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MELL

Proof nets: the graphical syntax for linear logic.

MELL: linear logic without the additives.

Brought new deep perspectives about normalization:

1 Optimal reductions;

2 Geometry of interaction;

3 Implicit computational complexity;

4 Explicit substitutions;

Key concept: boxes for the promotion rule, the heart of the system.
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Problems

Statics:

1

Boxes: can they be induced by some logic feature?

2

Correctness: no correctness criteria!

Dynamics:

1

Strong Normalization: shouldn’t it be easy?

2

Confluence: no residuals/cube property.

3

Standardization: folklore theory.
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Toward a New Theory of Exponential Proof Nets

Statics:

1

Boxes: can they be induced by some logic feature?
This talk, LICS 2013.

2

Correctness: no correctness criteria!
Conjecture: Intuitionistic MELL has a criterion, MELL does not.

Dynamics:

1

Strong Normalization: shouldn’t it be easy?
This talk, RTA 2013.

2

Confluence: no residuals/cube property.
A-Bonelli-Kesner-Lombardi, POPL 2014.

3

Standardization: folklore theory.
A-Bonelli-Kesner-Lombardi, POPL 2014.
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Compressing Polarized Boxes
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Multiplicative Linear Logic (MLL)

Identity rules: ax
` A?,A

` �,A ` A?,�
cut` �,�

Multiplicative rules:
` �,A ` �,B ⌦` �,�,A⌦ B

` �,A,B
`` �,A` B

B. Accattoli (CMU-Bologna) Toward a New Theory of Exponential Proof Nets 6 / 47



Proof nets for MLL

ax

` A?, A  
A? A

ax

⇡
:

` �, A

�
:

` �, A?
cut

` �,�

 ⇡?

�

�?

�

cut

A A?

⇡
:

` �, A, B
`

` �, A ` B

 
⇡?

`
A B

A ` B

�

⇡
:

` �, A

�
:

` �, B
⌦

` �,�, A ⌦ B

 
⇡?

�

�?

�⌦
A B

A ⌦ B
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Cut-elimination for MLL

A

ax

cut

A? A !
ax

A

`

B?A?

cut

⌦

BA

!`
P?

cut

PQ?

cut

Q

No duplication/erasure of subnets

)

Everything works fine
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Multiplicative Exponential Linear Logic (MELL)

MLL

+

Exponential rules:

` �,A
d` �, ?A

`?�,A
!`?�, !A

` �, ?A, ?A
c

` �, ?A
` � w

` �, ?A
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Exponential Cut-elimination

Consider the following cut with contraction:

⇢
:

`?�,A
!`?�, !A

⇡
:

` ?A?, ?A?, �
c

` ?A?, �
cut`?�, �

Its elimination requires to duplicate ⇢:

⇢
:

`?�,A
!`?�, !A

⇢
:

`?�,A
!`?�, !A

⇡
:

` ?A?, ?A?, �
cut

`?�, ?A?, �
cut`?�, ?�, �

c
... c

`?�, �

Similarly, weakening induces erasure of sub-proofs.
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Näıve proof nets for MELL

⇡
:

` �

w

` �, ?A

 ⇡?

� ?A

w

⇡
:

` �,A
d` �, ?A

 
⇡?

d

A

?A

⇡
:

` �, ?A, ?A
c

` �, ?A

 
⇡?

c

?A ?A

?A

�

⇡
:

` ?�,A
!` ?�, !A

 
⇡?

!

A

!A

!

?�
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How to eliminate cuts?

Näıve translation of promotion:

⇡
:

` ?�,A
!` ?�, !A

 
⇡?

!

A

!A

!

?�

Given this cut in a generic net:

c

?A?
?A?

cut

!

?A?
!A

A

There is no way of recovering the sub-proof to duplicate.

Then !-rules are represented as boxes:

⇡
:

` ?�,A
!` ?�, !A

 ⇡?

!

A

!A

!

?�
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Exponential cut elimination implemented using boxes

w

cut

?A? !A
!

?Bk?B
1

. . . !
w

?B
1

?Bk

w w

. . .

. . .

!

!A
�

P

cut

?A?

d

A?

!
d

�

P
cut

AA?

c

?A?
?A?

cut

?A? !A
!

?Bk?B
1

. . . !
c

?A?
?A?

! . . .
cut

! . . .
!A

!A

?B
1

c

?Bk

c

. . .

cut

!

A

P

?�

cut

!

?�

!B
!�

!

A

P

?�

cut

!

?�

!B

!
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Boxes

Boxes solve the problem of defining cut-elimination.

However, the solution is drastic, equivalent to give up.

Some fragments seem to have an inherent notion of box.

Where does the problem lie?

Is there a logic feature that internalizes boxes?
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Last rule 1

Main problem: in proof nets there is no last rule.

Re-consider:

⇢

:

`?�, A
!

`?�, !A

⇡
:

` ?A?, ?A?, �
c

` ?A?, �
cut

`?�, �

!

⇢

:

`?�, A
!

`?�, !A

⇢

:

`?�, A
!

`?�, !A

⇡
:

` ?A?, ?A?, �
cut

`?�, ?A?, �
cut

`?�, ?�, �
c

.

.

.

c

`?�, �

In sequent calculus:

rule occurrence r 7! sub-proof ending on r .

No such thing in proof nets!
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Last rule 2

Intuition:

Internalizing a notion of last rule

will internalize boxes

Partially internalized boxes: Olivier Laurent’s MELLP.

Abstract last rule = last positive rule.

Expressiveness: MELLP codes classical logic/�µ-calculus.

My contribution: totally internalized boxes for MELLP.
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Outline

1 Polarized MELL

2 Compressing polarized boxes

3 Cuts and Cut-Elimination
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Polarization

Formulas:

P ,Q ::= X | 1 | P ⌦ Q | !N
N,M ::= X? | ? | N `M | ?P

Sequents:

` � ; P or ` � ;

Multiplicative rules:

` �;P ` �,P?; [Q]
cut` �,�; [Q]

ax
` P?;P

` �; [P]
?` �,?; [P]

1`; 1

` �,N,M; [P]
`` �,N `M; [P]

` �;P ` �;Q ⌦` �,�;P ⌦ Q
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Laurent’s MELLP: adding exponentials

Exponential rules:

` �; [P]
w

` �,N; [P]

` �;P
d` �, ?P ;

` �,N,N; [P]
c

` �,N; [P]

` �,N;
!` �; !N

Di↵erence with linear logic:

Promotion, contraction, and weakening do not need the ? modality.

Important:

Only positives are duplicated/erased.

Positives are last rules and every positive will have a box.
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1`; 1  
1

1

ax

` P?
;P  

P? P

ax

` �;P ` �;Q ⌦
` �,�;P ⌦ Q

 
⇡?

�

✓?

�

⌦P Q

P ⌦ Q

` �;P ` �,P?
; [Q]

cut

` �,�; [Q]

 
⇡?

�

✓?

[Q]

�

cut

P P?

` �,N,M; [P]

`` �,N `M; [P]

 
⇡?

`
N M

N ` M

�

[P]
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` �; [P]

w

` �,N; [P]

 ⇡?

�

[P]

N

w

` �;P
d` �, ?P;

 
⇡?

�

d

P

?P

` �,N,N; [P]

c

` �,N; [P]

 
⇡?

c

N N

N

�

[P]

` �,N;

!` �; !N
 ⇡?

�

!

N

!N

!
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Positive Trees

` �;P ` �,P?; [Q]
cut` �,�; [Q]

ax
` P?;P

` �; [P]
?` �,?; [P]

1`; 1

` �,N,M; [P]
`` �,N `M; [P]

` �;P ` �;Q ⌦` �,�;P ⌦ Q

` �; [P]
w

` �,N; [P]

` �;P
d` �, ?P ;

` �,N,N; [P]
c

` �,N; [P]

` �,N;
!` �; !N

Note: positives have a forest structure.
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Positive Tree

Positive connectives: 1,⌦, !.

Explicit boxes for ! ) induced box for every positive:

!

NkN
1

H

. . .

! !
!

NkN
1

H

. . .

! P P?

ax

!
P P?

ax

P Q

P ⌦ Q

⌦ !
P Q

P ⌦ Q

⌦
1 ! 1
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Generalized rewriting rule

Laurent uses the positive tree to generalize box rules:

w

+

NkN
1

T (+)

. . .+

cut

!
w

N
1

Nk

w w

. . .

. . .
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Polarized cut-elimination 1

P

ax

cut

P? P !
ax

�
P

N

ax

cut

N? N !
ax

+

N

`

Q?
P?

cut

⌦

QP

!`
P?

cut

PQ?

cut

Q
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Polarized cut-elimination 2

!

!N
N
1

Nk

. . .

E

cut

d

N?

!
d

N
1

Nk

. . .

E
cut

N

N?

w

cutP? P
+

NkN
1

T (+)

. . . !
w

N
1

Nk

w w

. . .

. . .

c

P?P?

cutP? P
+

T (+)

NkN
1

. . .
!

c

P?P?
+

T (+)

. . .

cut

+

T (+)

. . .
P P

c c

. . .
N
1

Nk

cut

!

Q

E

M
1

Mh

. . .
cut

+

T (+)

NkN
1

. . .P
!�

M
1

Mh

cut

E

. . .

+

T (+)

NkN
1

. . .P

!
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Outline

1 Polarized MELL

2 Compressing polarized boxes

3 Cuts and Cut-Elimination
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Matching property

` �;P ` �,P?; [Q]
cut` �,�; [Q]

ax
` P?;P

` �; [P]
?` �,?; [P]

1`; 1

` �,N,M; [P]
`` �,N `M; [P]

` �;P ` �;Q ⌦` �,�;P ⌦ Q

` �; [P]
w

` �,N; [P]

` �;P
d` �, ?P ;

` �,N,N; [P]
c

` �,N; [P]

` �,N;
!` �; !N

Matching property: every !-rule is enabled by a d-rule.
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Materializing the matching property 1

Consider:

1

w

! d

w

1

w

! d

w

Problem: without box the content is disconnected.

Idea: let’s materialize the matching property with an additional edge.

1

w

! d

i
w

The content and the positive sub-graphs are now connected.

The implicit box of a !-link is its matching dereliction.

The induced box is the positive tree plus the negative trees on it.
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Quotient and weakenings

Let’s do it again:

1

w

! d

w

1

w

! d

w

We do not recover the original box:

1

w

! d

i
w

1

w

! d

w

Interpretation: we are quotienting proof nets with explicit boxes.

Remark: weakenings are not attached!

) improvement over Francois Lamarche’s essential nets.
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Box borders

Let’s do it again:

1

w

! d

w

1

w

! d

i
w

1

d

!

1

d

!

i

Remark: we are not attaching the border of the box.

) improvement over Ian Mackie’s interaction nets technique.
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Correctness Criterion

ax

⌦

d

1

c

!

d

w

i
! d

Correctness Criterion: Laurent’s + Lamarche’s.

The conditions have to be smoothed:

Root: exactly one initial node (no change).

Acyclicity: every directed cycle uses the negative premise of a !.

Box condition: If p!⇤! then !!⇤p.
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Implicit boxes

Recipe:

Take a cut-free proof net.

Matching: every !-box has a unique dereliction at level 0.

Remove the explicit box and add the matching edge.

Then:

The induced boxes define a net with explicit boxes.

Induced boxes are locally reconstructable.

There is a simple correctness criterion (i.e. not ad-hoc).

It is a canonical representation (i.e. no choice).
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Summing up

In a cut-free proof net

the explicit box of a !

can be replaced by a single edge

in a canonical and more parallel way.
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Outline

1 Polarized MELL

2 Compressing polarized boxes

3 Cuts and Cut-Elimination

B. Accattoli (CMU-Bologna) Toward a New Theory of Exponential Proof Nets 35 / 47



Cuts

Cuts introduce a problem:

ax

cut

ax

! d

The positive sub-graph is no longer connected.

Let’s iterate the same idea:

ax

cut

ax

! d

i

i

Implicit box of a !: matching dereliction + cuts at level 0.
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Example

ax

ax

⌦P P

d

?(P ⌦ P)

c

!

d

?!P?

`
w w

N M

N ` M

1

w

?1

! d

w

cut

w

1

cut

?

!` d

ax

ax

⌦P P

d

?(P ⌦ P)

c

!

d

?!P?

`
w w

N M

N ` M

1

w

?1

! d

w

cut

w

1

cut

?

!` d

ax

ax

⌦
d

c

!

d

`
w w

1

w

! d

w

cut

i

i

i

w

1

cut

!` d

ax

ax

⌦
d

c

!

d

`
w w

1

w

! d

w

cut

i

i

i

w

1

cut

!` d

Induced box: positive tree plus negative sub-trees.

Novelty: ` commutes with box borders!
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Cut elimination

X

ax

cut

X
X?

! i

!
ax

�

X

!

`

Q?
P?

cut

⌦

QP

! i

!`

P?

cut

PQ?

cut

Q

!

i

i

X?

ax

X
cut

X?

! i

!
ax

+

X?!

!

N

i

cut

d

N?

!

00
i

!

0 i
!

d

N

cut

N?

!

0 i
i

!

00

c

P?P?

cutP? P
+

⇤(+)

NkN
1

. . .

! i

!
c

P?P?
+

⇤(+)

. . .

cut

+

⇤(+)

. . .
P P

c c

. . .
N
1

Nk

cutcut

!

i

i

w

cutP? P
+

NkN
1

⇤(+)

. . .

! i

!
w N

1

Nk

w w

. . .

. . .

!
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Side e↵ects 1

Cut elimination has ’side e↵ects’.

Consider the weakening rule:

w

cutP? P
+

NkN
1

⇤(+)

. . .

! i

!
w N

1

Nk

w w

. . .

. . .

!

It automatically pushes the created weakenings out of boxes:

+

NkN
1

⇤(+)

. . .cut

w

!

i

... !
w

...
!

w

N
1

w

Nk

. . .

Similarly for contraction.
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No commutative cuts

There is no commutative rule.

It is included inside the axiom and dereliction rules.

The axiom rule:

X

ax

cut

X
X?

! i

!
ax

�

X

!

and its action through box borders:

axP

cut

P
+

NkN
1

⇤(+)

. . .

! i

...

!
ax

�
P

+

NkN
1

⇤(+)

...

!
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No commutative cuts 2

The dereliction rule:

!

N

i

cut

d

N?

!

00
i

!

0 i
!

d

N

cut

N?

!

0 i
i

!

00

and an example of its action:

1

w

! d

i

cut

d

0

!

00
i

!

0 i
... !

d

1

!

0
d

i

cut

w

i

...

!

00

B. Accattoli (CMU-Bologna) Toward a New Theory of Exponential Proof Nets 41 / 47



Side e↵ects 2

N

ax

N?

cut

N

!

i

...
T
c

ax ax w w

!
ax

+

N

T
c

ax ax

ww

...
!

Axiom cuts make whole negative trees commute with box borders.

Critical pair:

w

X? w

 
X?

ax

X

cut

X?

!

i

...
T
c

ax ax ww

cut

w

!
ax

+

X?

T
c

ax ax

ww

...
!

cut

w

. . . . . .

!
w

X?

T
c

w w w w
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Neutrality

Neutrality of weakenings has to be added:

w

c

!n

And how it solves the critical pair:

X?

T
c

w w w w

!⇤
n

w

X?

A similar example with contraction requires:

c

c

⇠a
c

c

c ⇠com c

Very natural: these are rules of a (co)commutative (co)monoid.
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Cut-elimination

On ⌘-expanded nets:

Cut elimination is strongly normalizing (SN).

It is also locally confluent,

and it behaves nicely wrt ?-comonoids.

Then: Church-Rosser modulo and SN modulo hold.
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Proof of SN

Algebraic MELL(P) = MELL(P) + ?-comonoid +

!

E

. . .

c !pc
!

E

. . .
c

!

E

. . .

w !pw
!

E

. . .
w

Laurent’s mapping MELLP ,! MELL lifts.

Simulation:

⌘-exp. implicit MELLP ,! algebraic MELLP ,! algebraic MELL

Pagani & Tranquilli: algebraic MELL is SN.

Then, ⌘-expanded implicit PN are SN.
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Side e↵ects 3

The general case: more and wilder ’side e↵ects’

Two additional algebraic laws (for `-comonoids) are required:

N MN M

` `
c

N ` M

⇠`c

N MN M

c c

`
N ` M

w

N
w

M

N ` M

` !`n
N ` M

w

Problem: Laurent’s translation does not validate them.

And a new problematic critical pair:

P

cut

P?

! i

ax

+

 
ax

cut

P

cut

P?

! i!

0
i

!
ax

�

P

cut

P?

!

0
i

Problem: To close the pair you need to look at the context.
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The general case

The new laws require to prove SN from scratch.

The new critical pair makes local confluence challenging.

Damn! All known proofs of SN are based on local confluence!

Natural question: is local confluence really necessary for SN?
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Strong Normalization
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History

Girard, TCS ’87: linear logic (LL) and strong normalization (SN).

A crucial lemma about the exponentials was left unproven.

Danos, PhD ’90: elaborated proof for second order MELL.

Various other people worked on SN for LL:
Joinet, van Raamsdonk, Okada, Di Cosmo & Guerrini.

Tortora de Falco and Pagani, TCS ’10: SN for second order LL.

Complex and long proof, requiring confluence.

Here: a simple and understandable proof, no need for confluence.
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Outline

1 Strong Normalization, Commutative Cases, and Proof Nets

2 Proof Nets and Substitution

3 The Axiomatic Proof

4 Proving the IE Property
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Kinds of cut

There are two kinds of cut-elimination cases.

1) Principal, i.e. the last rules introduce the cut formulas:

⇡
:

` ?�,A
!` ?�, !A

✓
:

` �,A?
d

` �, ?A?
cut` ?�,�

!
⇡
:

` ?�,A

✓
:

` �,A?
cut` �,�

2) Commutative, one last rule has no relation with the cut formula:

⇡
:

` ?�, !A

✓
:

` ?A

?, ?�,B
!

` ?A

?, ?�, !B
cut` ?�, ?�, !B

!

⇡
:

` ?�, !A

✓
:

` ?A

?, ?�,B
cut` ?�, ?�,B

!

` ?A

?, ?�, !B
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Commutative cases

Commutative cases are the burden of cut-elimination.

Problem: the cut rule commutes with itself.

Consequence: silly diverging reductions.

Solution:
Switch to proof nets, where commutative cases (mostly) disappear.
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From sequent calculus to proof nets

The multiplicative fragment:

ax

` A

?,A  
A

?
A

ax

⇡
:

` �, A

�
:

` �, A?
cut

` �,�

 ⇡?

�

✓?

�

cut

A A

?

mix

0`  
⇡
:

` �

�
:

` �

mix

2` �,�

 
⇡?

�

✓?

�

⇡
:

` �,A,B
`` �,A` B

 
⇡?

`
A B

A ` B

�

⇡
:

` �, A

�
:

` �, B
⌦

` �,�, A ⌦ B

 
⇡?

�

✓?

�⌦
A B

A ⌦ B
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From sequent calculus to proof nets 2

The exponential fragment:

⇡
:

` �

w

` �, ?A

 ⇡?

� ?A

w

⇡
:

` �,A
d` �, ?A

 ⇡?

d

A

?A

⇡
:

` ?�,A
!` ?�, !A

 ⇡?

!

A

!A

!

?�

⇡
:

` �, ?A, ?A
c

` �, ?A

 
⇡?

c

?A ?A

?A

�
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Black-box principle

Girard introduced boxes according to the black-box principle:

”boxes are treated in a perfectly modular way: we can use

the box B without knowing its contents, i.e., another box B

0

with exactly the same doors would do as well”

Principal cases: 2 deductive rules cut at level 0 in the same box.

Only one commutative case:
a rule moving boxes to bring premises of a cut at the same box level
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Proof nets cut-elimination: principal cases

A

ax

cut

A

? A !
ax

A

`
B

?
A

?

cut

⌦
BA

!`
A

?

cut

A

B

?

cut

B

w

cut

?A

? !A

!

?B

k

?B

1

. . . !
w

?B

1

?B

k

w w

. . .

. . .

c

?A

?
?A

?

cut?A

? !A

!

?B

k

?B

1

. . . !
c

?A

?
?A

?
! . . .

cut

! . . .
!A

!A

?B

1

c

?B

k

c

. . .

cut

!

!A

�

P

cut

?A

?

d

A

?

!
d

�

P

cut

A

A

?
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Proof nets cut-elimination: the commutative case

Girard’s original presentation of proof nets has a commutative case:

!

A

P

?�

cut

!

?�

!B

!�
!

A

P

?�

cut

!

?�

!B

!

This rule is the source of all technical complications.
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Expliciting implicit cut-elimination

Implicit boxes provide a new dynamics.

Main point: Box borders are invisible ) No commutative case.

Implicit boxes are delicate and technical.

Idea: let’s rephrase the new dynamics with explicit boxes.
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Box-crossing rules 1

w

cut

...

?A

?
!A

!

?B

k

?B

1

. . . !
!/w

?B

1

?B

k

w w

. . .

. . .
...

c ...

?A

?
?A

?

cut

?A

?
!A

!

?B

k

?B

1

. . .
!

!/c

?A

?
?A

?
...

! . . .
cut

! . . .
!A !A

?B

1

c

?B

k

c. . .
cut

The rules act through possibly many box borders.
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Box-crossing rules 2

!

!A

�

cut

?A

?

ax

...

!A

!
!/ax

!

!A

�

...

!

!A

�

P

cut

?A

?

d ...

A

?

!
!/d

�

P

...cut

A

A

?

These two cases absorb the commutative case.
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Box-crossing rules 3

Commutation with box-borders:

c

⇠
pc

c

w !
pw

w

Cocommutative comonoid:

c

c

⇠
a

c

c

c ⇠
com

c

w

c

!
n
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Outline

1 Strong Normalization, Commutative Cases, and Proof Nets

2 Proof Nets and Substitution

3 The Axiomatic Proof

4 Proving the IE Property
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Exponentials and explicit substitutions

Statically:
In linear logic A ) B decomposes as !A ( B .

Dynamically:
� splits in a multiplicative cut followed by an exponential cut.

Intuition: exponentials = explicit substitutions.

Ordinary substitution or implicit substitution: t{x/s}.

Explicit substitution: t[x/s].

Then:

(�x .t)s !� t{x/s}

becomes

(�x .t)s!m t[x/s] !⇤
et{x/s}
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What is a variable?

[x/s] is a !-box containing s.

t[x/s] is a cut between t and the !-box around s.

What is a variable? a maximal tree of ?-rules (crossing boxes).

Example of explicit substitution t[x/s]:

⌦
dd

ax

ax

?A

?
?B

?
!!

c

ax

...
c

d

w

cut

?(A

? ` B

?
)

!(A ⌦ B)

Next slide: definition of substitution in proof nets.
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R

!

A

!

?B

h

?B

1

. . .

T

c

d d. . .
w w

. . .
ax

ax

. . .

n

m

o

cut

?A

?
!A

#
bs

R

cut

A

...

R

cut

A

...

R

!

A

! ...

R

!

A

! ...

. . . . . .

T

c

w w

. . .

?B

1

n

T

c

w w

. . .

?B

h

n

. . .

m o
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Example of substitution

⌦
dd

ax

ax

?A

?
?B

?
!!

c

ax

...
c

d

w

cut

?(A

? ` B

?
)

!(A ⌦ B)

#
bs

⌦
dd

ax

ax

A

? ` B

?

cut

A ⌦ B

c

w

c

?A

?

c

w

c

?B

?

⌦
dd

ax

ax

!!...
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Outline

1 Strong Normalization, Commutative Cases, and Proof Nets

2 Proof Nets and Substitution

3 The Axiomatic Proof

4 Proving the IE Property
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The proof technique

Proof technique:
Reducibility candidates in bi-orthogonal form (Girard ’87).

The proof is axiomatic:
It works for every set of rewriting rules satisfying the axioms.

For Girard’s rules the axioms are hard to prove.

For the rules induced by implicit boxes the axioms are easy.
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The axiomatic proof

The proof depends on 3 abstract properties of the rewriting relation !:

1 Substitution and promotion commute:

!(P{x/Q}) !⇤ (!P){x/Q}

2 Full composition:

P[x/Q] !+

P{x/Q}

3 Kesner’s IE property:

P{x/Q} 2 SN! Q 2 SN!
P[x/Q] 2 SN!

These properties hold in the untyped case.
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The IE property

Key property of �-calculus:

t{x/s}u
1

. . . u
n

2 SN� s 2 SN�

(�x .t)su
1

. . . u
n

2 SN�

called the fundamental lemma of perpetuality by van Raamsdonk,
Severi, Sorensen, and Xi.

It is more or less explicitly used in all proofs of SN,
e.g. van Daalen’s for simple types, or Girard’s for system F.

Key point in inductive definitions of the set of SN �-terms
(van Raamsdonk & Severi, Loader).

Kesner, LMCS ’09:
Preservation of SN for exp. subst. reduces to the IE property:

t{x/s}u
1

. . . u
n

2 SN� s 2 SN�

t[x/s]u
1

. . . u
n

2 SN�
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Key point of the new proof

The proof is by induction on the structure of the net.

The di�cult case is for promotion.

Inductive Hypothesis: !(P[x/Q]) 2 SN! (and Q 2 SN!).

Goal: (!P)[x/Q] 2 SN! .

Key point of the proof:

!(P[x/Q]) !+ !(P{x/Q}) 2 SN by full composition and i.h.
!⇤ (!P){x/Q} 2 SN by commutation

implies (!P)[x/Q] 2 SN by the IE property

Novelty: no analysis of the reducts of !(P[x/Q]).
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Confluence

Main di�culty for the additives: they are not confluent.

All previous proofs of SN use confluence.

That’s why T. de Falco and Pagani’s proof is very technical.

Here: the first proof of SN not requiring confluence.

Consequence: it smoothly scales up to the additives.
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Outline

1 Strong Normalization, Commutative Cases, and Proof Nets

2 Proof Nets and Substitution

3 The Axiomatic Proof

4 Proving the IE Property
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Proving the IE property 1

The proof of the IE property:

1 box-crossing rules: two lemmas, a simple induction on a triple.

2 black-box rules: many lemmas and pages, very technical.

Recall the possible interactions with a graphical variable/?-tree:

R

!

A

!

?B

h

?B

1

. . .

T

c

d d. . .
w w

. . .
ax

ax

. . .

n

m

o

cut

?A

?
!A

base cases inductive cases
box-crossing: ax, der, weak contraction
black-box ax, der, weak contraction, commutative
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Proving the IE property 2

The IE property:

P{x/Q} 2 SN! Q 2 SN!
P[x/Q] 2 SN!

The proof is by induction on a triple:

(⌘(P{x/Q}), |T
x

|, ⌘(Q))

where ⌘(P) is the sum of the lengths of reductions from P .

Actually, everything has to be generalized to n substitutions.
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Comparing inductive cases

Black-box rules:

c

?A

?
?A

?

cut?A

? !A

!

?B

k

?B

1

. . . !
c

?A

?
?A

?
! . . .

cut

! . . .
!A

!A

?B

1

c

?B

k

c

. . .

cut

!

A

P

?�

cut

!

?�

!B

!�
!

A

P

?�

cut

!

?�

!B

!

Box-crossing rule:

c ...

?A

?
?A

?

cut

?A

?
!A

!

?B

k

?B

1

. . .
!

!/c

?A

?
?A

?
...

! . . .
cut

! . . .
!A !A

?B

1

c

?B

k

c. . .
cut

Intuition: the commutative rule breaks the explicit substitution form.
B. Accattoli (CMU-Bologna) Linear Logic and Strong Normalization 29 / 35



Commutation of promotion and substitution

The property:

!(P{x/Q}) !⇤ (!P){x/Q}

It follows immediately from commutation with box borders:

c

⇠
pc

c

w !
pw

w

These rules are semantically sound and needed to represent �-terms.
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?-Comonoids

The rules for ?-commutative comonoids:

c

c

⇠
a

c

c

c ⇠
com

c

w

c

!
n

are not in the system studied by Tortora de Falco and Pagani.

Usually, their addition requires delicate and sophisticated reasoning
(Di Cosmo & Guerrini, Tranquilli & Pagani).

Here their treatment is almost transparent.
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Ideas

Kesner, LMCS ’09:
IE technique for SN of explicit substitutions.

A.-Guerrini, CSL ’09:
box-free PN for �-terms with explicit substitutions.

A.-Kesner, CSL ’10:

1 new approach to explicit substitutions (structural �-calculus �j).

2 IE technique applies extremely easily to �j.

Here, RTA ’13:
back to PN, generalizing Kesner’s technique and its application.
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Conclusions 1

An alternative representation of boxes:

Simple;

Canonical;

More parallel;

Provided of a correctness criterion;

A local reconstruction of boxes;

Partial results on the dynamics.

New perspective on polarity.
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Conclusions 2

1 A neat understanding of substitution for proof nets (PN).

2 A simple axiomatic proof of strong normalization for LL.

3 A new presentation of PN s.t. the axioms are easy to verify.

4 A new understanding of cut-elimination and exponential boxes.

5 A fruitful interaction between LL and explicit substitutions.
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THANKS!

B. Accattoli (CMU-Bologna) Linear Logic and Strong Normalization 35 / 35


	Polarized MELL
	Compressing polarized boxes
	Cuts and Cut-Elimination

