [f ’ ] æ adjoint [f ] ≥1 adjoint [f ’ ].

Record Equiv eq T U (f g : T <˜> U ) : Type :=
{equiv :> nat trans [f ] [g ] ;
eq section : ’ u,

section [f ] ı u ≥
section [g ] ¶ (nat comp’ (Equiv adjoint equiv) equiv) ı u;

eq retraction : ’ t ,
(nat comp’ equiv (Equiv adjoint equiv)) ¶ retraction [f ] ı t ≥
retraction [g ] ı t

}.

In the definition below, is instantiated by a proof that Equiv and Equiv eq form a
2-groupoid.

Program Definition Type : Weak2GroupoidType := (Weak2GroupoidType ; ).

3.5 Rewriting in homotopy type theory

When considering a dependent type F : [A ≠æ Type], the map function provides an ho-
motopic equivalence between F ı x and F ı y for any x and y such that x ≥1 y . But the
underlying map of homotopic equivalence can be use to rewrite any term of type [F ı x ] to
a term of type [F ı y ].

Definition eq rect’ (A : [ Type]) (x : [A]) (F : [A ≠æ Type]) (y : [A])
(e : x ≥1 y) := [map [F ] e] : (F ı x ) ≠æ (F ı y).

In the same way, a dependent type F : [A ≠æ Prop] gives a way to transform any proof
of [F ı x ] to a proof of [F ı y ].

Definition eq ind’ (A : [ Type]) (x : [A]) (F : [A ≠æ Prop]) (y : [A])
(e : x ≥1 y) : [F ı x ] æ [F ı y ] := let (l ,r) := (map [F ] e : i↵’ (F ı x ) (F ı y)) in l .

Using compatibility on map, we can reason on di↵erent ways of rewriting. Intuitively, any
two rewriting maps with the same domain and codomain should be the same up to homotopy.
But as we only consider 2-groupoids, we are missing higher-order compatibilities. Here is
an example of two derivable equalities between two rewriting maps.

Definition eq rect’ eq (A : [ Type]) (x : [A]) (F : [A ≠æ Type])
(y : [A]) (e e’ : x ≥1 y) (H : e ≥ e’ ) : eq rect’ x F y e ≥1 eq rect’ x F y e’ :=
equiv (map (Functor := map2 (Weak2Functor := fi2 F ) x y) (map [F ]) H ).

Definition eq rect’ map (A : [ Type]) (x : [A]) (F : [A ≠æ Type])
(p q : [F ı x ]) (y : [A]) (e : x ≥1 y) (H : p ≥1 q) :
(eq rect’ x F y e) ı p ≥1 (eq rect’ x F y e) ı q := map [[map [F ] e]] H .

Definition eq rect’ comp (A : [ Type]) (x y z : [A]) (F : [A ≠æ Type])
(e : x ≥1 y) (e’ : y ≥1 z ) :
eq rect’ x F z (e’ ¶ e) ≥1 eq rect’ y F z e’ ¶ eq rect’ x F y e :=
(equiv (map comp [F ] e e’ )).

Definition eq rect’ eq comp (T :[ Type]) (U : [T ≠æ Type])
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Rewriting theory

We derive (some, not all) coherence theorems on eq rect
according to the ones on map. E.g., the usual reduction for
eq rect is derivable:

Definition eq rect id {T :[ Type]} {F : [T �! Type]}
(x : [T]) (p : [F ? x])
: eq rect (identity x) p ⇠1 p := (equiv (map id F x)) ? p.

eq rect is compatible with higher equivalences as well:

Definition eq rect eq {A : [ Type]} {x : [A]}
{F : [A �! Type]}

{y : [A]} {e e’: x ⇠1 y} (H : e ⇠2 e’) (p : [F ? x]) :
eq rect e p ⇠1 eq rect e’ p := (equiv (map2 [F] H)) ? p.

Matthieu Sozeau - Univalence for Free 28
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Dependent product
(work in progress)
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In homotopy type theory, dependent sums and products 
are interpreted using sections and projections.

We look for more direct/computational definitions
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The dependent product gives rise to dependent functors. 

The map component needs some adjustment by 
equalities due to dependencies.

10 Univalence For Free, not yet

(x y : [T ]) (e e’ e’’ : x ≥1 y) (H : e ≥ e’ ) (H’ : e’ ≥ e’’ ) :
eq rect’ eq x U y e e’’ (H’ ¶ H ) ≥
eq rect’ eq x U y e’ e’’ H’ ¶ eq rect’ eq x U y e e’ H :=
(map comp (map [U ]) H H’ ) .

The fact that we are missing higher equalities on rewriting maps will become more
apparent in the next two sections.

3.6 Dependent Product

As for function, a dependent function will be interpreted as a functor. But this time, the
compatibilities with higher-order morphisms can not be expressed as simple equalities, as
some rewriting as to be done to make those equalities typable. We call such a functor a
dependent functor.

Class DependentFunctor (T :[ Type]) (U : [T ≠æ Type]) (f : ’ t , [U ı t ]) := {

Dmap : ’ {x y} (e: x ≥1 y), eq rect’ U e ı (f x ) ≥1 f y ;

Dmap comp : ’ x y z (e : x ≥1 y) (e’ : y ≥1 z ),
Dmap (e’ ¶ e) ¶ (inverse (eq rect’ comp U e e’ ) ı ) ≥
Dmap e’ ¶ eq rect’ map U (Dmap e);

Dmap id : ’ x , Dmap (identity x ) ≥ eq rect’ id x ı (f x )
}.

Definition eq rect’ eq id (T :[ Type]) (U : [T ≠æ Type])
(x y : [T ]) (e: x ≥1 y) :
eq rect’ eq x U y e e (identity e) ≥ identity (eq rect’ x U y e) :=
map id (map [U ]) e.

Class DependentFunctor2 (T :[ Type]) (U : [T ≠æ Type]) (f : ’ t , [U ı t ]) x y

(F : ’ (e: x ≥1 y), eq rect’ U e ı (f x ) ≥1 f y) := {

Dmap2 : ’ {e e’ : x ≥1 y} (H : e ≥ e’ ),
F e ≥ F e’ ¶ (eq rect’ eq x U y e e’ H ı (f x )) ;

Dmap2 comp : ’ (e e’ e’’ : x ≥1 y) (H : e ≥2 e’ ) (H’ : e’ ≥ e’’ ),
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map3 [U ] H .

Class Weak2DependentFunctor (T :[ Type]) (U : [T ≠æ Type]) (f : ’ t , [U ı t ]) : Type

:=
{

Dmap1 :> DependentFunctor U f ;
Dmap2 :> ’ (x y : [T ]), DependentFunctor2 U f x y (Dmap f );
Dmap3 : ’ (x y : [T ]) (e e’ : x ≥1 y) (E E’ : e ≥2 e’ ) (H : E ≥3 E’ ),

((eq rect’ eq eq U x y e e’ E E’ H ı (f x )) ** identity ) ¶
Dmap2 (Dmap f ) E ≥3
Dmap2 (Dmap f ) E’

}.

Definition Prod Type (T :[ Type]) (U :[T ≠æ Type]) :=
{f : ’ t , [U ı t ] & Weak2DependentFunctor U f }.

As it is the case for functor between 2-groupoids, the compatibilities with the identity
and inverse morphism can be deduced from the compatibility with the composition. But for
that, we need to reason on higher-order equalities that are not derivable in an n-groupoid
setting. Of course, this problem would not appear when using Œ-groupoids. To show the
validity of the approach, we have decided to prove the compatibility with the identity up-to
a higher-order axiom on rewriting. This shows that in a 3-groupoid setting, the very same
proof could be done, but this time without an axiom.

Lemma Dmap id auto (T :[ Type]) (U : [T ≠æ Type]) (f : Prod Type U ) :
’ x , Dmap [f ] (identity x ) ≥ eq rect’ id x ı (f ı x ).

Equality between dependent functors is given by dependent natural transformations.
Again, at level 2, the naturality condition is trivial.

Definition Dnat trans T (U :[T ≠æ Type]) (F G : Prod Type U ) :=
{– : ’ t : [T ], F ı t ≥1 G ı t & ’ t t’ e,

(– t’ ) ¶ (Dmap e) ≥
(Dmap e) ¶ eq rect’ map U (F ı t) (G ı t) e (– t)}.

Definition Dmodification T U (f g : Prod Type U ) : HomT (Dnat trans f g) :=
⁄ – — , ’ t : [T ], – ı t ≥ — ı t .

We can now equip the dependent functors with its 2-groupoid structure using Dnat trans
and Dmodification as underlying equalities.

Program Definition Prod T (U :[T ≠æ Type]) : [ Type] :=
(Prod Type U ; ).

3.7 � types and groupoid levels

In the interpretation of � types, the missing equalities coming from the truncation at level
2 of Œ-groupoids will be even more apparent. In the same way that a � type on a fibration
F : T æ Type in Coq lives in universe n + 1 when F lives in universe n, our interpretation
of � type requires that F defines n-groupoids to get a n+1-groupoid � type. Of course, this
problem doesn’t show up with Œ-groupoids.
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As for dependent products, we could solve this issue by assuming the missing compatib-
ilities. We prefer here to define a 2-groupoid � type on weak 1-fibrations, that is functors of
type T ≠æ Type that send every t :T to a weak 1-groupoid, without resorting to axioms.

Definition Weak1Groupoid (T : [ Type]) : Type :=
’ (x y : [T ]) (f g : x ≥1 y) (– —: f ≥2 g), – ≥3 —.

Definition Weak1Fibration (T : [ Type]) : Type :=
{ F : [T ≠æ Type] & ’ t , Weak1Groupoid (F ı t)}.

As explained above, we need to restrict the construction of � types to Weak1Fibration.

Definition sum type (T : [ Type]) (F : Weak1Fibration T ) :=
{t : [T ] & [[F ] ı t ]}.

1-equality between dependant pairs is given by 1-equality on the first and second projec-
tions, with a rewriting/transport on one second projection by the first equality.

Definition sum eq (T : [ Type]) (F : Weak1Fibration T ) :=
⁄ (m n : sum type F ), {P : [m] ≥1 [n] & eq rect’ [F ] P ı (fi2 m) ≥1 fi2 n}.

In the same way, 2-equality between 1-equalities is given by projections and rewriting.

Definition sum eq2 T (F :Weak1Fibration T ) (M N : sum type F ) : HomT (sum eq M

N ) :=
⁄ e e’ , {P : [e] ≥ [e’ ] & fi2 e ≥ fi2 e’ ¶ (eq rect’ eq P ı (fi2 M ))}.

Program Definition Sum T (F :Weak1Fibration T ) : [ Type] :=
(sum type F ; ).

The proof that we actually have a 2-groupoid makes use of the fact that ≥ on F ı t is
always trivial to complete proofs that would have been derivable at level 3 only.

3.8 The translation process

We now present a translation that internalizes homotopy type theory into the Calculus of
Constructions (CC) using our 2-groupoid interpretation.

J Type K © Type

J Prop K © Prop

J T æ U K © J T K ≠æ J U K
J ’ t : T , U K © Prod J (⁄ t , U ; ) K
J ⁄ t : T , M K © (⁄ t : J T K , J M K ; )

J x :A K © x : [ J T K ]

J M N K © J M K ı J N K
J {t : T , U } K © Sum J (⁄ t , U ; ) K
J fii M K © fii J M K

The translation is conservative with respect to CC because it conserves all the computation
content and only adds missing terms for compatibilities and naturalities.

Note that in the translation of products, functions and sums, the missing terms for
compatibilities and naturalities are treated as obligations. It is still an open problem to know
whether every such obligations can be automatically computed from the original term before
translation. The connection between Œ-groupoids and homotopy type theory guarantees
that such proofs exist but does not say much about their shape.
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that such proofs exist but does not say much about their shape.
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type T ≠æ Type that send every t :T to a weak 1-groupoid, without resorting to axioms.
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’ (x y : [T ]) (f g : x ≥1 y) (– —: f ≥2 g), – ≥3 —.
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tions, with a rewriting/transport on one second projection by the first equality.

Definition sum eq (T : [ Type]) (F : Weak1Fibration T ) :=
⁄ (m n : sum type F ), {P : [m] ≥1 [n] & eq rect’ [F ] P ı (fi2 m) ≥1 fi2 n}.
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Definition sum eq2 T (F :Weak1Fibration T ) (M N : sum type F ) : HomT (sum eq M
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⁄ e e’ , {P : [e] ≥ [e’ ] & fi2 e ≥ fi2 e’ ¶ (eq rect’ eq P ı (fi2 M ))}.

Program Definition Sum T (F :Weak1Fibration T ) : [ Type] :=
(sum type F ; ).

The proof that we actually have a 2-groupoid makes use of the fact that ≥ on F ı t is
always trivial to complete proofs that would have been derivable at level 3 only.

3.8 The translation process

We now present a translation that internalizes homotopy type theory into the Calculus of
Constructions (CC) using our 2-groupoid interpretation.

J Type K © Type
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J T æ U K © J T K ≠æ J U K
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The translation is conservative with respect to CC because it conserves all the computation
content and only adds missing terms for compatibilities and naturalities.

Note that in the translation of products, functions and sums, the missing terms for
compatibilities and naturalities are treated as obligations. It is still an open problem to know
whether every such obligations can be automatically computed from the original term before
translation. The connection between Œ-groupoids and homotopy type theory guarantees
that such proofs exist but does not say much about their shape.
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12 Univalence For Free, not yet

As for dependent products, we could solve this issue by assuming the missing compatib-
ilities. We prefer here to define a 2-groupoid � type on weak 1-fibrations, that is functors of
type T ≠æ Type that send every t :T to a weak 1-groupoid, without resorting to axioms.

Definition Weak1Groupoid (T : [ Type]) : Type :=
’ (x y : [T ]) (f g : x ≥1 y) (– —: f ≥2 g), – ≥3 —.

Definition Weak1Fibration (T : [ Type]) : Type :=
{ F : [T ≠æ Type] & ’ t , Weak1Groupoid (F ı t)}.

As explained above, we need to restrict the construction of � types to Weak1Fibration.

Definition sum type (T : [ Type]) (F : Weak1Fibration T ) :=
{t : [T ] & [[F ] ı t ]}.

1-equality between dependant pairs is given by 1-equality on the first and second projec-
tions, with a rewriting/transport on one second projection by the first equality.

Definition sum eq (T : [ Type]) (F : Weak1Fibration T ) :=
⁄ (m n : sum type F ), {P : [m] ≥1 [n] & eq rect’ [F ] P ı (fi2 m) ≥1 fi2 n}.

In the same way, 2-equality between 1-equalities is given by projections and rewriting.

Definition sum eq2 T (F :Weak1Fibration T ) (M N : sum type F ) : HomT (sum eq M

N ) :=
⁄ e e’ , {P : [e] ≥ [e’ ] & fi2 e ≥ fi2 e’ ¶ (eq rect’ eq P ı (fi2 M ))}.

Program Definition Sum T (F :Weak1Fibration T ) : [ Type] :=
(sum type F ; ).

The proof that we actually have a 2-groupoid makes use of the fact that ≥ on F ı t is
always trivial to complete proofs that would have been derivable at level 3 only.

3.8 The translation process

We now present a translation that internalizes homotopy type theory into the Calculus of
Constructions (CC) using our 2-groupoid interpretation.

J Type K © Type

J Prop K © Prop

J T æ U K © J T K ≠æ J U K
J ’ t : T , U K © Prod J (⁄ t , U ; ) K
J ⁄ t : T , M K © (⁄ t : J T K , J M K ; )

J x :A K © x : [ J T K ]

J M N K © J M K ı J N K
J {t : T , U } K © Sum J (⁄ t , U ; ) K
J fii M K © fii J M K

The translation is conservative with respect to CC because it conserves all the computation
content and only adds missing terms for compatibilities and naturalities.

Note that in the translation of products, functions and sums, the missing terms for
compatibilities and naturalities are treated as obligations. It is still an open problem to know
whether every such obligations can be automatically computed from the original term before
translation. The connection between Œ-groupoids and homotopy type theory guarantees
that such proofs exist but does not say much about their shape.
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Definition sum eq2 T (F :Weak1Fibration T ) (M N : sum type F ) : HomT (sum eq M

N ) :=
⁄ e e’ , {P : [e] ≥ [e’ ] & fi2 e ≥ fi2 e’ ¶ (eq rect’ eq P ı (fi2 M ))}.

Program Definition Sum T (F :Weak1Fibration T ) : [ Type] :=
(sum type F ; ).

The proof that we actually have a 2-groupoid makes use of the fact that ≥ on F ı t is
always trivial to complete proofs that would have been derivable at level 3 only.

3.8 The translation process

We now present a translation that internalizes homotopy type theory into the Calculus of
Constructions (CC) using our 2-groupoid interpretation.
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J Prop K © Prop

J T æ U K © J T K ≠æ J U K
J ’ t : T , U K © Prod J (⁄ t , U ; ) K
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J M N K © J M K ı J N K
J {t : T , U } K © Sum J (⁄ t , U ; ) K
J fii M K © fii J M K

The translation is conservative with respect to CC because it conserves all the computation
content and only adds missing terms for compatibilities and naturalities.

Note that in the translation of products, functions and sums, the missing terms for
compatibilities and naturalities are treated as obligations. It is still an open problem to know
whether every such obligations can be automatically computed from the original term before
translation. The connection between Œ-groupoids and homotopy type theory guarantees
that such proofs exist but does not say much about their shape.

3.9 Univalence axiom and others as lemmas

As a sanity check, we now prove that the equality we defined on propositions, Prop, functions,
dependent pairs and Type behave as expected.

First, we state that equality on proofs is irrelevant and equality on propositions is given
by ¡.

Lemma prop extensional (P Q : [ Prop]) : [P ] ¡ [Q ] æ P ≥1 Q .

Lemma proof irrelevant (P : [ Prop]) (p q : [P ]) : p ≥1 q .

We also have functional extensionality, for the dependent and non-dependent function
spaces, at the price of a naturality condition (see nat trans).

Lemma functional extensionality A B (f g : [A ≠æ B ]) :
nat trans f g æ f ≥1 g .

Lemma functional extensionality dep T U (f g : [ Prod (T :=T ) U ]) :
Dnat trans f g æ f ≥1 g .

To prove equality on dependent pairs, it is enough to prove equality of the corresponding
projections.
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by ¡.

Lemma prop extensional (P Q : [ Prop]) : [P ] ¡ [Q ] æ P ≥1 Q .
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Lemma sum extensional T F (m n : [ Sum (T :=T ) F ]) :
’ (P : [m] ≥1 [n]), eq rect’ [F ] P ı (fi2 m) ≥1 fi2 n æ m ≥1 n.

Finally, we have the univalence principle on types.

Lemma univalence statement (U V : [ Type]) : (Equiv U V ) æ U ≥1 V .

4 An example using univalence

To illustrate the use of univalence in our equality, we will define the type ’ X : Type, (X
æ X ) æ X æ X of Church naturals and show that it is equal to the inductive type nat of
inductive Coq naturals.

Showing that those two types are equal amounts to constructing a homotopic equivalence
between them. The proof that we actually have an equivalence relies on the fact that every
inhabitant of cnat is parametric with respect to the variable X . This principle is not provable
in Coq and will be posed as an axiom in our development. However it is validated meta-
theoretically by a parametricity result on (a slight refinement of) CIC in Keller and Lasson’s
work [8].

The first problem to define the type of Church integers is to derive the (nested) proofs of
functoriality of the function ⁄ X , (X æ X ) æ X æ X . To do that, we show that the arrow
(≠æ) is functorial. Based on this, we can construct an other arrow (⇣) on endofunctors on
Type.

Program Definition endo fun (f g : [ Type ≠æ Type]) : [ Type ≠æ Type]
:= (⁄ X , (f ı X ) ≠æ (g ı X ); ).

Infix ”⇣” := endo fun (at level 80, right associativity).

This arrow expects two endofunctors on Type and pre-composes them with (≠æ) to
get a new endofunctor on Type.

The idea is to use an encoding of ⁄-terms with one free variable as endofunctors to define
the type of Church naturals. In this encoding, the variable is seen as the identity functor.

Definition Var := identity Type : [ Type ≠æ Type].

Then, the functor cnatT corresponding to the term ⁄ X , (X æ X ) æ X æ X can be
defined directly.

Definition cnatT : [ Type ≠æ Type] := (Var ⇣ Var) ⇣ Var ⇣ Var.

As all our constructions are functorial, there is no need to prove extra compatibilities to
define the type of Church naturals.

Program Definition cnat := Prod cnatT : [ Type].

Let us now define the 2-groupoid of inductive natural numbers. It has natural numbers
as objects, the Leibniz equality (eq of Coq) for ≥1 and is irrelevant on ≥2. This corresponds
to the fact that uniqueness of (Leibniz) identity proofs for nat holds in CIC, as for any
decidable type.

Program Definition nat : [ Type] :=
(nat ; IrrRelWeak2Groupoid (m := eq) ).

The zero of nat is still the zero 0 of nat, but we need to promote the successor constructor
S to a functor succ that contains the (trivial) proofs of compatibility with Leibniz equality.

Program Definition succ : [ nat ≠æ nat] := (⁄ n , S n; ).
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functoriality of the function ⁄ X , (X æ X ) æ X æ X . To do that, we show that the arrow
(≠æ) is functorial. Based on this, we can construct an other arrow (⇣) on endofunctors on
Type.

Program Definition endo fun (f g : [ Type ≠æ Type]) : [ Type ≠æ Type]
:= (⁄ X , (f ı X ) ≠æ (g ı X ); ).

Infix ”⇣” := endo fun (at level 80, right associativity).

This arrow expects two endofunctors on Type and pre-composes them with (≠æ) to
get a new endofunctor on Type.

The idea is to use an encoding of ⁄-terms with one free variable as endofunctors to define
the type of Church naturals. In this encoding, the variable is seen as the identity functor.

Definition Var := identity Type : [ Type ≠æ Type].

Then, the functor cnatT corresponding to the term ⁄ X , (X æ X ) æ X æ X can be
defined directly.

Definition cnatT : [ Type ≠æ Type] := (Var ⇣ Var) ⇣ Var ⇣ Var.

As all our constructions are functorial, there is no need to prove extra compatibilities to
define the type of Church naturals.

Program Definition cnat := Prod cnatT : [ Type].

Let us now define the 2-groupoid of inductive natural numbers. It has natural numbers
as objects, the Leibniz equality (eq of Coq) for ≥1 and is irrelevant on ≥2. This corresponds
to the fact that uniqueness of (Leibniz) identity proofs for nat holds in CIC, as for any
decidable type.

Program Definition nat : [ Type] :=
(nat ; IrrRelWeak2Groupoid (m := eq) ).

The zero of nat is still the zero 0 of nat, but we need to promote the successor constructor
S to a functor succ that contains the (trivial) proofs of compatibility with Leibniz equality.

Program Definition succ : [ nat ≠æ nat] := (⁄ n , S n; ).



Univalence for free, not yet
Ascola

62

An Example
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inductive naturals
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Church naturals and inductive naturals

I Define the (discrete) weak 2-groupoid of inductive natural
numbers: (nat, eq,Hom irr, . . .).
We need to use UIP on nat to show this forms a groupoid.

I Derive the weak 2-groupoid of church naturals
cnat := ⇧X : Type, X ! (X ! X) ! X using the function
space and dependent product groupoid constructors.

I Prove equivalence (i.e., isomorphism) of the two groupoids.
This requires parametricity at cnat (see Keller and Lasson).

We can now transport the translation of any theorem on nat to
cnat... This requires showing these theorems are functorial of
course.
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Univalence should be for free

Direction:

• Automate compatibility conditions 

• Internalize this, 2-dimensional type theory/OTT-style


